

Order this document
 by TPUPN08/D

SEMICONDUCTOR

MOTOROLA

PROGRAMMING NOTE

New Input Capture/Input Transition Counter
TPU Function (NITC)
By Jeff Loeliger and Jeff Wright

1 Functional Overview
The NITC function can detect rising and/or falling input transitions. When a transition is detected, the
current TCR timer value or a parameter RAM value is captured. The channel continues to detect and
count input transitions until it has counted the maximum programmable number stored in the parameter
MAX_COUNT. The NITC function can count the programmed maximum number of transitions continu-
ally, or it can count the programmed number of transitions once, then cease channel activity until rein-
itialized. Once the programmed number of transitions is counted, the function can send an interrupt
request to the host CPU and generate a link to a sequential block of up to eight channels. A link is simply
a message from one channel to another. The user specifies the starting channel of the block and the
number of channels within the block.

The NITC function is very similar to the ITC function. The BANK_ADDRESS update feature of the ITC
function, which is used in conjunction with the PMA/PMM functions has been removed. The NITC
PARAM_ADDR parameter replaces the ITC BANK_ADDRESS parameter. When NITC is used in pa-
rameter mode (HSR %10), it captures the value of a parameter RAM address pointed to by
PARAM_ADDR instead of a TCR value.

2 Detailed Description
Any channel of the TPU can perform an input capture. Performing an input capture means to record the
TCR value or a parameter RAM value when one input transition occurs. If only one input capture is de-
sired, then the number of transitions to be counted should be set to zero or one in MAX_COUNT. Any
channel of the TPU can count several input captures as specified by the parameter MAX_COUNT.

The TPU services each input capture by saving the transition TCR value or parameter RAM value to
the parameter LAST_TRANS_TIME and then incrementing the number of counts stored in
TRANS_COUNT. When the number of counts in TRANS_COUNT equals the value in MAX_COUNT,
the TPU stores the final transition time into the parameter FINAL_TRANS_TIME and then requests an
interrupt from the CPU.

Depending on the state of the host sequence field bits, the TPU can operate in one of four modes.

In single shot mode without links, the TPU counts the number of transitions specified in
MAX_COUNT and makes an interrupt service request. Then, channel activity ceases until reinitializa-
tion.

In continual mode without links, the TPU counts the number of transitions specified in MAX_COUNT
and makes an interrupt service request. The function then clears TRANS_COUNT and continues to
count transitions.
© MOTOROLA INC, 1997

In single shot mode with links, the TPU counts the number of transitions specified in MAX_COUNT,
makes an interrupt service request, and generates a link service request to a sequential block of up to
eight channels. The user specifies the starting channel of the block (in START_LINK_CHANNEL) and
the number of channels within the block (in LINK_CHANNEL_COUNT). The TPU then ignores all sub-
sequent transitions until the channel has been reinitialized.

In continual mode with links, the TPU counts the number of transitions specified in MAX_COUNT,
makes an interrupt service request, and generate a link to a sequential block of up to eight channels.
The user specifies the starting channel of the block (in START_LINK_CHANNEL) and the number of
channels within the block (in LINK_CHANNEL_COUNT). After these actions have been taken, the TPU
clears TRANS_COUNT and continues to count transitions.

The parameter capture mode (HSR %10) is very useful when working with a quadrature encoder that
has three outputs. Encoders with three signals have two quadrature signals and an index signal. The
quadrature signals are connected to a quadrature decode function like FQD or QDEC and the index
signal is connected to a channel running NITC. The NITC channel is configured to capture the
POSITION_COUNT parameter of the quadrature decode function. The NITC channel must be run on a
lower channel number than the quadrature function channel, and assigned the same priority. There is
latency associated with using the function in parameter capture mode. In the TCR mode, the value of
the TCR is captured in hardware when the input transition is detected. In the parameter RAM mode the
input transition causes the channel to request to be serviced by the TPU microengine; when the channel
is serviced the parameter RAM value is captured.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. NITC function code size is:

27 µ instructions + 8 entries = 35 long words
 MOTOROLA TPU Programming Library
2 TPUPN08/D

4 Function Parameters
This section provides detailed descriptions of the function parameters stored in channel parameter
RAM. Figure 1 shows TPU parameter RAM address mapping. Figure 2 shows the parameter RAM as-
signment used by the function. In the diagrams, Y = M111, where M is the value of the module mapping
bit (MM) in the system integration module configuration register (Y = $7 or $F).

— = Not Implemented (reads as $00)

Figure 1 TPU Channel Parameter RAM CPU Address Map

Figure 2 shows all of the host interface areas for the NITC function, as well as the parameters, address-
es, reference times, and reference sources. This segment lists and defines the parameters for all modes
of the NITC time function.

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
TPU Programming Library MOTOROLA
TPUPN08/D 3

Y= Channel number

Figure 2 NITC Function Parameter RAM Assignment

4.1 CHANNEL_CONTROL

CHANNEL_CONTROL contains configuration for the PSC, PAC, and TBS fields. The channel execut-
ing this function is configured as input, and CHANNEL_CONTROL must be written by the CPU before
initialization. The PSC field is “don't care” for input channels. The PAC field specifies the pin logic re-
sponse for transition detection or an input channel. The TBS field configures a channel pin as input and
configures the time base for capture events. Only the PAC field (bits [4:2]) are used in parameter RAM
mode (HSR %10).

4.2 START_LINK_CHANNEL

START_LINK_CHANNEL contains the first channel of the link block. This parameter is written by the
host CPU at initialization.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 START_LINK_
CHANNEL

LINK_CHANNEL_C
OUNT

PARAM_ADDR 0

$YFFFW4 MAX_COUNT

$YFFFW6 TRANS_COUNT

$YFFFW8 FINAL_TRANS_TIME

$YFFFWA LAST_TRANS_TIME

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOT USED TBS PAC PSC

NITC CHANNEL_CONTROL Options

TBS PAC PSC ACTION

8 7 6 5 4 3 2 1 0

1 1 —

0 0 0 Do Not Detect Transition

0 0 1 Detect Rising Edge

0 1 0 Detect Falling Edge

0 1 1 Detect Either Edge

1 x x Do Not Change PAC

0 0 x x Input Channel

0 0 0 x Capture TCR1

0 0 1 x Capture TCR2
 MOTOROLA TPU Programming Library
4 TPUPN08/D

4.3 LINK_CHANNEL_COUNT

LINK_CHANNEL_COUNT determines the number of channels in the link block. This parameter is writ-
ten by the host CPU at initialization and can be changed at any time. If this parameter is used, it must
be greater than zero and less than or equal to eight: 0 < count < 8. No check is performed by the TPU.
If this number is out of range, the results are unpredictable.

Example: If START_LINK_CHANNEL = $F and LINK_CHANNEL_COUNT = 4, a link is generated, in
order of appearance, to channels 15, 0, 1, and 2.

4.4 PARAM_ADDRESS

This is the address of the parameter that is captured instead of a TCR value when the function is oper-
ating in parameter RAM mode. This address should always point to an even address.

4.5 MAX_COUNT

MAX_COUNT specifies the number of transitions to be counted before an interrupt is requested. In con-
tinuous mode, when MAX_COUNT is reached, TRANS_COUNT is reset to zero, and the TPU contin-
ues to count. In single mode, when MAX_COUNT is reached, the TPU ignores all further input
transitions. This parameter can be updated by the CPU.

4.6 TRANS_COUNT

TRANS_COUNT and MAX_COUNT should be accessed coherently by the CPU, which may change
MAX_COUNT and TRANS_COUNT at any time. (Altering TRANS_COUNT by the CPU is not recom-
mended unless the system designer can ascertain that sufficient time remains before the TPU updates
TRANS_COUNT.) Refer to 6 Function Configuration for MAX_COUNT and TRANS_COUNT alter-
ation.

TRANS_COUNT contains the current number of transitions counted. The TPU increments this param-
eter when a programmed transition is detected. When the NITC function is operating in continuous
mode, TRANS_COUNT is reset to zero at the start of every series of transitions counted. This param-
eter can also be updated by the CPU.

The TPU can overwrite the value written by the host CPU when operating in continuous mode. In this
case, the CPU must ensure, by means of software interrogation, that sufficient time remains to complete
the update before the TPU clears this parameter to zero.

TRANS_COUNT and MAX_COUNT should be accessed coherently by the host CPU. The CPU can
change MAX_COUNT and TRANS_COUNT at any time, but altering TRANS_COUNT is not recom-
mended unless the system designer can ascertain that sufficient time remains before the TPU updates
TRANS_COUNT. Refer to 6 Function Configuration for MAX_COUNT and TRANS_COUNT alter-
ation.

4.7 FINAL_TRANS_TIME

FINAL_TRANS_TIME contains the TCR value or parameter RAM value when the final transition of
MAX_COUNT is reached. This parameter is updated by the TPU when the number of transitions count-
ed is equal to or greater than MAX_COUNT. An interrupt is requested when FINAL_TRANS_TIME is
updated.

4.8 LAST_TRANS_TIME

LAST_TRANS_TIME contains the TCR value or parameter RAM when the last transition is detected.
The TPU updates this parameter whenever the specified transition occurs and the number of transitions
counted is less than MAX_COUNT.
TPU Programming Library MOTOROLA
TPUPN08/D 5

5 Host Interface to Function
This section provides information concerning the TPU host interface to the function. Figure 3 is a TPU
address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111, where M is
the value of the module mapping bit (MM) in the system integration module configuration register (Y =
$7 or $F).

Figure 3 TPU Address Map

CFS[4:0] — NITC Function Number (Assigned during microcode assembly)

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)
 MOTOROLA TPU Programming Library
6 TPUPN08/D

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Mode

00 Single Shot, No Links

01 Continual, No Links

10 Single Shot, Links

11 Continual, Links

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Initialization

00 No Host Service (Reset Condition)

01 Initialize TCR mode

10 Initialize parameter mode

11 Not Used

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Channel Priority

00 Disabled

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted
TPU Programming Library MOTOROLA
TPUPN08/D 7

6 Function Configuration
The CPU initializes the function as follows.

1. Writes CHANNEL_CONTROL and MAX_COUNT values to parameter RAM.
2. If running in link mode (host sequence bits = 1x), writes START_LINK_CHANNEL and

LINK_CHANNEL_COUNT to parameter RAM.
3. If running in parameter mode (host service request = %10), writes PARAM_ADDRESS to pa-

rameter RAM.
4. Writes host sequence bits according to the mode of operation.
5. Issues an HSR %01 or HSR %10 for initialization.
6. Enables channel servicing by assigning high, middle, or low priority.

The TPU then executes initialization and starts counting the transition type specified by the PAC field
in CHANNEL_CONTROL. The CPU should monitor the HSR register until the TPU clears the service
request to 00 before changing any parameters or issuing a new service request to this channel.

6.1 MAX_COUNT and TRANS_COUNT Alteration

If MAX_COUNT is changed by the CPU, the TPU uses the new value on the next transition detected.
Because TRANS_COUNT can be written both by the CPU and by the TPU, one of the following cases
can occur if the CPU alters the TRANS_COUNT value:

A. The TPU uses the new value of (TRANS_COUNT + 1). This case is the most probable and hap-
pens when:
1. The CPU writes a new value to TRANS_COUNT;
2. The TPU increments TRANS_COUNT; and
3. The TPU reads TRANS_COUNT and MAX_COUNT to compare them.

B. The TPU uses the new value of TRANS_COUNT. This case happens when:
1. The TPU increments TRANS_COUNT;
2. The CPU writes a new value to TRANS_COUNT; and
3. The TPU reads TRANS_COUNT and MAX_COUNT to compare them.

C. The new value of TRANS_COUNT is overwritten by TPU. This case occurs when the CPU
writes a new value to TRANS_COUNT just as TRANS_COUNT equals the value of
MAX_COUNT (if operating in continuous mode). This case, which should be handled according
to the specific application, happens when:
1. The TPU increments TRANS_COUNT;
2. The TPU reads TRANS_COUNT and MAX_COUNT to compare them, and

TRANS_COUNT ≥ MAX_COUNT;
3. The CPU writes a new value to TRANS_COUNT; and
4. If operating in continuous mode, the TPU resets TRANS_COUNT to zero to initialize a new

series of counts.

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, NITC function performance in an application is to some extent dependent upon
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. When more TPU channels are active, performance decreases. However, worst-case latency
in any TPU application can be closely estimated. To analyze the performance of an application that ap-
pears to approach the limits of the TPU, use the guidelines given in the TPU reference manual and the
information in the NITC state timing table below.
 MOTOROLA TPU Programming Library
8 TPUPN08/D

NOTES
1. Assumes no channels linked. Add two clocks for each channel linked.

7.2 Changing Mode

The host sequence bits are used to select NITC function operating mode. Change host sequence bit
values only when the function is stopped or disabled (channel priority bits =%00). Disabling the channel
before changing mode avoids conditions that cause indeterminate operation.

8 Examples
The following examples show configuration of the new input capture/input transition function. Each ex-
ample includes a description of the example, a diagram of the initial parameter RAM content and the
initial control bit settings.

8.1 Example A

8.1.1 Description

Configure channel 1 to run NITC in single shot mode without links. Set up channel control to detect ei-
ther edge and to capture TCR1.

8.1.2 Initialization

Disable channel 1 by clearing the priority bits. Select NITC function by programming the function select
register of each channel. Configure parameter RAM as shown below. Write HSQ =%00 to channel 1.
Issue HSR =%01 to initialize in TCR mode. Write the priority bits to a non-zero value.

CHANNEL_CONTROL = $000F
MAX_COUNT = $0000

The function now runs. It captures any transition on channel 1, stores the value of TCR1 in
FINAL_TRANS_TIME and LAST_TRANS_TIME, and issues an interrupt request to the host CPU.

Table 1 NITC State Timing

State Number and Name Max. CPU Clock Cycles RAM Accesses by TPU

S0 Init 8 2

S1 Inita 6 2

S2 Count_Up (last count)
HSQ = 00
HSQ = 01
HSQ = 10
HSQ = 11

All modes (not last count)

32
30
32

321

24

5
6
6
7
5

Table 2 Channel 1 Parameter RAM

15 8 0

$YFFF10 x x x x x x x 0 0 0 0 0 1 1 1 1 CHANNEL_CONTROL

$YFFF12 x x x x x x x x x x x x x x x 0 LINK & PARAM_ADDR

$YFFF14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MAX_COUNT

$YFFF16 x x x x x x x x x x x x x x x x TRANS_COUNT

$YFFF18 x x x x x x x x x x x x x x x x FINAL_TRANS_TIME

$YFFF1A x x x x x x x x x x x x x x x x LAST_TRANS_TIME
TPU Programming Library MOTOROLA
TPUPN08/D 9

8.2 Example B

8.2.1 Description

Configure channel 1 to run NITC in continuous mode and link to channels 5 and 6. Set up channel con-
trol to detect falling edges and to capture TCR2. In continuous mode count five falling edges.

8.2.2 Initialization

Disable channel 1 by clearing the priority bits. Select NITC function by programming the function select
register of each channel. Configure parameter RAM as shown below. Write HSQ = %11 to channel 1.
Issue HSR = %01 to initialize in TCR mode. Write the priority bits to a non-zero value.

CHANNEL_CONTROL = $004B
MAX_COUNT = $0005

The function now runs. It captures falling transitions on channel 1, stores the value of TCR2 in
LAST_TRANS_TIME, and increments TRANS_COUNT. Every fifth transition causes the value of TCR2
to be stored in FINAL_TRANS_TIME and LAST_TRANS_TIME, links to be sent to channels 5 and 6,
TRANS_COUNT to be cleared to zero, and an interrupt request to be sent to the host CPU.

Table 3 Channel 1 Parameter RAM

15 8 0

$YFFF10 x x x x x x x 0 0 1 0 0 1 0 1 1 CHANNEL_CONTROL

$YFFF12 0 1 0 1 0 0 1 1 x x x x x x x 0 LINK & PARAM_ADDR

$YFFF14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 MAX_COUNT

$YFFF16 x x x x x x x x x x x x x x x x TRANS_COUNT

$YFFF18 x x x x x x x x x x x x x x x x FINAL_TRANS_TIME

$YFFF1A x x x x x x x x x x x x x x x x LAST_TRANS_TIME
 MOTOROLA TPU Programming Library
10 TPUPN08/D

8.3 Example C

8.3.1 Description

Configure channel 1 to run NITC in single shot mode without links. Set up channel control to detect ris-
ing edges and to capture the value in parameter RAM location $22.

8.3.2 Initialization

Disable channel 1 by clearing the priority bits. Select NITC function by programming the function select
register of each channel. Configure parameter RAM as shown below. Write HSQ = %00 to channel 1.
Issue HSR = %10 to initialize in parameter RAM mode. Write the priority bits to a non-zero value.

CHANNEL_CONTROL = $0007
PARAM_ADDR = $0022
MAX_COUNT = $0000

The function now runs, captures a rising transition on channel 1, and stores the value of parameter RAM
location $22 in FINAL_TRANS_TIME and LAST_TRANS_TIME. An interrupt request is made when
these actions are complete.

Table 4 Channel 1 Parameter RAM

15 8 0

$YFFF10 x x x x x x x 0 0 0 0 0 0 1 1 1 CHANNEL_CONTROL

$YFFF12 x x x x x x x x 0 0 1 0 0 0 1 0 LINK & PARAM_ADDR

$YFFF14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MAX_COUNT

$YFFF16 x x x x x x x x x x x x x x x x TRANS_COUNT

$YFFF18 x x x x x x x x x x x x x x x x FINAL_TRANS_TIME

$YFFF1A x x x x x x x x x x x x x x x x LAST_TRANS_TIME
TPU Programming Library MOTOROLA
TPUPN08/D 11

9 Function Algorithm
At each transition detected, the TPU increments TRANS_COUNT and updates LAST_TRANS_TIME
to the value of the TCR or parameter RAM location. If TRANS_COUNT is greater than or equal to
MAX_COUNT, then 1) FINAL_TRANS_TIME is updated to contain the time of the last transition detect-
ed, 2) an interrupt is asserted causing an interrupt to be generated (if interrupt enable bit is set), 3) if
the time function is in link mode, links to a sequential block of channels are generated as specified by
the START_LINK_CHANNEL and LINK_CHANNEL_COUNT parameters, and 4) if continuous mode,
clears TRANS_COUNT.

The NITC function consists of the following states:

9.1 State 0:Init

Initialization is entered as a result of HSR %01. The channel executing the time function is configured.
TRANS_COUNT is initialized to zero. The transition type and time base are selected as per the
CHANNEL_CONTROL parameter. TCR or parameter mode is determined by flag0.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 01xxxx
Match Enable: Don't Care

Configure channel latches via CHANNEL_CONTROL
Clear flag0
TRANS_COUNT = 0
Negate MRL, TDL, and LSR

9.2 State 1:Inita

Initialization is entered as a result of HSR %10. The channel executing the time function is configured.
TRANS_COUNT is initialized to zero. The transition type and time base are selected as per the
CHANNEL_CONTROL parameter. TCR or parameter mode is determined by flag0.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 10xxxx
Match Enable: Don't Care

Configure channel latches via CHANNEL_CONTROL
Set flag0
TRANS_COUNT = 0
Negate MRL, TDL, and LSR

9.3 State 2:Count_Up

• FINAL_TRANS_TIME is updated to contain the time of the last transition, and an interrupt request
is asserted.

• If the time function is in link mode, links are generated to a sequential block of channels as spec-
ified by START_LINK_CHANNEL and LINK_CHANNEL_COUNT.

• If the time function operates in continuous mode, the function re-executes state 1, and
TRANS_COUNT is reinitialized to zero. In single (noncontinuous) mode, the function terminates
by ignoring all further transitions.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001xxx
Match Enable: Don't Care

TRANS_COUNT = TRANS_COUNT + 1
If TRANS_COUNT ≥ MAX_COUNT then {

FINAL_TRANS_TIME = time of last transition.
If host sequence bit 1 = 1 then {
 MOTOROLA TPU Programming Library
12 TPUPN08/D

Link to channels START_LINK_CHANNEL
to [START_LINK_CHANNEL + LINK_CHANNEL_COUNT – 1]

}
If host sequence bit 0 = 0 then {

negate MRL, TDL, LSL
interrupt request
ignore further transitions

}
Else {

configure channel latches via CHANNEL_CONTROL
TRANS_COUNT = 0
Negate MRL, TDL, LSL

}
}
Else{

LAST_TRANS_TIME = time of last transition
Negate TDL

}

The following table shows the NITC transitions listing the service request sources and channel condi-
tions from current state to next state. Figure 4 illustrates the flow of NITC states.

NOTES:
1. Conditions not specified are “don't care.”
2. LSR = Link service request

HSR = Host service request
M/TSR = Either a match or transition (input capture) service request occurred (M/TSR = 1) or neither
occurred (M/TSR = 0).

Table 5 NITC State Transition Table

Current State HSR M/TSR LSR Pin Flag0 Flag1 Next State

Any State 01 — — — — — S0 Init

Any State 10 — — — — — S1 Inita

S0 Init 00 1 — — — — S2 Count_Up

S1 Inita 00 1 — — — — S2 Count_Up

S2 Count_Up 00 1 — — — — S2 Count_Up

Unimplemented
Conditions

00
11

0
—

1
—

—
—

—
—

—
—

—
—

TPU Programming Library MOTOROLA
TPUPN08/D 13

Figure 4 NITC State Flow Diagram

M/TSR = 0
HSR = 00 M/TSR = 1

HSR = 00 M/TSR = 1
HSR = 00

M/TSR = 0
HSR = 00

M/TSR = 0
HSR = 00

M/TSR = 1
HSR = 00

HSR = 10

HSR = 10

HSR = 01

HSR = 01IDLE

00XXXX
11XXXX

S0
INIT

01XXXX

S1
INITA

10XXXX

S2
COUNT_UP

001XXX
 MOTOROLA TPU Programming Library
14 TPUPN08/D

NOTES
TPU Programming Library MOTOROLA
TPUPN08/D 15

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen

ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	3 Function Code Size
	4 Function Parameters
	Figure 1 TPU Channel Parameter RAM CPU Address Map...
	Figure 2 NITC Function Parameter RAM Assignment
	4.1 CHANNEL_CONTROL
	4.2 START_LINK_CHANNEL
	4.3 LINK_CHANNEL_COUNT
	4.4 PARAM_ADDRESS
	4.5 MAX_COUNT
	4.6 TRANS_COUNT
	4.7 FINAL_TRANS_TIME
	4.8 LAST_TRANS_TIME

	5 Host Interface to Function
	Figure 3 TPU Address Map

	6 Function Configuration
	6.1 MAX_COUNT and TRANS_COUNT Alteration

	7 Performance and Use of Function
	7.1 Performance
	Table 1 NITC State Timing

	7.2 Changing Mode

	8 Examples
	8.1 Example A
	8.1.1 Description
	8.1.2 Initialization
	Table 2 Channel 1 Parameter RAM

	8.2 Example B
	8.2.1 Description
	8.2.2 Initialization
	Table 3 Channel 1 Parameter RAM

	8.3 Example C
	8.3.1 Description
	8.3.2 Initialization
	Table 4 Channel 1 Parameter RAM

	9 Function Algorithm
	9.1 State 0:Init
	9.2 State 1:Inita
	9.3 State 2:Count_Up
	Table 5 NITC State Transition Table
	Figure 4 NITC State Flow Diagram

