

Order this document
 by TPUPN06/D

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Programmable Time Accumulator TPU Function
(PTA)
By Richard Soja

1 Functional Overview
This TPU input function measures the high time, low time or period of an input signal over a user defined
number of periods, presenting the result to the host CPU in the form of a 32-bit accumulation.

2 Detailed Description
The programmable time accumulator (PTA) function measures either period, high time or low time of
an input signal over a programmable number of periods. The number of periods over which the mea-
surement is made is selectable over the range 1 to 255. Four modes of measurement are available,
selected via the host sequence bits.

Mode 1 measures total high time over the selected number of periods.

Mode 2 measures total low time over the selected number of periods.

Mode 3 measures total period over the selected number of periods, starting on a rising edge.

Mode 4 measures total period over the selected number of periods, starting on a falling edge.

Figure 1 shows the four operating modes. All four examples in the figure are based on a MAX_COUNT
value of seven. Shaded areas in the bar below each waveform indicate which parts of the waveform are
actually measured. Lightly shaded areas are part of the next measurement.

The output of the PTA function is a 32-bit result expressed in TCR counts. The user can select either
TCR1 or TCR2 as the timebase for the measurement.

The function operates continuously. After the specified number of periods has elapsed, the TPU up-
dates the 32-bit result parameter, generates an interrupt request to the host CPU, and restarts the mea-
surement process.

This function is very similar to the original PPWA function, although it has several major enhancements
over that function:

1. 32-bit accumulation instead of 24 bit.
2. Option of high or low time measurement instead of high time only.
3. Option of starting period accumulation on rising or falling edge instead of rising only.
4. Better noise immunity.

The PTA function does not link to other TPU channels at the end of each accumulation. If this feature
is required, the period/pulse width accumulation (PPWA) function should be used.
© MOTOROLA INC, 1997

Figure 1 PTA Operating Modes

3 Function Code Size
Total TPU function code size determines what combination of functions can fit in a given ROM or em-
ulation memory microcode space. The code size of the PTA function is:

55 µ instructions + 8 entries = 63 long words

1. HIGH TIME PULSE WIDTH MEASUREMENT (HSQ = 00)

2. LOW TIME PULSE WIDTH MEASUREMENT (HSQ = 01)

3. PERIOD MEASUREMENT — RISING EDGE START (HSQ = 10)

4. PERIOD MEASUREMENT — FALLING EDGE START (HSQ = 11)

INITIALIZE
HSR = 11

MEASUREMENT COMPLETE —
INTERRUPT CPU, RESET COUNTERS,

START NEXT ACCUMULATION

1 2 3 4 5 6 7 / 0 1

1 2 3 4 5 6 7 / 0 1

1 2 3 4 5 6 7 / 0 1

1 2 3 4 5 6 7 / 0

PERIOD_COUNT:

PERIOD_COUNT:

PERIOD_COUNT:

PERIOD_COUNT:

TPU PTA TIM

INITIALIZE
HSR = 11

MEASUREMENT COMPLETE —
INTERRUPT CPU, RESET COUNTERS,

START NEXT ACCUMULATION

INITIALIZE
HSR = 11

MEASUREMENT COMPLETE —
INTERRUPT CPU, RESET COUNTERS,

START NEXT ACCUMULATION

INITIALIZE
HSR = 11

MEASUREMENT COMPLETE —
INTERRUPT CPU, RESET COUNTERS,

START NEXT ACCUMULATION
 MOTOROLA TPU Programming Library
2 TPUPN06/D

4 Function Parameters
This section provides detailed descriptions of function parameters stored in channel parameter RAM.
Figure 2 shows TPU parameter RAM address mapping. Figure 3 shows the parameter RAM assign-
ment used by the function. In the diagrams, Y = M111, where M is the value of the module mapping bit
(MM) in the system integration module configuration register (Y = $7 or $F).

— = Not Implemented (reads as $00)

Figure 2 TPU Channel Parameter RAM CPU Address Map

W = Channel Number

Figure 3 Parameter RAM Assignment

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 MAX_COUNT PERIOD_COUNT

$YFFFW4 LAST_TIME

$YFFFW6 ACCUM

$YFFFW8 HW

$YFFFWA LW

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
TPU Programming Library MOTOROLA
TPUPN06/D 3

4.1 CHANNEL_CONTROL

This 9-bit parameter is used during initialization by the TPU to configure the PTA channel. It defines the
timebase which is to be used for measurement, and the type of input transition to be detected. The valid
options for CHANNEL_CONTROL are shown in the following table. The correct operation of the PTA
function is only guaranteed for the values of CHANNEL_CONTROL shown in Table 1.

CHANNEL_CONTROL must be written by the CPU before initialization. The following table defines the
allowable data for this parameter.

NOTE: Other values of CHANNEL_CONTROL may result in indeterminate operation.

4.1.1 MAX_COUNT

This 8-bit parameter is written by the CPU before initialization. It determines the number of periods or
pulses which are accumulated before the measurement restarts. Any value in the range 0 to 255 is valid.
A value of zero or one results in the accumulation of one period or pulse width.

4.1.2 PERIOD_COUNT

This 8-bit parameter is used by the TPU to count the number of input signal periods that have elapsed
since the start of the last measurement sequence. When PERIOD_COUNT equals MAX_COUNT, a
measurement sequence has been completed. Prior to starting the function with an initialization host ser-
vice request, the CPU must initialize PERIOD_COUNT to zero.

4.1.3 LAST_TIME

The LAST_TIME parameter is a 16-bit value used by the TPU as temporary storage. It contains the
event time of the latest input transition or accumulating match during active measurement of pulse width
or period.

4.1.4 ACCUM

ACCUM is a 16-bit value used by the TPU as temporary storage for the incomplete pulse width or period
measurement. This parameter is reset to zero by the TPU after each complete measurement sequence,
but must be initialized to zero by the CPU prior to issuing the initialization host service request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOT USED TBS PAC PSC

Table 1 PTA CHANNEL_CONTROL Options

TBS PAC PSC Action Taken

8765 432 10

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
1 1 1 1

0 1 1
0 1 1
0 0 1
0 1 0
0 1 1
0 1 1
0 0 1
0 1 0
1 1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Measurement high pulse width with TCR1 timebase
Measurement low pulse width with TCR1 timebase
Measurement period on rising edge with TCR1 timebase
Measurement period on falling edge with TCR1 timebase
Measurement high pulse width with TCR2 timebase
Measurement low pulse width with TCR2 timebase
Measurement period on rising edge with TCR2 timebase
Measurement period on falling edge with TCR2 timebase
No change to channel configuration. Use when previously configured correctly
 MOTOROLA TPU Programming Library
4 TPUPN06/D

4.1.5 HW

This 16-bit parameter is updated by the TPU during the period or pulse width measurement. At the end
of a measurement sequence, HW contains the upper word of the 32-bit accumulated result. HW should
be cleared to zero by the CPU prior to issuing the initialization host service request. It must also be
cleared after the result has been read, before the next accumulation exceeds 16 bits.

4.1.6 LW

This 16-bit parameter is updated by the TPU at the end of the period or pulse width measurement se-
quence to contain the lower word of the 32-bit accumulated result. LW is not cleared by the TPU during
initialization. It must be cleared by the CPU prior to issuing the initialization host service request.

5 Function Initialization
Initialize the PTA function as follows.

1. Disable the intended PTA channel by clearing appropriate priority bits (unnecessary from re-
set).

2. Select the PTA function on the channel by writing the PTA function number to the channel func-
tion select bits.

3. Initialize MAX_COUNT, PERIOD_COUNT, ACCUM, HW, and LW in the channel parameter
RAM.

4. Initialize CHANNEL_CONTROL and the channel host sequence bits to select the type of mea-
surement to be made and the measurement timebase.

5. Issue an HSR%11 to initialize the channel and start the accumulation sequence.
6. Enable servicing of the channel by assigning the channel priority (H, M or L).

The TPU then executes the initialization state of the PTA function and starts accumulating period or
pulse widths after the first valid start transition.

When the accumulation is complete, the TPU signals the host CPU via an interrupt request. The CPU
must then read the 32-bit result from LW and HW (use a long word access for coherency), and reset
HW to zero in preparation for the next accumulation. If required, MAX_COUNT can also be updated at
this time to alter the number of periods over which the next accumulation will be made.

6 Performance and Use of Function

6.1 Performance

Like all TPU functions, the performance limit of the PTA function in a given application is dependent to
some extent on the service time (latency) associated with activity on other TPU channels. This is due
to the operational nature of the scheduler. In the case of the PTA function, this limits the maximum fre-
quency and minimum pulse widths of the signal that can be properly measured.

Since the scheduler assures that the worst case latencies in any TPU application can be calculated, it
is recommended that the guidelines given in the TPU reference manual are used along with the infor-
mation given in the PTA function state timing table to perform an analysis on any proposed TPU appli-
cation that appears to approach the performance limits of the TPU.
TPU Programming Library MOTOROLA
TPUPN06/D 5

NOTE: Execution times do not include the time slot transition time (TST = 10 CPU clocks)

6.2 Usage Notes and Restrictions

6.2.1 Clearing HW

At the end of the accumulation sequence, the 32-bit result of the PTA function is resident in HW and
LW and the function issues an interrupt request to the CPU. The CPU must read the result and clear
HW to zero before the next accumulation has exceeded 16 bits. This is because HW is updated during
the measurement process, unlike LW, which is accumulated in ACCUM and then copied into LW at the
end of the measurement.

6.2.2 Maximum Accumulation

The PTA function allows a maximum accumulation of 32 bits of the selected TCR clock. If HW overflows
during the accumulation, an interrupt is generated to the CPU, but the function continues to run normal-
ly. Investigation of the parameters by the CPU may reveal that an overflow has occurred, but under
some circumstances it may be difficult to tell this condition from a valid termination of a measurement
sequence. For this reason, the prescaler of the selected timebase should be set to ensure that the long-
est measurement under worst case conditions does not exceed 32 bits.

6.2.3 Reading the Incomplete Accumulation

Under some circumstances, it may be advantageous to get an approximation of how far the active ac-
cumulation has progressed. This can be achieved by reading HW and ACCUM (LW) coherently, then
reading PERIOD_COUNT to determine the number of periods over which the partial accumulation has
been made. Note that PERIOD_COUNT may have an error of one with respect to the accumulated val-
ue read, and that the partial accumulation can be up to one pulse width/period or $8000 TCR clocks (if
pulse width/period very long) less than the real value at the instant of reading.

Table 2 PTA Function State Timing

State Number and Name Max. CPU Clock Cycles RAM Accesses by TPU

S0 INIT_PTA 6 1

S1 POS_TRANS0_PTA
High time accumulate
Low time accumulate
Period accumulate — Rising
Period accumulate — Falling

54
54
16
16

6
6
2
2

S2 POS_TRANS1_PTA
High time accumulate
Low time accumulate
Period accumulate — Rising
Period accumulate — Falling

18
12
44
44

2
1
6
6

S3 NEG_TRANS0_PTA
High time accumulate
Low time accumulate
Period accumulate — Rising
Period accumulate — Falling

50
50
16
16

6
6
2
2

S4 NEG_TRANS1_PTA
High time accumulate
Low time accumulate
Period accumulate — Rising
Period accumulate — Falling

12
22
44
44

1
2
6
6

 MOTOROLA TPU Programming Library
6 TPUPN06/D

6.2.4 Changing Modes

Avoid changing measurement modes while the function is running. The correct way to change modes
is to stop the function by clearing the channel priority bits, then follow the procedure outlined under 5
Function Initialization to restart the function in the new mode.

6.2.5 Noise Immunity

The PTA function is designed to filter out individual pulses which are too short to be measured correctly.
These will not cause anomalous results in any of the measurement modes. However, repetitive noise
on the input signal can cause anomalous results and also increased TPU activity, leading to an overall
reduction in system performance. For this reason, every effort should be made to present the TPU with
a noise free signal. Guaranteed minimum measurable pulse width or period can be determined by cal-
culating worst-case latency for the PTA function. Refer to 6 Performance and Use of Function for
more information.

7 Host Interface to Function
This section provides information concerning the TPU host interface to the function. Figure 4 is a TPU
address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111, where M is
the value of the module mapping bit (MM) in the system integration module configuration register (Y =
$7 or $F).

Figure 4 TPU Address Map

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)
TPU Programming Library MOTOROLA
TPUPN06/D 7

CFS[4:0] — PTA Function Number (Assigned during microcode assembly)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Operating Mode

00 High Time Accumulate

01 Low Time Accumulate

10 Period Accumulate — Rising

11 Period Accumulate — Falling

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Initialization

00 No Host Service (Reset Condition)

01 No effect

10 No effect

11 Initialize Function

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Channel Priority

00 Disabled

01 Low

10 Middle

11 High
 MOTOROLA TPU Programming Library
8 TPUPN06/D

8 Examples
The following two examples contain CPU32 code needed to initialize the PTA function for low pulse
measurements and period on rising edge measurements using the TCR1 timebase. The code includes
the initialization and use of basic interrupt handlers for these measurement modes. The assembled
code was executed on a BCC board.

8.1 Example A: Low Pulse Measurement

This example shows how to initialize the PTA function for low pulse measurement and how to imple-
ment an interrupt handler. The channel generates an interrupt service request after each low pulse is
measured. On every interrupt the handler logs all the PTA parameter RAM to BCC external RAM, be-
tween addresses $6000 and $6FFF. In addition, the interrupt handler also ensures the HW result if the
function is cleared to zero after it is logged. The data log pointer is a word maintained at address $5FFE.
In this example, the PTA function has been assembled as function number $F, but the function number
can be different, depending on the application.

8.2 Parameter RAM Content

After the CPU has initialized the parameter RAM for low pulse measurement, and before the host ser-
vice request is issued, the parameter RAM content should be as follows:

After the PTA function generates an interrupt service request to indicate that a low pulse
measurement has been made, the parameter RAM content should be as follows:

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted

15 8 7 0

$YFFF10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

$YFFF12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

$YFFF14 x x x x x x x x x x x x x x x x

$YFFF16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$YFFF18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$YFFF1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 8 7 0

$YFFF10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

$YFFF12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

$YFFF14 x x x x x x x x x x x x x x x x

$YFFF16 x x x x x x x x x x x x x x x x

$YFFF18 High Word of Measured Low Pulse

$YFFF1A Low Word of Measured Low Pulse
TPU Programming Library MOTOROLA
TPUPN06/D 9

8.3 Program Listing
TPRAM0 equ $ffffff00 TPU Channel 0 parameter RAM base address
TMCR equ $fffffe00 TPU Module Configuration
TICR equ $fffffe08 TPU Interrupt Configuration
CIER equ $fffffe0a TPU Channel Interrupt Enable
CFSR3 equ $fffffe12 TPU Channel Function Select Register 3
HSQR1 equ $fffffe16 TPU Host Sequence Register 1
HSRR1 equ $fffffe1a TPU Host Service Request Register 1
CPR0 equ $fffffe1c TPU Channel Priority Register 0
CPR1 equ $fffffe1e TPU Channel Priority Register 1
CISR equ $fffffe21 TPU Channel Interrupt Status
log_count equ $5FFE Data log counter.

* Channel Function assignments
PTA equ TPRAM0

* PTA Parameter RAM constants
channel_control equ $000F Detect rising/falling edges, capture and match on
TCR1.
max_count equ 1 Number of periods to accumulate.

 section.text
* Set up data log pointer
 move.w #$6000,log_count

 clr.l d0
 movec d0,vbr
 move.w #$04C0,TMCR Ensure TPU is in emulation mode, 240 ns res.

* First set up PTA channel configuration
 clr.l CPR0 Ensure scheduler disabled before setting parameters
 move.w #$000F,CFSR3 PTA on Chan 0.

* Now initialize PTA parameter RAM on Channel 0
* Addr offset Parameter Name Parameter Position
* 00 channel_control 9 LSbits
* 02 max_count MS byte
* 02 period_count LS byte
* 04 last_time Word
* 06 accum Word
* 08 HW Word
* 0A LW Word

 move.w #channel_control,PTA Timebase select
 move.w #(max_count<<8),PTA+2 Number of periods to accumulate
 clr.w PTA+6 TPU doesn't clear Accum.
 clr.l PTA+8 TPU doesn't initialize HW:LW Result.

* Host sequence bits 0,1 dictate Pulse-High/Low or Period-Rising/Falling measurement.
 move.w #$0001,HSQR1 Low Pulse measurement.

* Now set up and enable PTA interrupt
 ori.w #1,TMCR Set IARB to non-zero value, and
 move.w #$0640,TICR TPU intr level 6, Base vector num=$40.
 move.l #PTASRV,$40*4 Set up PTA vector (Base=$40, channel 0)
 move.w #$0001,CIER Enable chan 0 interrupt (PMM)
 move.w #$2500,SR Drop intr level below TPU's

* Send Host service request and start PTA
 move.w #$0003,HSRR1 Host service init%11
 MOTOROLA TPU Programming Library
10 TPUPN06/D

 move.w #$0003,CPR1 Enable scheduler for PTA

 bra * TPU should be running now, CPU in idle loop

**
* Interrupt function: PTASRV *
* Description: Entered when bit 0 of CISR register is set. *
* This happens when the PTA function has *
* completed the accumulated measurement. *
* PTA Parameter RAM on channel 0 is logged *
* and whole 32-bit result is cleared if low *
* word of result is non-zero. *
*Input conditions: bit 0 of CISR is'1'. *
* HW:LW holds measurement result. *
*Output conditions: bit 0 of CISR is'0' *
* (provided CPU interrupt latency is not *
* exceeded). *
* HW:LW is cleared to zero. *
**

PTASRV equ * PTA interrupt service routine
 bclr #0,CISR+1 Clear PTA status flag

log_all bsr ptalog Log data
 tst.w PTA+$A If LW Result < > 0 Then
 beq log_ex
log_clr clr.l PTA+8 clear whole 32-bit result, since TPU doesn't.

log_ex equ *
 rte and return

**
* Subroutine: ptalog *
* Description: If data space is available, 8 words of *
* channel 0 parameter are logged in next 8 *
* word locations. *
* Input conditions: log_count points to next free data log *
* location, or is greater than or equal *
* to the limit if no data space *
* available. *
* Output conditions: log_count incremented by 16, or is *
* greater than or equal to the limit if *
* no more data space available. *
* CPU registers a2, a3, d2 changed *
* *
**

ptalog move.w log_count,a2
 cmpa #$7000,a2 If log limit reached then
 bge ptalogex do nothing, else
 move.w #TPRAM0,a3 Get start address of required data
 moveq #7,d2
loop move.w (a3)+,(a2)+ and log parameters.
 dbra d2,loop
 move.w a2,log_count Save next log position
ptalogex rts and return
 end
TPU Programming Library MOTOROLA
TPUPN06/D 11

8.4 Example B: Rising Edge Period Measurement

This example shows how to initialize the PTA function for period measurement on each rising edge, and
how to set up and implement an interrupt handler. On every interrupt service request, the handler logs
all the PTA parameter RAM to BCC external RAM, between addresses $6000 and $6FFF. In addition,
the interrupt handler also ensures the HW result of the function is cleared to zero after it is logged. The
data log pointer is a word maintained at address $5FFE. In this example, the PTA function has been
assembled as function number $F, but the function number can be different, depending on the applica-
tion.

8.5 Parameter RAM Content

After the CPU has initialized the parameter RAM for period measurement on rising edge, and before
the host service request is issued, the parameter RAM content should be as follows:

After the PTA function generates an interrupt service request to indicate that a period measurement has
been made, the parameter RAM content should be as follows:

8.6 Program Listing
TPRAM0 equ $ffffff00 TPU Channel 0 parameter RAM base address
TMCR equ $fffffe00 TPU Module Configuration
TICR equ $fffffe08 TPU Interrupt Configuration
CIER equ $fffffe0a TPU Channel Interrupt Enable
CFSR3 equ $fffffe12 TPU Channel Function Select Register 3
HSQR1 equ $fffffe16 TPU Host Sequence Register 1
HSRR1 equ $fffffe1a TPU Host Service Request Register 1
CPR0 equ $fffffe1c TPU Channel Priority Register 0
CPR1 equ $fffffe1e TPU Channel Priority Register 1
CISR equ $fffffe21 TPU Channel Interrupt Status
log_count equ $5FFE Data log counter.

* Channel Function assignments
PTA equ TPRAM0

* PTA Parameter RAM constants

15 8 7 0

$YFFF10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

$YFFF12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

$YFFF14 x x x x x x x x x x x x x x x x

$YFFF16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$YFFF18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$YFFF1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 8 7 0

$YFFF10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

$YFFF12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

$YFFF14 x x x x x x x x x x x x x x x x

$YFFF16 x x x x x x x x x x x x x x x x

$YFFF18 High Word of Measured Period

$YFFF1A Low Word of Measured Period
 MOTOROLA TPU Programming Library
12 TPUPN06/D

channel_control equ $0007 Detect only rising edges, capture and match on TCR1.
max_count equ 1 Number of periods to accumulate.

 section.text

* Set up data log pointer
 move.w #$6000,log_count

 clr.l d0
 movec d0,vbr Necessary for BDM downloads.
 move.w #$04C0,TMCR Ensure TPU is in emulation mode, 240 ns res.

* First set up PTA channel configuration

 clr.l CPR0 Ensure scheduler disabled before setting parameters
 move.w #$000F,CFSR3 PTA on Chan 0.

* Now initialize PTA parameter RAM on Channel 0
* Addr offset Parameter Name Parameter Position
* 00 channel_control 9 LSbits
* 02 max_count MS byte
* 02 period_count LS byte
* 04 last_time Word
* 06 accum Word
* 08 HW Word
* 0A LW Word

 move.w #channel_control,PTA Timebase select
 move.w #(max_count<<8),PTA+2 Number of periods to accumulate
 clr.w PTA+6 TPU doesn't clear Accum.

 clr.l PTA+8 TPU doesn't initialize HW:LW Result.

* Host sequence bits 0,1 dictate Pulse-High/Low or Period-Rising/Falling
* measurement.
 move.w #$0002,HSQR1 Period measurement on rising edges.

* Now set up and enable PTA interrupt

 ori.w #1,TMCR Set IARB to non-zero value, and
 move.w #$0640,TICR TPU intr level 6, Base vector num=$40.
 move.l #PTASRV,$40*4 Set up PMM vector (Base=$40, channel 0)
 move.w #$0001,CIER Enable chan 0 interrupt (PMM)
 move.w #$2500,SR Drop intr level below TPU's intr level

* Send Host service request and start PTA
 move.w #$0003,HSRR1 Host service init%11
 move.w #$0003,CPR1 Enable scheduler for PTA

 bra * TPU should be running now!

**
* Interrupt function: PTASRV *
* Description: Entered when bit 0 of CISR register is set *
* This happens when the PTA function has *
* completed the accumulated measurement. *
* PTA Parameter RAM on channel 0 is logged *
* and whole 32-bit result is cleared if low *
* word of result is non-zero. *
*Input conditions: bit 0 of CISR is'1'. *
TPU Programming Library MOTOROLA
TPUPN06/D 13

* HW:LW holds measurement result. *
*Output conditions: bit 0 of CISR is'0' *
* (provided CPU interrupt latency is not *
* exceeded). *
* HW:LW is cleared to zero. *
**
PTASRV equ * PTA interrupt service routine
 bclr #0,CISR+1 Clear PTA status flag

log_all bsr ptalog Log data
 tst.w PTA+$A If LW Result < > 0 Then
 beq log_ex
log_clr clr.l PTA+8 clear whole 32-bit result, since TPU doesn't.

log_ex equ *
 rte and return

**
* Subroutine: ptalog *
* Description: If data space is available, 8 words of *
* channel 0 parameter are logged in next 8 *
* word locations. *
* Input conditions: log_count points to next free data log *
* location, or is greater than or equal *
* to the limit if no data space *
* available. *
* Output conditions: log_count incremented by 16, or is *
* greater than or equal to the limit if *
* no more data space available. *
* CPU registers a2, a3, d2 changed *
* *
**
ptalog move.w log_count,a2
 cmpa #$7000,a2 If log limit reached then
 bge ptalogex do nothing, else
 move.w #TPRAM0,a3 Get start address of required data
 moveq #7,d2
loop move.w (a3)+,(a2)+ and log parameters.
 dbra d2,loop
 move.w a2,log_count Save next log position
ptalogex rts and return

 end

9 Function Algorithm
The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different from that shown, in order to optimize speed and
code size. TPU microcode source listings for all functions in the TPU function library can be downloaded
from the Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation
Mode (TPUPN00/D) for detailed instructions on downloading and compiling microcode.

The programmable time accumulator function consists of five states. The function uses matches in ad-
dition to transition detection to measure the desired signal property. Using matches in this way extends
the maximum period and pulse widths that can be successfully measured beyond the $FFFF TCR count
limit. For clarity, the following description refers to an internal flag that is not available to the user. Flag0
tracks the pin state from the previous channel service, to ensure correct startup in the various measure-
ment modes. Flag0 is used in conjunction with the new pin state, shared match/transition flag and the
host service request bits to determine which of the PTA function states are executed.
 MOTOROLA TPU Programming Library
14 TPUPN06/D

9.1 State 0: INIT_PTS

This state, entered as a result of HSR %11, configures the channel.
Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 11XXXX

The channel is configured with the contents of the CHANNEL_CONTROL parameter
If pulse measurement has been selected via the host sequence bits, flag0 is set, otherwise it is cleared
Negate MRL, TDL, LSL
The state ends

9.2 State 1: POS_TRANS0_PTA

This state is entered as a result of a positive transition or a match when the pin is one and flag0 is zero.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001X10

If Pulse Measurement Then
If Match Then {High Pulse assumed}

ACCUM_TIME
NEXT_MATCH

Else {Low Pulse, Transition assumed}
Check_Pin
If Pin = 1 Then

Flag0:= 1
ACCUM_TIME
CHECK_COUNT

Endif
Endif
Else {Period Measurement}

If Match Then {Possible pending match from previous mode}
Clear Match Flag

Else
Clear Transition Flag
Flag0:= 1
NEXT_MATCH

Endif
Endif

9.3 State 2: POS_TRANS1_PTA

This state is entered as a result of a positive transition or a match when the pin is one and flag0 is one.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001X11

If Pulse Measurement Then
If Match Then

Clear Match Flag
Else

Check_Pin
If High Pulse Then

If Pin = 1 Then
Flag0:= 0
NEXT_MATCH
Endif

Endif
Endif

Else {Period Measurement}
If Match Then
TPU Programming Library MOTOROLA
TPUPN06/D 15

ACCUM_TIME
NEXT_MATCH

Else
ACCUM_TIME
CHECK_COUNT
NEXT_MATCH

Endif
Endif

9.4 State 3: NEG_TRANS0_PTA

This state is entered as a result of a negative transition or a match when the pin is zero and flag0 is zero.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001X00

If Pulse Measurement Then
If Match Then {Low Pulse assumed}

ACCUM_TIME
NEXT_MATCH

Else {High Pulse, Transition assumed}
{High Pulse Match is Invalid State and not processed here}

Check_Pin
If Pin = 0 Then

Flag0:= 1
ACCUM_TIME
CHECK_COUNT

Endif
Endif

Else {Period Measurement, Transition assumed}
If Match Then{ {Possible pending match from previous mode}

Clear Match Flag
Else

Flag0:= 1
NEXT_MATCH
Clear Transition Flag

Endif
Endif

9.5 State 4: NEG_TRANS1_PTA

This state is entered as a result of a negative transition or a match when the pin is zero and flag0 is one.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001X01

If Pulse Measurement Then
If Match Then

Clear Match Flag
Else

Check_Pin
If Low Pulse Then

If Pin = 0 Then
Flag0:= 0
NEXT_MATCH
Endif

Endif
Endif

Else {Period Measurement}
 MOTOROLA TPU Programming Library
16 TPUPN06/D

If Match Then
ACCUM_TIME
NEXT_MATCH

Else
ACCUM_TIME

 CHECK_COUNT
NEXT_MATCH

Endif
Endif

9.6 Pseudocode Subroutines
ACCUM_TIME
ACCUM:= ACCUM + (EVENT_TIME – LAST_TIME)
If Overflow Then

HW:= HW + 1
If Overflow Then

Generate Interrupt to CPU
Endif

Endif

NEXT_MATCH
LAST_TIME:= EVENT_TIME
Schedule Match at (EVENT_TIME + Max)

CHECK_COUNT
PERIOD_COUNT:= PERIOD_COUNT + 1
If PERIOD_COUNT ≥ MAX_COUNT Then

LW:= ACCUM
Generate Interrupt to CPU
ACCUM:= 0
PERIOD_COUNT:= 0

Endif

Check_Pin
Get new pin level and coherently clear transition flag
TPU Programming Library MOTOROLA
TPUPN06/D 17

NOTES
 MOTOROLA TPU Programming Library
18 TPUPN06/D

NOTES
TPU Programming Library MOTOROLA
TPUPN06/D 19

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen

ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	Figure 1 PTA Operating Modes

	3 Function Code Size
	4 Function Parameters
	Figure 2 TPU Channel Parameter RAM CPU Address Map...
	Figure 3 Parameter RAM Assignment
	4.1 CHANNEL_CONTROL
	Table 1 PTA CHANNEL_CONTROL Options
	4.1.1 MAX_COUNT
	4.1.2 PERIOD_COUNT
	4.1.3 LAST_TIME
	4.1.4 ACCUM
	4.1.5 HW
	4.1.6 LW

	5 Function Initialization
	6 Performance and Use of Function
	6.1 Performance
	Table 2 PTA Function State Timing

	6.2 Usage Notes and Restrictions
	6.2.1 Clearing HW
	6.2.2 Maximum Accumulation
	6.2.3 Reading the Incomplete Accumulation
	6.2.4 Changing Modes
	6.2.5 Noise Immunity

	7 Host Interface to Function
	Figure 4 TPU Address Map

	8 Examples
	8.1 Example A: Low Pulse Measurement
	8.2 Parameter RAM Content
	8.3 Program Listing
	8.4 Example B: Rising Edge Period Measurement
	8.5 Parameter RAM Content
	8.6 Program Listing

	9 Function Algorithm
	9.1 State 0: INIT_PTS
	9.2 State 1: POS_TRANS0_PTA
	9.3 State 2: POS_TRANS1_PTA
	9.4 State 3: NEG_TRANS0_PTA
	9.5 State 4: NEG_TRANS1_PTA
	9.6 Pseudocode Subroutines

