

Order this document
 by TPUPN05/D

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Multichannel PWM TPU Function (MCPWM)
by Jeff Wright

1 Functional Overview
This TPU output function uses externally-gated multiple channels to produce sophisticated pulse-width
modulated (PWM) signals. These signals can be used for a variety of applications including motor con-
trol. The function allows a user to select edge-aligned or center-aligned timing relationships between
multiple PWM wave forms. Center-aligned relationships include dead time and inversion options to sup-
port driving H-bridges and inverters. MCPWM can also generate a programmable periodic CPU inter-
rupt request for high time updating.

2 Detailed Description
Standard TPU PWM functions use only one channel to produce a PWM output, but the minimum and
maximum pulse widths (other than 0% or 100%) that can be obtained are limited by the latencies of TPU
functions running on other channels. To produce a very short pulse, the same channel must be serviced
quickly twice in succession, and this may not be possible when there is activity on other channels. Al-
though this restriction does not present a problem in many applications, there are others, including mo-
tor control, where high resolution control of the high time is required over the full 0 to 100% duty cycle
range. In motor control applications, it is also desirable to have defined timing relationships between
multiple PWM signals in order to reduce ripple currents and to prevent shoot-through currents on the
phase drivers.

The multichannel PWM function uses two channels that are externally gated (using single EOR gates)
together to form a single PWM signal. This allows a full 0% to 100% duty cycle range under a much
wider range of TPU operating conditions than other PWM functions.

The MCPWM function can operate in edge-aligned (EA) mode or in center-aligned (CA) mode.

During edge-aligned operation, one TPU channel operates as a master signal and a number (n, in the
range 1 to 15) of slave channels are externally gated with the master signal to generate ‘n’ PWM out-
puts. External EOR gates are used. Figure 1 is an EA mode schematic.

In EA mode, the PWM outputs have aligned rising edges. This mode is more channel-efficient than CA
mode, and is the best choice for applications that require general-purpose high-speed, high-resolution
pulse-width modulation. Figure 2 shows EA mode output waveforms.
© MOTOROLA INC, 1997

Figure 1 EA Mode External Gate Schematic

Figure 2 EA Mode Output Waveforms

During center-aligned operation, one TPU channel operates as a master timing channel and a number
(n, in the range 2 to 14) slave channels are externally gated in pairs to generate ‘n ≥ 2’ PWM outputs.
Figure 3 is a CA mode schematic.

In CA mode, the PWM outputs have center-aligned high times. To operate in CA mode, the function
uses pairs of slave channels that perform slightly different operations. The first channel of the pair is
referred to as a Type A slave, and the second channel of the pair is referred to as a Type B slave. In
CA mode, the output of the master channel is normally not used. Figure 4 shows CA mode PWM output
waveforms.

EA MODE CONN

SLAVE CHANNEL 1 PWM1

EXTERNAL
XOR GATES

TPU

VDD

MASTER CHANNEL

PWM2SLAVE CHANNEL 2

PWM3SLAVE CHANNEL 3

ETC ...

VDD

VDD

PWM1

PWM2

PWM3

EA MODE TIM

PERIOD HIGH_TIME
 MOTOROLA TPU Programming Library
2 TPUPN05/D

Figure 3 CA Mode External Gate Schematic

Figure 4 CA Mode Type A and Type B Output Waveforms

CA mode includes optional dead time and inversion functions. Dead time effectively reduces PWM duty
cycle slightly — if two CA mode PWM channels, one with a specified dead time and one with no spec-
ified dead time, reference the same high time, the channel with dead time specified has a slightly shorter
high time and thus does not change state at the same time as the other channel. The user can specify
a dead time accurate to one timer clock. The user can choose to invert one or more of the PWM outputs
during initialization. These features allow MCPWM to easily drive inverter-type applications. Figure 5
shows CA mode inversion and dead-time output waveforms.

CA MODE CONN

SLAVE CHANNEL A1
SLAVE CHANNEL B1 PWM1

EXTERNAL
XOR GATES

TPU

VDDMASTER CHANNEL

PWM2
SLAVE CHANNEL A2
SLAVE CHANNEL B2

PWM3 – INVERTED OPTION
SLAVE CHANNEL A3
SLAVE CHANNEL B3

ETC ...

VDD

VDD

CA MODE A/B TIM

PWM1 OUTPUT

PWM2 OUTPUT

PWM3 OUTPUT

PERIOD

HIGH_TIME
TPU Programming Library MOTOROLA
TPUPN05/D 3

Figure 5 CA Mode Inverted and Dead-Time Waveforms

In both operating modes, the master MCPWM channel can be programmed to generate an interrupt ser-
vice request to the host CPU when a specified number of PWM periods have elapsed. The number of
PWM periods is specified by a user programmable 8-bit number. In many applications, this feature can
be used to make the CPU update PWM duty cycles at a predetermined rate. The programmable inter-
rupt feature is particularly useful for sine-wave modulated PWM production. The programmable inter-
rupt feature can also be used as a simple periodic interrupt timer for the CPU — in this case, only one
channel, programmed as a master, is needed.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. MCPWM function code size is:

30 µ instructions + 8 entries = 38 long words

4 Function Parameters
This section provides detailed descriptions of multichannel PWM function parameters stored in channel
parameter RAM. Figure 6 shows TPU parameter RAM address mapping. Figure 7 shows the param-
eter RAM assignment used by the function for the various modes of operation. In the diagrams, Y =
M111, where M is the value of the module mapping bit (MM) in the system integration module configu-
ration register (Y = $7 or $F).

CA MODE IN/DEAD TIM

A) PWM OUTPUT

B) PWM OUTPUT
SAME HIGH TIME AS A) BUT

INVERTED

HIGH_TIME

C) PWM OUTPUT
SAME HIGH TIME AS A) PLUS

DEAD TIME

DEAD_TIME/2

HIGH_TIME –
DEAD_TIME
 MOTOROLA TPU Programming Library
4 TPUPN05/D

— = Not Implemented (reads as $00)

Figure 6 TPU Channel Parameter RAM CPU Address Map

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
TPU Programming Library MOTOROLA
TPUPN05/D 5

W = Channel number

W = Channel number

Figure 7 MCPWM Function Parameter RAM Assignment (1 of 3)

Master Channel Parameter Assignment — All Modes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 PERIOD

$YFFFW2 IRQ_RATE PERIOD_COUNT

$YFFFW4 LAST_RISE_TIME

$YFFFW6 LAST_FALL_TIME

$YFFFW8 RISE_TIME_PTR

$YFFFWA FALL_TIME_PTR

$YFFFWC

$YFFFWE

Slave Channel Parameter Assignment — Edge-Aligned Mode

$YFFFW0 PERIOD

$YFFFW2 HIGH_TIME

$YFFFW4

$YFFFW6 HIGH_TIME_PTR

$YFFFW8 RISE_TIME_PTR

$YFFFWA FALL_TIME_PTR

$YFFFWC

$YFFFWE

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
 MOTOROLA TPU Programming Library
6 TPUPN05/D

W = Channel number
Slave Channel B Parameter Assignment — Non-Inverted Center-Aligned Mode

W = Channel number

Figure 7 MCPWM Function Parameter RAM Assignment (2 of 3)

Slave Channel A Parameter Assignment — Non-Inverted Center-Aligned Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 PERIOD

$YFFFW2 NXT_B_RISE_TIME

$YFFFW4 NXT_B_FALL_TIME

$YFFFW6 DEAD_TIME HIGH_TIME_PTR

$YFFFW8 RISE_TIME_PTR

$YFFFWA FALL_TIME_PTR

$YFFFWC

$YFFFWE

$YFFFW0 HIGH_TIME

$YFFFW2 CURRENT_HIGH_TIME

$YFFFW4 TEMP_STORAGE

$YFFFW6

$YFFFW8 B_FALL_TIME_PTR

$YFFFWA B_RISE_TIME_PTR

$YFFFWC

$YFFFWE

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
TPU Programming Library MOTOROLA
TPUPN05/D 7

W = Channel number
Slave Channel B Parameter Assignment — Inverted Center-Aligned Mode

W = Channel number

Figure 7 MCPWM Function Parameter RAM Assignment (3 of 3)

Slave Channel A Parameter Assignment — Inverted Center-Aligned Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 PERIOD

$YFFFW2 NXT_B_FALL_TIME

$YFFFW4 NXT_B_RISE_TIME

$YFFFW6 DEAD_TIME HIGH_TIME_PTR

$YFFFW8 FALL_TIME_PTR

$YFFFWA RISE_TIME_PTR

$YFFFWC

$YFFFWE

$YFFFW0 HIGH_TIME

$YFFFW2 CURRENT_HIGH_TIME

$YFFFW4 TEMP_STORAGE

$YFFFW6

$YFFFW8 B_FALL_TIME_PTR

$YFFFWA B_RISE_TIME_PTR

$YFFFWC

$YFFFWE

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
 MOTOROLA TPU Programming Library
8 TPUPN05/D

5 Master Channel Parameters —All Modes

5.1 PERIOD

This parameter is written by the CPU before initialization. It defines the period of the PWM output in
TCR1 clocks. PERIOD has a maximum permissible value of $4000 and a minimum value that is depen-
dent on TPU latency. See 11 Performance and Use of MCPWM Function for more information. If PE-
RIOD is changed while the function is running, there may be a period of indeterminate output from the
EOR gates. This is due to the delay between the master and slave channels changing period. The chan-
nel actually produces a square wave output with a period of two times the value in PERIOD, but the
PWM resulting from the combination of the master with a slave channel has a period equal to PERIOD.

5.2 IRQ_RATE

IRQ_RATE determines the frequency of periodic interrupt requests to the host CPU. IRQ_RATE is
specified in the number of PWM periods required between each interrupt; any 8-bit value is valid. This
parameter is written by the CPU prior to initialization. If no periodic interrupt is required then the interrupt
enable bit for the master channel should be negated. If IRQ_RATE = $00 then an interrupt request is
generated every 256 PWM periods.

5.3 PERIOD_COUNT

This parameter is used by the TPU as a PWM period counter for periodic CPU interrupt requests.
PERIOD_COUNT is automatically reset to zero after each request is generated (when
PERIOD_COUNT = IRQ_RATE), but should be initialized to a start value (usually $FF) by the host CPU
prior to issuing the initialization HSR. Thereafter the parameter must not be written. An initialization val-
ue of $FF is used instead of $00 because PERIOD_COUNT is also incremented during the initialization
state.

5.4 LAST_RISE_TIME

The LAST_RISE_TIME parameter contains the event time of the latest rising edge on the master MCP-
WM channel. It is updated by the TPU when the rising edge is serviced. This parameter is referenced
by the slaves to maintain the selected timing relationship between channels. It must never be written by
the CPU. This parameter is not recommended for interpretation by the user.

5.5 LAST_FALL_TIME

The LAST_FALL_TIME parameter contains the event time of the latest falling edge on the master MCP-
WM channel. It is updated by the TPU when the falling edge is serviced. This parameter is referenced
by the slaves to maintain the selected timing relationship between channels. It must never be written by
the CPU. This parameter is not recommended for interpretation by the user.

5.6 RISE_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the master channel LAST_RISE_TIME parameter. For example, if channel 4 is the MCPWM master
channel, then the value $44 would be stored in RISE_TIME_PTR.

5.7 FALL_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the master channel LAST_FALL_TIME parameter. For example, if channel 4 is the MCPWM master
channel, then the value $46 would be stored in FALL_TIME_PTR.
TPU Programming Library MOTOROLA
TPUPN05/D 9

6 Edge-Aligned Mode Slave Parameters

6.1 PERIOD

This parameter is written by the CPU before initialization. It defines the period of the PWM output in
TCR1 clocks. PERIOD has a maximum permissible value of $4000 and a minimum value that is depen-
dent on TPU latency. See11 Performance and Use of MCPWM Function for more information. The
channel actually produces a square wave output with a period of two times the value in PERIOD, but
the PWM resulting from the combination of the master with a slave channel has a period equal to PE-
RIOD. The PERIOD parameters of all slaves must have the same value as that of the master that they
are referencing. If PERIOD is changed while the function is running, there may be a period of indeter-
minate output from the EOR gates, due to the delay between the master and slave channels changing
period.

6.2 HIGH_TIME_PTR

This parameter is configured by the host CPU prior to initialization. It contains the PRAM address of the
parameter containing the PWM high time. It is used by the TPU as an address pointer to obtain the
HIGH_TIME parameter. For example, if the high time is contained in parameter 1 of channel 2 then the
value $22 is placed in HIGH_TIME_PTR. Normally the high time parameter resides in slave channel
parameter RAM, but it could be anywhere in PRAM — this allows the output of another TPU function to
be used as PWM high time.

6.3 HIGH_TIME

As stated above, HIGH_TIME can reside anywhere in PRAM, but would normally be located in param-
eter 1 of the slave channel. HIGH_TIME is specified in TCR1 clocks over the range 0 to PERIOD, rep-
resenting 0 to 100% duty cycle. No tests are performed for HIGH_TIME values outside of this valid
range — such values result in an indeterminate output from the EOR gates. Valid value testing, if re-
quired, is the responsibility of the CPU. HIGH_TIME can be written at any time by the CPU.

6.4 RISE_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the master channel LAST_RISE_TIME parameter. For example, if channel 4 is the MCPWM master
channel, then the value $44 would be stored in RISE_TIME_PTR.

6.5 FALL_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the master channel LAST_FALL_TIME parameter. For example, if channel 4 is the MCPWM master
channel, then the value $46 would be stored in FALL_TIME_PTR.
 MOTOROLA TPU Programming Library
10 TPUPN05/D

7 Center-Aligned Mode Slave Type a Parameters
Some slave A parameters change address when the inversion option is specified. Study parameter di-
agrams carefully.

7.1 PERIOD

This parameter is written by the CPU before initialization. It defines the period of the PWM output in
TCR1 clocks. PERIOD has a maximum permissible value of $4000 and a minimum value that is depen-
dent on TPU latency. See11 Performance and Use of MCPWM Function for more information. The
PERIOD parameters of all slaves must have the same value as that of the master that they are refer-
encing. If PERIOD is changed while the function is running, there may be a period of indeterminate out-
put from the EOR gates, due to the delay between the master and slave channels changing period.

7.2 NXT_B_RISE_TIME

The TPU stores the calculated event time for the next rising edge on the slave B channel (the second
channel of the CA mode pair) in this parameter. This parameter must not be written by the CPU. This
parameter is not recommended for interpretation by the user.

7.3 NXT_B_FALL_TIME

The TPU stores the calculated event time for the next falling edge on the slave B channel (the second
channel of the CA mode pair) in this parameter. This parameter must not be written by the CPU. This
parameter is not recommended for interpretation by the user.

7.4 HIGH_TIME_PTR

This parameter is configured by the host CPU prior to initialization. It contains the PRAM address of the
LSB (that is, the odd address) of the parameter containing the PWM high time. It is used by the TPU as
an address pointer to obtain the HIGH_TIME parameter. For example, if the high time is contained in
parameter 0 of channel 6 then the value $61 is placed in HIGH_TIME_PTR. Normally the high time pa-
rameter resides in slave B channel parameter RAM, but it could be anywhere in PRAM (as a pair) —
this allows the output of another TPU function to be used as PWM high time.

7.5 DEAD_TIME

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the total dead time
to be subtracted from the high time of the PWM, specified in TCR1 clocks. If no dead time is required,
the DEAD_TIME parameter should be set to zero. Since DEAD_TIME specifies the total time to be sub-
tracted from HIGH_TIME, a value of $02 results in a dead time of one TCR1 clock on each PWM tran-
sition. Any number in the range zero to $FF is valid, although the value used should normally be even
and small.

7.6 RISE_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the master channel LAST_RISE_TIME parameter. For example, if channel 5 is the MCPWM master
channel, then the value $54 would be stored in RISE_TIME_PTR.

7.7 FALL_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the master channel LAST_FALL_TIME parameter. For example, if channel 5 is the MCPWM master
channel, then the value $56 would be stored in FALL_TIME_PTR.
TPU Programming Library MOTOROLA
TPUPN05/D 11

8 Center-Aligned Mode Slave Type B Parameters

8.1 HIGH_TIME

As stated in the slave A section, HIGH_TIME can reside anywhere in PRAM, but would normally be
located in parameter 0 of the slave channel. HIGH_TIME is specified in TCR1 clocks over the range 0
to PERIOD, representing 0 to 100% duty cycle. No tests are performed for HIGH_TIME values outside
of this valid range — such values result in an indeterminate output from the EOR gates. Valid value test-
ing, if required, is the responsibility of the CPU. HIGH_TIME can be written at any time by the CPU.

8.2 CURRENT_HIGH_TIME

CURRENT_HIGH_TIME is updated by the slave A channel. It contains the value of HIGH_TIME cur-
rently in use. When a second CA mode slave pair is being used to generate a PWM with dead time,
HIGH_TIME_PTR should point to the LSB of the CURRENT_HIGH_TIME parameter of the first slave
pair (the pair without dead time). This insures coherency in a HIGH_TIME update — in any period, the
PWM with dead time is guaranteed to use the same HIGH_TIME value as the PWM without dead time.
Since the rate at which CURRENT_HIGH_TIME is updated depends on slave A service time, the stored
value cannot be usefully interpreted by the user.

8.3 TEMP_STORAGE

This parameter is used by the TPU for temporary storage. It should not be written by the CPU.

8.4 B_FALL_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the slave A channel NXT_B_FALL_TIME parameter. For example if channel 7 is the slave A channel
(non-inverted mode) then the value $74 should be stored in B_FALL_TIME_PTR.

8.5 B_RISE_TIME_PTR

This 8-bit parameter is configured by the host CPU prior to initialization. It contains the PRAM address
of the slave A channel NXT_B_RISE_TIME parameter. For example if channel 7 is the slave A channel
(non-inverted mode) then the value $72 should be stored in B_RISE_TIME_PTR.
 MOTOROLA TPU Programming Library
12 TPUPN05/D

9 Host Interface to MCPWM Function
This section provides information concerning the TPU host interface to the MCPWM function. Figure 8
is a TPU address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111,
where M is the value of the module mapping bit (MM) in the system integration module configuration
register (Y = $7 or $F).

Figure 8 TPU Address Map

CFS[4:0] — PWM Function Number (Assigned during microcode assembly)

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)
TPU Programming Library MOTOROLA
TPUPN05/D 13

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Operating Mode — Only
Used On Slave Channels

00 Edge-Aligned Mode

01 Slave A Type CA Mode

10 Slave B Type CA Mode

11 Slave B Type CA Mode

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Initialization

00 No Host Service (Reset Condition)

01 Initialize as Slave A Inverted Mode

10 Initialize All Other Slave Modes

11 Initialize as Master

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Channel Priority

00 Disabled

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted
 MOTOROLA TPU Programming Library
14 TPUPN05/D

10 Configuration of MCPWM Function
The CPU configures the MCPWM function as follows. See 11 Performance and Use of MCPWM
Function for constraints on channel assignment.

Edge-Aligned Mode:

1. Disables all the master and slave MCPWM channels by clearing channel priority bits.
2. Selects the MCPWM function on the master and all the slave channels by writing the MCPWM

function number to channel function select bits.
3. Initializes PERIOD, IRQ_RATE, PERIOD_COUNT, RISE_TIME_PTR, and FALL_TIME_PTR

in master channel parameter RAM.
4. Initializes PERIOD, HIGH_TIME_PTR, RISE_TIME_PTR and FALL_TIME_PTR in the PRAM

of all edge-aligned slaves.
5. Selects edge-aligned mode on each slave channel by clearing the host sequence bits.
6. Sets the interrupt enable bit for the master channel if a periodic CPU interrupt is desired. The

interrupt enable bits for all the slave channels should be cleared.
7. Initializes the HIGH_TIME parameter(s) wherever they reside in PRAM.
8. Issues an HSR%11 to the master channel and an HSR%10 to each slave channel.
9. Enables servicing by assigning the same non-zero priority (H, M, or L) to all of the MCPWM

channels.

Center-Aligned Mode:

1. Disables all the master and slave MCPWM channels by clearing channel priority bits.
2. Selects the MCPWM function on the master and all the slave channels by writing the MCPWM

function number to channel function select bits.
3. Initializes PERIOD, IRQ_RATE, PERIOD_COUNT, RISE_TIME_PTR, and FALL_TIME_PTR

in master channel parameter RAM.
4. Initializes PERIOD, HIGH_TIME_PTR, RISE_TIME_PTR and FALL_TIME_PTR in the PRAM

of all slave A channels.
5. Initializes B_HIGH_TIME_PTR, and B_RISE_TIME_PTR in the PRAM of all center-aligned

slave B channels.
6. Selects the type of each slave via the host sequence bits (Slave A: HSQ =%01, Slave B: HSQ

=%1X).
7. Sets the interrupt enable bit for the master channel if a periodic CPU interrupt is desired. The

interrupt enable bits for all the slave channels should be cleared.
8. Initializes the HIGH_TIME parameter(s) wherever they reside in parameter RAM.
9. Issues an HSR%11 to the master channel and an HSR%10 to each slave B channel.
10. Issues an HSR%10 to non-inverted PWM slave A channels and an HSR%01 to inverted PWM

slave A channels.
11. Enables servicing by assigning the same non-zero priority (H, M, or L) to all of the MCPWM

channels.

All Modes Continue:

The TPU executes the initialization states of each channel and starts generating the wave forms that
are externally gated to produce the desired PWM outputs. The CPU can write new high time parameters
at any time.

PERIOD_COUNT is incremented on each service of the master channel (including initialization). When
PERIOD_COUNT equals IRQ_RATE, the master channel makes a CPU interrupt service request and
resets PERIOD_COUNT to $00.

If the master channel interrupt enable bit is set, the CPU recognizes and services the request.
TPU Programming Library MOTOROLA
TPUPN05/D 15

11 Performance and Use of MCPWM Function
Like all TPU functions, the performance limit of the MCPWM function in a given application depends to
some extent on the activity on other TPU channels. This is due to the operation of the scheduler.

Under steady state conditions, all MCPWM channels generate 50% duty cycle output wave forms (the
phase delay between the signals generates the variable high time on the output of the EOR gates). This
provides maximum service time for all transitions and lets the MCPWM function generate high and low
duty cycle PWM consistently under a wide range of TPU operating conditions. Worst case service con-
ditions for the MCPWM function occur when a large change in duty cycle is requested — in the extreme
cases of a switch from 0% to 100% or 100% to 0%, the slave channels must produce a single pulse of
half the normal period in order to establish the new timing relationship. Thus, in systems where these
large duty cycle changes are possible, absolute worst-case timing analysis must be carried out using
PERIOD divided by two as the maximum allowable service latency for each channel.

Taking this worst-case condition into account, and assuming a PWM PERIOD of 255 TCR1 clocks with
the TCR1 prescaler set to divide by 4 (the fastest possible 8-bit PWM), the following is an approximate
TPU loading formula for MCPWM generation:

TPU loading (%) = 6 + (a ∗ 5.1) + (b ∗ 12.2)

where:

a = number of edge-aligned PWM
b = number of center-aligned PWM
The additional 6% is for the master channel.

This formula assumes a very low PRAM collision rate between the CPU and TPU, which is the normal
operating condition. However, in applications where the CPU makes very frequent accesses to PRAM,
these loading figures do not apply. In this case, and in applications where other TPU functions are run-
ning, detailed timing analysis of the TPU system is required.

Since the scheduler assures that the worst-case latencies in any TPU application can be closely esti-
mated, a detailed timing analysis can be performed by following the guidelines given in the TPU refer-
ence manual. To perform an analysis, use the MCPWM state timing information in the table below along
with the state timing information for any other active TPU functions.

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 CPU clocks)

Table 1 Multichannel PWM Function — State Timing

State Number & Name Max. CPU Clock Cycles RAM Accesses by TPU

S1 MINIT_MCPWM 20 6

S2 SINIT_MCPWM
EA Mode slave
CA Mode slave A
CA Mode slave B

18
38
8

6
8
2

S3 S_INV_INIT_MCPWM 40 8

S4 MLH_MCPWM 18 6

S5 MHL_MCPWM 18 6

S6 SHL_MCPWM
EA Mode slave
CA Mode slave A
CA Mode slave B

16
36
6

6
8
2

S7 SLH_MCPWM
EA Mode slave
CA Mode slave A
CA Mode slave B

16
36
6

6
8
2

 MOTOROLA TPU Programming Library
16 TPUPN05/D

11.1 Channel Assignment Restrictions

Due to coherency issues and the operation of the TPU scheduler, the following rules must be adhered
to when assigning channels and priorities to ensure correct operation of the MCPWM function:

1. All channels associated with a master channel must be assigned the same priority as that mas-
ter.

2. The master must be assigned the lowest channel number of all MCPWM channels. In CA
mode, the slave A channel of a pair must be assigned a lower channel number than the slave
B channel.

3. When two CA mode pairs are used to form an inverter driver (the second pair has dead time
and references the CURRENT_HIGH_TIME parameter of the first pair), the pair without dead
time must be assigned lower channel numbers than the pair with dead time.

The following example shows application of these rules to a 3-phase H-bridge drive configuration using
thirteen TPU channels (six CA mode PWM plus master)

11.2 Resolution/Frequency Relationship

Unlike most hardware PWM peripherals, the resolution and frequency of the MCPWM function is not
fixed and can be tailored to meet application requirements. In general, the two qualities are inversely
proportional, i.e., the higher the resolution, the lower the frequency. Also, since PERIOD is freely pro-
grammable in TCR1 clocks, the number of bits of resolution does not have to be an integer number.
The user could program PERIOD to be $180, to produce an'8.5 bit' PWM with 384 resolution states.
With a 16.78-MHz system clock, the minimum TCR1 clock period is 240 ns and the resulting frequency
of the PWM output is given by 1 ⁄ (PERIOD ∗ 240 ns). This gives frequencies of 16.4 kHz, 8.2 kHz, and
4.1 kHz for 8-, 9-, and 10-bit resolution PWM respectively. With a 20.97-MHz system clock, the equiv-
alent frequencies are 20.56 kHz, 10.28 kHz and 5.14 kHz.

11.3 Hardware Requirements

The MCPWM function requires one external exclusive OR gate for each PWM output. In addition, it is
recommended that pull-up resistors be added to all MCPWM channels except for slave A channels of
inverted PWM, which should have pull down resistors. The resistors insure a predictable output from
the EOR gates during the time between power up or reset (when all TPU channel pins are in a high-
impedance state) and initialization of the MCPWM function. In some circumstances, an external buffer
with three-state capability may be required. See 11.10 Stopping the Function for more information.

Table 2 Example Multichannel PWM Function

Channel Number Operation
Mode

Function

0 Master Reference timing channel for all slaves

1 Slave A PWM1

2 Slave B PWM1

3 Slave A PWM1' — as PWM1 but with dead time

4 Slave B PWM1' — as PWM1 but with dead time

5 Slave A PWM2

6 Slave B PWM2

7 Slave A PWM2' — as PWM2 but with dead time

8 Slave B PWM2' — as PWM2 but with dead time

9 Slave A PWM3

10 Slave B PWM3

11 Slave A PWM3' — as PWM3 but with dead time

12 Slave B PWM3' — as PWM3 but with dead time
TPU Programming Library MOTOROLA
TPUPN05/D 17

11.4 Initialization Timing

The following timing assumes initialization from reset.

In edge-aligned mode, the first rising edge of the PWM outputs from the EOR gates occurs approxi-
mately one PWM period after completion of service of the master channel initialization host service re-
quest. Figure 9 shows these relationships.

Figure 9 EA Mode Initialization Timing

In center-aligned mode, the first rising edge occurs between one and one-and-a-half PWM periods after
completion of service of the master channel initialization host service request, depending on the pro-
grammed duty cycle. Figure 10 shows these relationships.

Figure 10 CA Mode Initialization Timing

11.5 High Time Update Timing

In both edge-aligned and center-aligned modes, when a new HIGH_TIME value is written by the CPU,
it takes effect either at the beginning of the next period or the beginning of the period following that, de-
pending on the exact timing of the write as explained below. There is no provision for updating the high
time of the period in progress.

When a new high time value is written in edge-aligned mode, if the write takes place before the falling
edge of the PWM, the new high time value is used in the next period. If the write takes place after the
falling edge of the PWM, the new value is used no later than the second period after the write.

EA INIT TIM

MASTER CHANNEL

SLAVE CHANNEL

PWM
(SLAVE XOR MASTER)

COMPLETION OF
MASTER INITIALIZATION

PWM FIRST RISING EDGE
COINCIDENT WITH FIRST MASTER EDGE

PERIOD

CA INIT TIM

MASTER CHANNEL

SLAVE CHANNEL A

SLAVE CHANNEL B

PERIOD

PWM (SA XOR SB)

PWM FIRST RISING EDGE
VARIES WITH HIGH TIME

COMPLETION OF
MASTER INITIALIZATION
 MOTOROLA TPU Programming Library
18 TPUPN05/D

When a new high time value is written in center-aligned mode, if the write takes place before the rising
edge of the PWM (non-inverted), the new high time value is used in the next period. If the write takes
place after the rising edge, the new value is used no later than the second period after the write.

11.6 Coherent High Time Updates

There are two possible cases when a HIGH_TIME parameter is updated at a random time in relation to
PWM waveform and channel servicing. Using the periodic master channel interrupt does not guarantee
either case, since the master edge that results in an interrupt is coincident with the start of the PWM
period — a CPU write in response to the interrupt could result in either case depending on the current
high time and CPU and TPU latencies.

There may be applications where this high time uncertainty is unacceptable. For example, an applica-
tion may demand that multiple PWM outputs be updated in the same period. MCPWM can support such
a requirement in center-aligned mode by using a second master channel solely for periodic interrupt
generation. The second master channel runs at twice the speed of the master channel used for actual
PWM generation.

To support this capability, set up the second master channel as follows:

1. Second master channel number > last PWM slave channel number
2. PERIOD = (PWM period)/2
3. Interrupts enabled
4. IRQ_RATE = (desired number of PWM periods between interrupts) ∗ 2
5. PERIOD_COUNT initialized to $00
6. Priority same as other MCPWM channels

The initialization HSR for the second master channel should be issued at the same time as that for other
MCPWM channels. Channel order is important because the second master channel must be serviced
last when multiple MCPWM channels request service simultaneously (see details of scheduler opera-
tion in the TPU reference manual). This scheme causes an interrupt request to be made to the CPU in
the second half of the PWM period, close to the period mid-point but after other pending MCPWM chan-
nels have been serviced. The CPU has the remainder of the PWM period in which to update
HIGH_TIME parameters before the next PWM rising edge, thus guaranteeing use of a new high time in
the following cycle. Figure 11 shows an example of this technique where the high times of two PWMs
are coherently updated every three periods (IRQ_RATE of second master = 6).
TPU Programming Library MOTOROLA
TPUPN05/D 19

Figure 11 HIGH_TIME Update Timing

Worst-case delay (DI) from the period mid-point to interrupt generation using this technique occurs
when all PWM are set to 0% (all slave channels request service at PWM mid-point). DI can be closely
estimated:

DI = Total Worst Case Service Time (WCST) of all MCPWM slave channels +
Worst case service time of second master channel.

For example, if MCPWM is used to generate two centered PWM (four slaves), with a second master
channel for coherent high time updates, then:

DI = WCSTA1 + WCSTA2 + WCSTB1 + WCSTB2 + WCSTM2 = 46 + 16 + 46 + 16 + 28 = 152 CPU
clocks

The CPU has the remainder of the PWM period to respond to the interrupt and update the high times.

HIGH UPDATE TIM

MASTER
CHANNEL

SLAVE
CHANNEL A1

SLAVE
CHANNEL B1

PWM1
(A1 XOR B1)

SLAVE
CHANNEL A2

SLAVE
CHANNEL B2

PWM2
(A2 XOR B2)

2ND MASTER
CHANNEL

DI

TIME AVAILABLE
FOR CPU TO

RESPOND AND
WRITE NEW
HIGH_TIMES

NEW HIGH_TIMEs
RECOGNIZED IN

NEW HIGH_TIMEs
USED

THIS PERIOD
(PWM MID-

POINT TO IRQ
GENERATION)

IRQ FROM
SERVICE OF
2ND MASTER

CHANNEL

ALL HSRs
FOR INITIALIZATION

ISSUED HERE

2ND MASTER LAGS 1ST DUE
TO SERVICE LATENCIES

IRQ FROM
SERVICE OF
2ND MASTER

CHANNEL
ETC...

THIS PERIOD COHERENTLY IN

PERIOD
 MOTOROLA TPU Programming Library
20 TPUPN05/D

11.7 Effects of DEAD_TIME

When DEAD_TIME has a non-zero value, the programmed HIGH_TIME is reduced by an amount equal
to DEAD_TIME TCR1 clocks. This means that the minimum HIGH_TIME value that can cause a non-
zero PWM duty cycle is (DEAD_TIME + 1). Similarly, at the upper end of the scale, 100% duty cycle is
not possible with a non-zero DEAD_TIME value. If HIGH_TIME is programmed to equal PERIOD, the
output has a non-zero low time equal to DEAD_TIME.

11.8 Odd PERIOD/HIGH_TIME/DEAD_TIME Values in CA Mode

In center-aligned mode, the MCPWM function attempts to center ‘real’ high time (HIGH_TIME –
DEAD_TIME) within the PWM period. Obviously, with an even PERIOD and an odd high time or with
an odd PERIOD and an even high time, exact centering is not possible. In these two cases, full resolu-
tion is maintained by making the portion of the high time before period mid-point one TCR1 clock longer
than the portion following the period mid-point.

11.9 Changing Period

The MCPWM function is designed primarily for applications where the period of the PWM output is not
variable. Since the PWM output is the result of the combination of two independently-running channels,
when the CPU changes the PERIOD parameters, one channel must use the new period before the oth-
er. This results in temporary loss of synchronization and indeterminate output from the EOR gate. When
HIGH_TIME is less than or equal to the new PERIOD, the function returns to normal operation after a
maximum of two times the original PERIOD value.

11.10 Stopping the Function

Like all TPU functions, MCPWM function can be disabled by clearing the priority bits of all MCPWM
channels. However, this procedure leaves EOR gate output at an indeterminate level, even when
HIGH_TIME is programmed to 0 or 100% before the bits are cleared. This is due to the phase relation-
ship between the two channels forming the PWM output and to independent servicing of each channel.
In most applications the best method of switching off the PWM is to program HIGH_TIME to 0 or 100%
and leave the function running. When the function must be stopped cleanly there are two solutions:

1. Place an external buffer with three-state capability on the output of the EOR gate and control it
with an MCU output pin.

2. Reset the MCU — this returns all TPU pins to their original high-impedance condition.

11.11 Interrupts

Interrupt service requests are generated by the MCPWM master channel every IRQ_RATE periods. In-
terrupts are enabled or disabled by setting or clearing the interrupt enable bit for the master channel.
The slave A channels can also generate interrupt requests, but these are meaningless to the user and
should be disabled by clearing the interrupt enable bits for all slave channels.

Since interrupt request generation is performed by microcode software when the relevant master chan-
nel edge is serviced, there is a delay between when the master channel edge transition occurs and the
interrupt request signal is asserted. This delay is variable — it depends on the service latency of the
master channel in a particular application. The time between successive interrupt requests can vary and
does not exactly equal the IRQ_RATE periods. Worst-case variation (WCV) about IRQ_RATE periods
are derived as follows:

WCV = (Worst case master channel service latency) –(Best case master channel service latency)

It follows that there is a spread of interrupt periods from

{(IRQ_RATE ∗ PERIOD) – WCV} to {(IRQ_RATE ∗ PERIOD) + WCV}.
TPU Programming Library MOTOROLA
TPUPN05/D 21

11.12 Combining EA and CA Modes

Since master channel operation is identical for both edge-aligned and center-aligned modes, it is pos-
sible to generate both types of PWM in a system using only one master channel. However, the periods
of all PWM that refer to a common master must be identical.

11.13 Using MCPWM as a Periodic Timer

The periodic update interrupt feature of the MCPWM function makes it suitable for use as a periodic
interrupt timer (PIT) for the CPU. To use the function as a PIT, only one channel, programmed as a mas-
ter, is required. When no slave channels are referencing the master channel, maximum PERIOD pa-
rameter value can be increased to $8000 TCR1 clocks. The combination of PERIOD and the 8-bit
IRQ_RATE parameters allows a wide variety of interrupt periods to be programmed. The maximum in-
terrupt period can be greater than one minute; the minimum period is obtained by programming
IRQ_RATE to one and setting PERIOD to a minimum value determined from the state timing table and
other TPU system activity.

12 Multichannel PWM Examples
Although complex, the MCPWM function is relatively easy to configure and control. The following ex-
amples show configuration for both center-aligned and edge-aligned modes. Each example includes a
description of the example, a diagram of the initial parameter RAM content, initial control bit settings,
and a diagram of the output wave form.

12.1 Example A

12.1.1 Description

Edge-aligned mode. Generate two PWM with a period of 256 TCR1 clocks, one with a duty cycle of
50%, the other 25%. Use channel 1 as the master and channels 2 and 3 as the slaves. Generate a pe-
riodic interrupt every five PWM periods.

12.1.2 Initialization

Disable channels by clearing priority bits. Select MCPWM function by programming the function select
registers. Enable interrupts on channel 1 and disable interrupts on channels 2 and 3. Load the param-
eter RAM of the three channels as shown below. Write HSQ = %00 to both channels 2 and 3. Issue
HSR = %11 to channel 1 and HSR = %10 to channels 2 and 3 to initialize and start the function. Write
the priority bits of all three channels to the same non-zero value.

PERIOD = $100, IRQ_RATE = $5

Table 3 Channel 1 (Master) Parameter RAM

15 8 0

$YFFF10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 PERIOD

$YFFF12 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 IRQ_RATE

$YFFF14 x x x x x x x x x x x x x x x x

$YFFF16 x x x x x x x x x x x x x x x x

$YFFF18 x x x x x x x x 0 0 0 1 0 1 0 0 $XX14

$YFFF1A x x x x x x x x 0 0 0 1 0 1 1 0 $XX16
 MOTOROLA TPU Programming Library
22 TPUPN05/D

PERIOD = $100, HIGH_TIME_PTR ⇒ HIGH_TIME 1 (= $80), RISE/FALL_TIME_PTRs ⇒ channel1

PERIOD = $100, HIGH_TIME_PTR ⇒ HIGH_TIME 2 (= $40), RISE/FALL_TIME_PTRs ⇒ channel1

12.1.3 Schematic

Table 4 Channel 2 (Slave) Parameter RAM

15 8 0

$YFFF20 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 PERIOD

$YFFF22 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 HIGH_TIME 1

$YFFF24 x x x x x x x x x x x x x x x x

$YFFF26 x x x x x x x x 0 0 1 0 0 0 1 0 $XX22

$YFFF28 x x x x x x x x 0 0 0 1 0 1 0 0 $XX14

$YFFF2A x x x x x x x x 0 0 0 1 0 1 1 0 $XX16

Table 5 Channel 3 (Slave) Parameter RAM

15 8 0

$YFFF30 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 PERIOD

$YFFF32 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 HIGH_TIME 2

$YFFF34 x x x x x x x x x x x x x x x x

$YFFF36 x x x x x x x x 0 0 1 1 0 0 1 0 $XX32

$YFFF38 x x x x x x x x 0 0 0 1 0 1 0 0 $XX14

$YFFF3A x x x x x x x x 0 0 0 1 0 1 1 0 $XX16

EX A CONN

CHANNEL 2 PWM1

EXTERNAL
XOR GATES

TPU

VDD

CHANNEL 1

PWM2CHANNEL 3

VDD
TPU Programming Library MOTOROLA
TPUPN05/D 23

12.1.4 Output Waveforms

12.2 Example B

12.2.1 Description

Center-aligned mode. Generate a pair of PWM outputs with a period of 256 TCR1 clocks, sharing a
common HIGH_TIME and suitable for driving an inverter. The required ‘dead time’ for the driving devic-
es is equivalent to 2 TCR1 clocks (⇒ DEAD_TIME = 4). Use channel 1 as the master and channels 2,
3, 4 and 5 as the slaves. Generate a periodic interrupt every 10 PWM periods. Initialize with a duty cycle
of 50%.

12.2.2 Initialization

Disable channels by clearing priority bits. Select MCPWM function by programming the function select
registers. Enable interrupts on channel 1 and disable interrupts on the other channels. Load the param-
eter RAM of the five channels as shown below. Write HSQ = %01 to channels 2 and 4 and HSQ = %11
to channels 3 and 5. Issue HSR = %11 to channel 1, HSR = %10 to channels 3, 4, and 5 and HSR =
%01 to channel 2 to initialize and start the function. Write the priority bits of all five channels to the same
non-zero value.

PERIOD = $100, IRQ_RATE = $A

Table 6 Channel 1 (Master) Parameter RAM

15 8 0

$YFFF10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 PERIOD

$YFFF12 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 IRQ_RATE

$YFFF14 x x x x x x x x x x x x x x x x

$YFFF16 x x x x x x x x x x x x x x x x

$YFFF18 x x x x x x x x 0 0 0 1 0 1 0 0 $XX14

$YFFF1A x x x x x x x x 0 0 0 1 0 1 1 0 $XX16

EX A TIM

CHANNEL 1

HSR 11

HSR 10

CHANNEL 2

HSR 10

CHANNEL 3

PWM1

PWM2

HIGH_TIME

PERIOD

HIGH_TIME

PERIOD

PERIOD
 MOTOROLA TPU Programming Library
24 TPUPN05/D

PERIOD = $100, DEAD_TIME = 0, HIGH_TIME_PTR ⇒ channel3, RISE/FALL_TIME_PTRs ⇒ channel1

PERIOD = $100, HIGH_TIME = $80, B_RISE/FALL_TIME_PTRs ⇒ channel2

PERIOD = $100, DEAD_TIME = 4, HIGH_TIME_PTR ⇒ channel3, RISE/FALL_TIME_PTRs ⇒ channel1

PERIOD = $100, B_RISE/FALL_TIME_PTRs ⇒ channel4

Table 7 Channel 2 (Inverted Slave A) Parameter RAM

15 8 0

$YFFF20 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 PERIOD

$YFFF22 x x x x x x x x x x x x x x x x

$YFFF24 x x x x x x x x x x x x x x x x

$YFFF26 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 $0031

$YFFF28 x x x x x x x x 0 0 0 1 0 1 1 0 $XX16

$YFFF2A x x x x x x x x 0 0 0 1 0 1 0 0 $XX14

Table 8 Channel 3 (Slave B) Parameter RAM

15 8 0

$YFFF30 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 HIGH_TIME

$YFFF32 x x x x x x x x x x x x x x x x CURR_HIGH_
TIME

$YFFF34 x x x x x x x x x x x x x x x x

$YFFF36 x x x x x x x x x x x x x x x x

$YFFF38 x x x x x x x x 0 0 1 0 0 0 1 0 $XX22

$YFFF3A x x x x x x x x 0 0 1 0 0 1 0 0 $XX24

Table 9 Channel 4 (Slave A) Parameter RAM

15 8 0

$YFFF40 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 PERIOD

$YFFF42 x x x x x x x x x x x x x x x x

$YFFF44 x x x x x x x x x x x x x x x x

$YFFF46 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 $0433

$YFFF48 x x x x x x x x 0 0 0 1 0 1 0 0 $XX14

$YFFF4A x x x x x x x x 0 0 0 1 0 1 1 0 $XX16

Table 10 Channel 5 (Slave B) Parameter RAM

15 8 0

$YFFF50 x x x x x x x x x x x x x x x x

$YFFF52 x x x x x x x x x x x x x x x x

$YFFF54 x x x x x x x x x x x x x x x x

$YFFF56 x x x x x x x x x x x x x x x x

$YFFF58 x x x x x x x x 0 1 0 0 0 1 0 0 $XX44

$YFFF5A x x x x x x x x 0 1 0 0 0 0 1 0 $XX42
TPU Programming Library MOTOROLA
TPUPN05/D 25

12.2.3 Schematic

12.2.4 Output Waveforms

13 Multichannel PWM Algorithm
The transition times of all MCPWM channels are defined by the following equations:

Master Channel All Modes

MLH = LMHL + PERIOD
MHL = LMLH + PERIOD

Slave Channels — Edge-Aligned Mode

SLH = LMHL + PERIOD + HIGH_TIME
SHL = LMLH + PERIOD + HIGH_TIME

EX B CONN

CHANNEL 2
CHANNEL 3 PWM1

EXTERNAL
XOR GATES

TPU

VDDCHANNEL 1

PWM2
CHANNEL 4
CHANNEL 5

VDD

EX B TIM

CHANNEL 1

CHANNEL 2

CHANNEL 3

CHANNEL 4

CHANNEL 5

PWM1

PWM2

CENTER
ALIGNED

HSR %11

HSR %01

HSR %10

HSR %10

HSR %10

HIGH_TIME

PERIOD

HIGH_TIME

DEAD_TIME/2
 MOTOROLA TPU Programming Library
26 TPUPN05/D

Slave Channels — Center-Aligned Mode

Non-inverted PWM

If HIGH_TIME > DEAD_TIME:

SALH = LMHL + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2
SAHL = LMLH + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2
SBLH = LMHL + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)
SBHL = LMLH + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)

If HIGH_TIME ≤ DEAD_TIME:

SALH = LMHL + PERIOD + PERIOD/2
SAHL = LMLH + PERIOD + PERIOD/2
SBLH = LMHL + PERIOD + PERIOD/2
SBHL = LMLH + PERIOD + PERIOD/2

Inverted PWM

If HIGH_TIME > DEAD_TIME:

SALH = LMLH + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2
SAHL = LMHL + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2
SBLH = LMHL + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)
SBHL = LMLH + PERIOD + {PERIOD – (HIGH_TIME – DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)

If HIGH_TIME ≤ DEAD_TIME:

SALH = LMLH + PERIOD + PERIOD/2
SAHL = LMHL + PERIOD + PERIOD/2
SBLH = LMHL + PERIOD + PERIOD/2
SBHL = LMLH + PERIOD + PERIOD/2

where:

MLH = Time of next master channel rising transition.
MHL = Time of next master channel falling transition.
LMLH = Time of last master channel rising transition.
LMHL = Time of last master channel falling transition.
SLH = Time of next slave channel rising transition.
SHL = Time of next slave channel falling transition.
SALH = Time of next slave A channel rising transition.
SAHL = Time of next slave A channel falling transition.
SBLH = Time of next slave B channel rising transition.
SBHL = Time of next slave B channel falling transition.

The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different from that shown, in order to optimize speed and
code size. TPU microcode source listings for all functions in the TPU function library can be downloaded
from the Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation
Mode (TPUPN00/D) for detailed instructions on downloading and compiling microcode.

The multichannel PWM function consists of seven states, which operate as described below. For clarity,
reference is made to internal channel flag0 in the following descriptions. This is an internal TPU control
bit that is not available to the user.
TPU Programming Library MOTOROLA
TPUPN05/D 27

13.1 STATE1 — MINIT_MCPWM

This state, entered as a result of an HSR %11 issued by the CPU, configures the channel as an MCP-
WM master and starts generation of the master output wave form.

The channel pin is configured as an output
Pin state is set to high
The pin is configured to toggle on match
TPU internal channel flag0 is asserted
The latest TCR1 time is captured and stored in LAST_RISE_TIME
PERIOD_COUNT is incremented
If PERIOD_COUNT equals IRQ_RATE then

An interrupt request is generated
PERIOD_COUNT is reset to zero

A match is scheduled for time LAST_RISE_TIME + PERIOD
The state ends

13.2 STATE2 — SINIT_MCPWM

This state, entered as a result of an HSR %10 issued by the CPU, configures the channel as an MCP-
WM slave and starts generation of the slave output wave form.

The channel pin is configured as an output
Pin state is set to high
The pin is configured to toggle on match
TPU internal channel flag0 is negated
If this is an edge-aligned mode slave (indicated by Host Sequence bits = 00) then:

a match is scheduled for time LAST_RISE_TIME + PERIOD + HIGH TIME
HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is a center-aligned mode slave A (indicated by Host Sequence bits = 01) then:
If HIGH_TIME ≥ DEAD_TIME a match is scheduled for time:

LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2
else a match is scheduled for time:

LAST_RISE_TIME + PERIOD + PERIOD/2
If HIGH_TIME ≥ DEAD_TIME the following time is stored in NXT_B_FALL_TIME:

LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)

else the following time is stored in NXT_B_FALL_TIME:
LAST_RISE_TIME + PERIOD + PERIOD/2

HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is a center-aligned mode slave B (indicated by Host Sequence bits = 1X) then:
a match is scheduled for the time contained in the location pointed to by B_FALL_TIME_PTR
The state ends

13.3 STATE3 — S_INV_INIT_MCPWM

This state, entered as a result of an HSR %01 issued by the CPU, configures the channel as an MCP-
WM inverted slave and starts generation of the inverted slave output wave form. This state should only
be entered on a slave A channel in center-aligned mode, an HSR %01 should not be issued to an edge-
aligned slave or a slave B channel.

The channel pin is configured as an output
Pin state is set to high
The pin is configured to toggle on match
TPU internal channel flag0 is negated
 MOTOROLA TPU Programming Library
28 TPUPN05/D

If HIGH_TIME ≥ DEAD_TIME a match is scheduled for time:
LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2

Else a match is scheduled for time:
LAST_RISE_TIME + PERIOD + PERIOD/2

If HIGH_TIME ≥ DEAD_TIME the following time is stored in NXT_B_FALL_TIME:
LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)

Else the following time is stored in NXT_B_FALL_TIME:
LAST_RISE_TIME + PERIOD + PERIOD/2

HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

13.4 STATE4 — MLH_MCPWM

This state, entered as a result of a match with the pin high and flag0 set (master), continues generation
of the master output wave form and periodic interrupts.

The event time of the last match is stored in LAST_RISE_TIME
PERIOD_COUNT is incremented
If PERIOD_COUNT equals IRQ_RATE then:

An interrupt request is generated
PERIOD_COUNT is reset to zero

A match is scheduled for time LAST_RISE_TIME + PERIOD
The state ends

13.5 STATE5 — MHL_MCPWM

This state, entered as a result of a match with the pin low and flag0 set (master), continues generation
of the master output wave form and periodic interrupts.

The event time of the last match is stored in LAST_FALL_TIME
If PERIOD_COUNT equals IRQ_RATE then:

An interrupt request is generated
PERIOD_COUNT is reset to zero

A match is scheduled for time LAST_FALL_TIME + PERIOD
The state ends

13.6 STATE6 — SHL_MCPWM

This state, entered as a result of a match with the pin low and flag0 clear (slave), continues generation
of the slave output wave form.

If this is an edge-aligned mode slave (indicated by Host Sequence bits = 00) then:
A match is scheduled for time LAST_FALL_TIME + PERIOD + HIGH_TIME
HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is a non-inverted center-aligned mode slave A (indicated by Host Sequence bits = 01) then:
If HIGH_TIME ≥ DEAD_TIME a match is scheduled for time:

LAST_FALL_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2
Else a match is scheduled for time:

LAST_FALL_TIME + PERIOD + PERIOD/2
If HIGH_TIME ≥ DEAD_TIME the following time is stored in NXT_B_RISE_TIME:

LAST_FALL_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2 +
(HIGH_TIME – DEAD_TIME)

Else the following time is stored in NXT_B_RISE_TIME:
LAST_FALL_TIME + PERIOD + PERIOD/2

HIGH_TIME is stored in CURRENT_HIGH_TIME
TPU Programming Library MOTOROLA
TPUPN05/D 29

The state ends
If this is an inverted center-aligned mode slave A (indicated by Host Sequence bits = 01) then:

If HIGH_TIME ≥ DEAD_TIME a match is scheduled for time:
LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2

Else a match is scheduled for time:
LAST_RISE_TIME + PERIOD + PERIOD/2

If HIGH_TIME ≥ DEAD_TIME the following time is stored in NXT_B_FALL_TIME:
LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2 +
(HIGH_TIME – DEAD_TIME)

Else the following time is stored in NXT_B_FALL_TIME:
LAST_RISE_TIME + PERIOD + PERIOD/2

HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is a center-aligned mode slave B (indicated by Host Sequence bits = 1X) then:
a match is scheduled for the time contained in the location pointed to by B_RISE_TIME_PTR
The state ends

13.7 STATE7 — SLH_MCPWM

This state, entered as a result of a match with the pin high and flag0 clear (slave), continues generation
of the slave output wave form.

If this is an edge-aligned mode slave (indicated by Host Sequence bits = 00) then:
A match is scheduled for time LAST_RISE_TIME + PERIOD + HIGH_TIME
HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is a non-inverted center-aligned mode slave A (indicated by Host Sequence bits = 01) then:
If HIGH_TIME ≥ DEAD_TIME a match is scheduled for time:

LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2
Else a match is scheduled for time:

LAST_RISE_TIME + PERIOD + PERIOD/2
If HIGH_TIME ≥ DEAD_TIME the following time is stored in NXT_B_FALL_TIME:

LAST_RISE_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)

Else the following time is stored in NXT_B_FALL_TIME:
LAST_RISE_TIME + (2 ∗ PERIOD) – PERIOD/2

HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is an inverted center-aligned mode slave A (indicated by Host Sequence bits = 01) then:
If HIGH_TIME ≥ DEAD_TIME a match is scheduled for time:

LAST_FALL_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2
Else a match is scheduled for time:

LAST_FALL_TIME + PERIOD + PERIOD/2
If HIGH_TIME ≥ DEAD_TIME the following time is stored in NXT_B_RISE_TIME:

LAST_FALL_TIME + PERIOD + {PERIOD – (HIGH_TIME –DEAD_TIME)}/2 + (HIGH_TIME –
DEAD_TIME)

Else the following time is stored in NXT_B_RISE_TIME:
LAST_FALL_TIME + (2 ∗ PERIOD) – PERIOD/2

HIGH_TIME is stored in CURRENT_HIGH_TIME
The state ends

If this is a center-aligned mode slave B (indicated by Host Sequence bits = 1X) then:
a match is scheduled for the time contained in the location pointed to by B_FALL_TIME_PTR
The state ends
 MOTOROLA TPU Programming Library
30 TPUPN05/D

NOTES
TPU Programming Library MOTOROLA
TPUPN05/D 31

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	Figure 1 EA Mode External Gate Schematic
	Figure 2 EA Mode Output Waveforms
	Figure 3 CA Mode External Gate Schematic
	Figure 4 CA Mode Type A and Type B Output Waveform...
	Figure 5 CA Mode Inverted and Dead-Time Waveforms

	3 Function Code Size
	4 Function Parameters
	Figure 6 TPU Channel Parameter RAM CPU Address Map...
	Figure 7 MCPWM Function Parameter RAM Assignment (...

	5 Master Channel Parameters —All Modes
	5.1 PERIOD
	5.2 IRQ_RATE
	5.3 PERIOD_COUNT
	5.4 LAST_RISE_TIME
	5.5 LAST_FALL_TIME
	5.6 RISE_TIME_PTR
	5.7 FALL_TIME_PTR

	6 Edge-Aligned Mode Slave Parameters
	6.1 PERIOD
	6.2 HIGH_TIME_PTR
	6.3 HIGH_TIME
	6.4 RISE_TIME_PTR
	6.5 FALL_TIME_PTR

	7 Center-Aligned Mode Slave Type a Parameters
	7.1 PERIOD
	7.2 NXT_B_RISE_TIME
	7.3 NXT_B_FALL_TIME
	7.4 HIGH_TIME_PTR
	7.5 DEAD_TIME
	7.6 RISE_TIME_PTR
	7.7 FALL_TIME_PTR

	8 Center-Aligned Mode Slave Type B Parameters
	8.1 HIGH_TIME
	8.2 CURRENT_HIGH_TIME
	8.3 TEMP_STORAGE
	8.4 B_FALL_TIME_PTR
	8.5 B_RISE_TIME_PTR

	9 Host Interface to MCPWM Function
	Figure 8 TPU Address Map

	10 Configuration of MCPWM Function
	11 Performance and Use of MCPWM Function
	Table 1 Multichannel PWM Function — State Timing
	11.1 Channel Assignment Restrictions
	Table 2 Example Multichannel PWM Function

	11.2 Resolution/Frequency Relationship
	11.3 Hardware Requirements
	11.4 Initialization Timing
	Figure 9 EA Mode Initialization Timing
	Figure 10 CA Mode Initialization Timing

	11.5 High Time Update Timing
	11.6 Coherent High Time Updates
	Figure 11 High_time Update Timing

	11.7 Effects of DEAD_TIME
	11.8 Odd PERIOD/HIGH_TIME/DEAD_TIME Values in CA M...
	11.9 Changing Period
	11.10 Stopping the Function
	11.11 Interrupts
	11.12 Combining EA and CA Modes
	11.13 Using MCPWM as a Periodic Timer

	12 Multichannel PWM Examples
	12.1 Example A
	12.1.1 Description
	12.1.2 Initialization
	Table 3 Channel 1 (Master) Parameter RAM
	Table 4 Channel 2 (Slave) Parameter RAM
	Table 5 Channel 3 (Slave) Parameter RAM

	12.1.3 Schematic
	12.1.4 Output Waveforms

	12.2 Example B
	12.2.1 Description
	12.2.2 Initialization
	Table 6 Channel 1 (Master) Parameter RAM
	Table 7 Channel 2 (Inverted Slave A) Parameter RAM...
	Table 8 Channel 3 (Slave B) Parameter RAM
	Table 9 Channel 4 (Slave A) Parameter RAM
	Table 10 Channel 5 (Slave B) Parameter RAM

	12.2.3 Schematic
	12.2.4 Output Waveforms

	13 Multichannel PWM Algorithm
	13.1 STATE1 — MINIT_MCPWM
	13.2 STATE2 — SINIT_MCPWM
	13.3 STATE3 — S_inv_init_mcpwm
	13.4 STATE4 — Mlh_mcpwm
	13.5 STATE5 — Mhl_mcpwm
	13.6 STATE6 — Shl_mcpwm
	13.7 STATE7 — Slh_mcpwm

