MOTOROLA Orer e oo
m SENMICOND UCTOR
PROGRAMMING NOTE

Hall Effect Decode TPU Function (HALLD)

by Jeff Wright

1 Functional Overview

The Hall effect decode function is a TPU input function that uses two or three channels to decode sig-
nals from Hall effect sensors into a state number. The function is designed primarily for use with the
COMM TPU function in brushless motor applications, but it can also be used in applications requiring
the decoding of multiple digital inputs.

2 Detailed Description

The HALLD function uses two or three adjacent TPU channels configured as inputs. The choice of two
or three channel mode is made during initialization. The primary purpose of this function is to decode
the digital signals derived from Hall effect sensors in a brushless motor, along with a direction input from
the CPU, into a state number that is passed to the commutation output TPU function (COMM) via a link
request. The state number therefore represents the current angular position of the rotor. In response to
the link, the COMM function outputs the commutation signals corresponding to this state, in order to
turn the motor in the required direction. A PWM function is also required, the output of which is gated
by the COMM signals onto the motor phases. Figure 1 and Figure 2 show a typical application and
associated signals.

FUNCTION
Al< S
=
HALLD B |< s
TPU o l< E
(MC)PWM > @
L
=
o
M (=]
=]
L
St 2
s2 i
COMM | =
S3 > =
&
S4 > 3 ¥
s5 > MOTOR

TPU HALLD APP CONN

Figure 1 Hall Effect Sensor Application

@ MOTOROLANER
© MOTOROLA INC, 1997

60 120 180 240 300 360 420 480 540 600 660 720
HALLD

COMM

S1

S2

S3

S4

S5

TPU HALLD APP TIM

Figure 2 Typical Three Phase Hall Effect Waveforms

The direction input from the CPU is supplied to the function via the parameter RAM of HALLD channel
A (the channel with the lowest channel number). The function effectively performs a 3-to-8 or 4-to-16
decode — the CPU direction input is the third or fourth input, depending on the operating mode. In two
channel mode, the output of the function is a state number in the range 0 to 7, and in three channel
mode the output is a state number in the range 0 to 15. The following tables show state numbers pro-
duced by HALLD for the various input conditions in the two modes. Channel A is the HALLD channel
with the lowest channel number, channel B has the next lowest number, and channel C has the highest
number (three channel mode only).

Table 1 HALLD Decoding In Two Channel Mode

Channel B Channel A DIRECTION Decoded STATE_NO
0 0 0 0
0 1 0 2
1 0 0 4
1 1 0 6
0 0 1 1
0 1 1 3
1 0 1 5
1 1 1 7

-
MOTOROLA TPU Programming Library
2 TPUPN10/D

Table 2 HALLD Decoding In Three Channel Mode

Channel C Channel B Channel A DIRECTION Decoded STATE_NO
0 0

PP PP OIOCIOCIO|IFRIPIFPIFPIOIOC|IO|O

R|lrlo|lo|r|r|lo|lo|r|r|o|o|lr|r|lo|lo
R|lOo|r|o|r|o|lr|o|r|o|r|o|lr|olr|o
I I R = k=1 =1 k=1k=1k=1k=]
[EEY
N

The state number output of the HALLD function can be stored in any location in TPU parameter RAM
via a user programmed pointer. When used with the COMM function, the pointer is programmed to store
the state number in the COMM master channel parameter RAM. Note that the HALLD function performs
a straight decode and does not reject the invalid sensor states found in some motor applications —
these states must be handled by correct setup of the COMM function state table. See 7 Performance
and Use of Function in this note and in Commutation Output TPU Function (COMM), Motorola docu-
ment number TPUPNO9/D, for more details.

Other uses of the HALLD function, such as reduction of main CPU I/O requirements, are possible. For
example, many applications offer the user a series of switches that are used to set up options. Normally
these switches require one 1/O line each, so that eight options use eight input pins on an 1/O port (or
three switches plus some CPU overhead). In many applications, 1/O is at a premium and the whole TPU
may not be fully utilized for timing tasks. In these cases, using the HALLD function can reduce the num-
ber of switches to three, and the lines can be connected to spare TPU pins. The TPU can decode the
required option number, and the CPU can read it at any time. When used in this way, the HALLD func-
tion is programmed to store the state number in a spare parameter RAM location that belongs to one
of the function channels, and therefore links to itself. A pin state parameter for each HALLD channel is
also maintained by the TPU — this parameter can be read directly by the CPU to determine the level
of the channel pin after the last transition on that channel.

3 Function Code Size

Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. HALLD function code size is:

22 pinstructions + 8 entries = 30 long words

4 Function Parameters

This section provides detailed descriptions of function parameters stored in channel parameter RAM.
Figure 3 shows TPU parameter RAM address mapping. Figure 4 shows the parameter RAM assign-
ment used by the function. In the diagrams, Y = M111, where M is the value of the module mapping bit
(MM) in the system integration module configuration register (Y = $7 or $F).

.|
TPU Programming Library MOTOROLA
TPUPN10/D 3

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7
0 $YFFF## | 00 02 04 | 06 | 08 | OA | — —
1 $YFFF## | 10 12 14 16 18 | 1A | — —
2 $YFFF## | 20 22 24 | 26 28 | 2A | — —
3 $YFFF## | 30 32 34 | 36 | 38 | 3A | — —
4 SYFFF## | 40 | 42 | 44 | 46 | 48 | 4A | — —
5 $YFFF## | 50 52 54 | 56 | 58 | A | — —
6 S$YFFF## | 60 62 64 | 66 68 | 6A | — —
7 $YFFF## | 70 72 74 | 76 78 | TA | — —
8 $YFFF## | 80 82 84 | 86 | 88 | 8A | — —
9 SYFFF## | 90 92 94 | 96 98 | 9A | — —
10 $YFFF## | AO | A2 | AA | A6 | AB | A A | — —
11 $YFFF## | BO | B2 | B4 | B6 | B8 | BA | — —
12 S$YFFF## | CO | C2 | C4 | C6 | C8B | CA | — —
13 $YFFF## | DO | D2 | D4 | D6 | D8 | DA | — —
14 $YFFF## | EO | E2 | E4 | E6 | E8 | EA | EC | EE
15 SYFFF## FO F2 F4 F6 F8 FA FC FE

— = Not Implemented (reads as $00)

Figure 3 TPU Channel Parameter RAM CPU Address Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFWO
$YFFFW2
$YFFFW4
$YFFFW6 DIRECTION*

$YFFFW8 STATE_NO_ADDR**
$YFFFWA PINSTATE

$YFFFWC
$YFFFWE

W = Channel number
*Channel A only.
**]1 channel only; channel B in 2 channel mode, channel C in 3 channel mode.

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

- Unused parameters

Figure 4 HALLD Function Parameter RAM Assignment

-
MOTOROLA TPU Programming Library
4 TPUPN10/D

4.1 DIRECTION

This 16-bit parameter is written by the CPU and read by the TPU. In a brushless motor application, DI-
RECTION allows the CPU to specify the desired direction of rotation as it determines the LSB of the
decoded state number. DIRECTION has only two legal values, $0000 and $0001. The translation of
these values into motor direction is dependent upon the programming of the state table in the COMM
function. The parameter DIRECTION exists only on channel A, the lowest numbered HALLD channel.

4.2 PINSTATE

These 16-bit parameters (one in each channel) are maintained by the TPU and contain a value repre-
senting the level of the channel pin when the last edge was serviced. The value $8000 is used to rep-
resent a pin high level, and $0000 to represent a pin low level. When a transition on one of the HALLD
channels is serviced, only the PINSTATE parameter of that channel is updated. The CPU should not
write the PINSTATE parameters while HALLD is running or an erroneous state decode may occur.

4.3 STATE_NO_ADDRE

This parameter, which resides in the upper HALLD channel (B in two channel mode or C in three chan-
nel mode) specifies the parameter RAM address of the location that receives the decoded STATE_NO.
The channel associated with that address also receives a link request each time STATE_NO is written
by HALLD. For example, if STATE_NO_ADDR = $0032 then STATE_NO is written to parameter 1 (sec-
ond parameter) of channel 3 and a link to channel 3 is generated.

4.4 STATE_NO

This is the output of the HALLD function. STATE_NO is not shown in the parameter diagrams because
its location is determined by the contents of STATE_NO_ADDR — in many applications, STATE_NO
will reside in a non-HALLD channel. STATE_NO has a range of $0000 to $000F, and all 16 bits are
written to the destination parameter RAM address specified by STATE_NO_ADDR.

5 Host Interface to Function

This section provides information concerning the TPU host interface to the function. Figure 5is a TPU
address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111, where M is
the value of the module mapping bit (MM) in the system integration module configuration register (Y =
$7 or $F).

.|
TPU Programming Library MOTOROLA
TPUPN10/D 5

Address 15 8 |7 0
$YFFEQO TPU MODULE CONFIGURATION REGISTER (TPUMCR)
$YFFEO2 TEST CONFIGURATION REGISTER (TCR)
$YFFEO4 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)
$YFFEOQ6 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)
$YFFEO8 TPU INTERRUPT CONFIGURATION REGISTER (TICR)
$YFFEOA CHANNEL INTERRUPT ENABLE REGISTER (CIER)
$YFFEOC CHANNEL FUNCTION SELECTION REGISTER 0 (CFSRO)
$YFFEOE CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)
$YFFEL0 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)
$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)
$YFFE14 HOST SEQUENCE REGISTER 0 (HSQRO)
$YFFEL6 HOST SEQUENCE REGISTER 1 (HSQR1)
$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRRO)
$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)
$YFFELC CHANNEL PRIORITY REGISTER 0 (CPRO)
$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)
$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)
$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)
$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

Figure 5 TPU Address Map

CIER — Channel Interrupt Enable Register $YFFEOA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| CH15 |CH14|CH13|CH12|CH11 | CH10| CH9 | CH8 | CH7 | CH6 | CH5 | CH4 | CH3 | CH2 | CH1 | CHO |

CH Interrupt Enable
0 Channel interrupts disabled
1 Channel interrupts enabled
CFSR][0:3] — Channel Function Select Registers $YFFEOC — $YFFE12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| CFS (CH 15, 11,7, 3) | CFS (CH 14, 10, 6, 2) CFS (CH 13,9, 5, 1) | CFS (CH 12, 8, 4, 0) |

CFSJ[4:0] — Function Number (Assigned during microcode assembly)

HSQRJ[0:1] — Host Sequence Registers $YFFE14 — $YFFE16
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| CH15,7 | CH14,6 | CH13,5 | CH12,4 CH11,3 CH10,2 | CHO, 1 | CHS,0 |
CHI[15:0] Action Taken
00 Channel A
01 Channel B
10 Channel B
11 Channel C (3 channel mode only)

|
MOTOROLA TPU Programming Library
6 TPUPN10/D

HSRRJ[0:1] — Host Service Request Registers $YFFEL18 — $YFFE1A

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| CH15,7 | CH14,6 | CH13,5 | CH12,4 | CH11,3 | CH 10,2 | CHO, 1 | CH8,0
CH[15:0] Initialization
00 No Host Service (Reset Condition)
01 Not Used
10 Initialize — 2 channel mode
11 Initialize —3 channel mode
CPRJ[1:0] — Channel Priority Registers $YFFELC — $YFFELE
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| CH 15,7 | CH14,6 | CH13,5 | CH 12,4 CH11,3 CH 10,2 | CHO, 1 | CH8,0 |
CH[15:0] Channel Priority
00 Disabled
01 Low
10 Middle
11 High
CISR — Channel Interrupt Status Register $YFFE20
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| CH15 |CH14|CH13|CH12|CH11 | CH10| CH9 | CH8 | CH7 | CH6 | CH5 | CH4 | CH3 | CH2 | CH1 | CHO |

CH Interrupt Status

X Not used

6 Function Configuration

In many applications HALLD is used in conjunction with another function, such as COMM, that uses the
decoded state number. In these cases, the initialization of the system as a whole must be considered.
For an example see 7.6 Using HALLD with the COMM TPU Function. The following section details
the basic configuration of the HALLD function. The CPU configures the HALLD function as follows.

1. Disables the channels by clearing the two channel priority bits on each of the HALLD channels.

2. Selects the HALLD function on two or three channels by writing the HALLD function number to
the appropriate function select bits.

3. Initializes DIRECTION in channel A (lowest numbered HALLD channel) parameter RAM.

4. |Initializes STATE_NO_ADDR in channel B (two channel mode) or channel C (three channel
mode) parameter RAM.

5. ldentifies channels by writing the appropriate host sequence bits. The following values are
used:
Channel A = %00
Channel B = %01 or %10
Channel C = %11

6. Issues an HSR %10 to both channels for two channel operating mode or issues an HSR %11
to three channels for three channel operating mode.

7. Enables servicing by assigning H, M or L priority to the appropriate channels. All HALLD chan-
nels are normally assigned the same priority, to ease system performance calculations, but this
is not essential to ensure correct operation.

.|
TPU Programming Library MOTOROLA
TPUPN10/D 7

The TPU then executes the initialization state on each channel. If all HSRs are issued at the same time,
and all channels have the same priority, then the channels will be serviced in order, starting with channel
A. As each channel is serviced, the HSR bits of that channel are cleared. Only after the last channel
has been serviced can STATE_NO be considered valid. Thereafter, the TPU responds to transitions on
any HALLD channel, then decodes and updates the state number. The CPU can force an update to
STATE_NO at any time by issuing another HSR %10 (two channel mode) or another HSR %11 (three
channel mode) to ONE of the channels.

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, the performance limit of the HALLD function in a given application is dependent
upon the service time (latency) of other active TPU channels. This is due to the operational nature of
the scheduler. When HALLD is the only function running on the TPU, it can decode state changes at
approximately 230 kHz in two channel mode and 198 kHz in three channel mode with a CPU bus speed
of 16.78 MHz.

When more TPU channels are active, this performance is reduced. However, the scheduler assures
that the worst case latencies in any TPU application can be closely estimated. To perform an analysis
of any proposed TPU application that appears to approach the performance limits of the TPU, it is rec-
ommended that the guidelines given in the TPU reference manual be used along with the figures given
in the HALLD state timing table. Additionally, the documentation for the commutation (COMM) TPU
function includes a worked example on calculating system performance in a brushless motor application
that uses the HALLD, COMM, and MCPWM PWM functions.

Table 3 HALLD State Timing

State Number and Name Max. CPU Clock Cycles RAM accesses by TPU
S1INIT_2CH_HALLD 60 8
S2 INIT_3CH_HALLD 74 10
S3 TRANS_HALLD
2 Channel Mode 56 8
3 Channel Mode 70 10

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 CPU clocks)

7.2 Noise Immunity

Features in the hardware of the TPU and the microcode of the HALLD function protect the decoded
state number from a permanent incorrect value caused by noise on one of the input channels. However,
a transient incorrect STATE_NO is possible.

All TPU input channels incorporate a digital filter which blocks pulses of less than two CPU clocks du-
ration and passes pulses of greater than four CPU clock duration. A pulse with duration of three clocks
may or may not pass through the filter. If a noise pulse is greater than four CPU clocks in duration, it
causes a service request on the relevant HALLD channel. There are three possible cases to consider.

7.3 Case A

A noise pulse is less than two CPU clocks in duration (See Figure 6). The filter blocks the pulse, and
the function takes no action.

-
MOTOROLA TPU Programming Library
8 TPUPN10/D

HALLD CHANNEL X U

HALLD CHANNEL Y

STATE_NO NO CHANGE

TPU HALLD NOISE A TIM

Figure 6 Noise Immunity Case A:
Positive Or Negative Pulses Two CPU Clocks Or Less In Duration.

7.4 Case B

A noise pulse is long enough to pass through the digital filter, but by the time the channel is serviced
the pin has returned to its original state (See Figure 7). The function decodes the same value for
STATE_NO as it did on the last valid transition, but a link request to the destination channel is still gen-

erated.
HALLD CHANNEL X
HALLD CHANNEL Y
SERVICE REQUEST GENERATED: 1\ T
CHANNEL SERVICE: T T
STATE_NO NO CHANGE
TPU HALLD NOISE B TIM
Figure 7 Noise Immunity Case B:
Positive Or Negative Pulses Four CPU Clocks Or Greater In Duration
But Less Than TPU Service Latency At The Time Of The Pulse.
7.5 Case C

A noise pulse is long enough to be present when the channel is serviced (See Figure 8). An incorrect
STATE_NO is decoded and written to parameter RAM, and the destination channel receives a link re-
guest. However, microcode operation guarantees that the channel will also recognize the other edge of
the noise pulse, and the second edge causes the channel to be serviced again. This time, the correct
STATE_NO is decoded, and another link request to the destination channel is generated. The incorrect
STATE_NO is present only for the duration of the noise pulse plus service latency for the second edge.

TPU Programming Library MOTOROLA
TPUPN10/D 9

HALLD CHANNEL X

HALLD CHANNEL Y
SERVICE REQUEST GENERATED: T T T T
CHANNEL SERVICE: T T T T
STATE_NO X % X 7 X

TPU HALLD NOISE C TIM

Figure 8 Noise Immunity Case C:
Positive Or Negative Pulses Four CPU Clocks Or Greater In Duration
And Greater Than TPU Service Latency At The Time Of The Pulse

7.6 Using HALLD with the COMM TPU Function

HALLD has been primarily designed for use with the COMM function in a brushless motor application.
Observing the following points will greatly improve the performance of the combination.

During initialization of the HALLD function, a link request to the COMM function is generated when each
channel is initialized. This means that in a three channel case, COMM would receive three links. In ad-
dition, STATE_NO is only valid after all the channels have been initialized, so the first two links are as-
sociated with an invalid STATE_NO. To avoid COMM responding to these links, initialize HALLD first,
then initialize COMM after all HALLD HSRs have been cleared. In this way, COMM uses a valid
STATE_NO from initialization onward.

In some motor applications, certain sensor states are invalid. For example, in a three phase brushless
motor, the three Hall effect sensors produce only six valid states, but the other two states can occur
momentarily due to noise. Since HALLD performs a straight binary decode of the sensor inputs and
does not reject invalid states, these erroneous states can be passed on to the COMM function. The pro-
grammable state table in the COMM function allows the designer to deal with this eventuality. The en-
tries in the state table that correspond to invalid states should be configured to take the appropriate
action (usually to turn off the phase drivers). Refer toCommutation Output TPU Function (COMM)
(TPUPNO9/D) for more detail.

7.7 Using HALLD for General-Purpose Input Pins

As previously mentioned, HALLD can be used as a type of input port. In this configuration,
STATE_NO_ADDR is programmed to store STATE_NO into a spare parameter RAM location of one of
the HALLD channels. This means that a HALLD channel receives the link request, but link requests are
ignored by the function. There are two ways of using HALLD for general-purpose inputs. The first, where
the inputs are used in an encoded form, has already been described. HALLD can be used more simply,
as two or three normal digital inputs, ignoring the value of STATE_NO. After initialization, the CPU can
read the PINSTATE parameter of the function channels at any time, to get the level of the channel pin
after the last edge was serviced.

8 Function Examples

The following examples show configuration of the Hall effect decode function for both two and three
channel modes. Each example includes a description of the example and diagrams of the initial param-
eter RAM content and the initial control bit settings.

-
MOTOROLA TPU Programming Library
10 TPUPN10/D

8.1 Example A

8.1.1 Description

Configure channels 1 and 2 to run HALLD in two channel mode. The STATE_NO output should be writ-
ten to parameter 2 of channel 10. Initial DIRECTION should be $0000.

8.1.2 Initialization

Disable channels 1 and 2 by clearing priority bits. Select HALLD function by programming the function
select register of each channel. Configure parameter RAM of each channel as shown below. Write HSQ
= %00 to channel 1 (A) and HSQ = %01 to channel 2 (B). Issue HSR = %10 to both channels to initialize
and start the decode. Write the priority bits of both channels to a non-zero value to enable service.

Table 4 Channel 1 (A) Parameter RAM
15 8

$YFFF10
$YFFF12
$YFFF14
$YFFF16
$YFFF18
$YFFF1A

DIRECTION

X[X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X|o| X| X| X
X| X|o| X| X| X
X| X|o| X| X| X
X| X|o| X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X[X| o X| X| X
X| X|o| X| X| X|o©

PINSTATE

DIRECTION = $0000

Table 5 Channel 2 (B) Parameter RAM

$YFFF20
$YFFF22
$YFFF24
$YFFF26
$YFFF28
$YFFF2A

STATE_NO_ADDR
PINSTATE

X X X[X| X[X
X X X | X| X[X
X[X[X[x| x|
X X X | X| X[X
X X X[X| X[X
X X[X[X| X[X
X X X[X| X[X
X X X | X| X[X
X | X[X| X[X
X| o] X| X| X| X
X | X[X| X[X
X| o| X| X| X| X
X|o| x| x| x|x
X[k X[x| x|x
Xl o] X| X| X| X
X| o X| X| X| X| o

STATE_NO_ADDR = $A4

The function now runs, and decodes a new STATE_NO whenever a valid transition occurs on channel
1 or 2. After initialization is complete, the PINSTATE parameters represent the level of the correspond-
ing channel after the last transition on that channel. The CPU can change DIRECTION at any time, but
for it to have an immediate effect on STATE_NO, an HSR %10 must be issued to one of the channels.
Each time a new STATE_NO is written, a link is generated to channel 10.

8.2 Example B

8.2.1 Description

Configure channels 3, 4 and 5 to run HALLD in three channel mode. The STATE_NO output should be
written to parameter 1 of a master COMM channel which has been chosen as channel 13. Initial DI-
RECTION should be $0001.

..
TPU Programming Library MOTOROLA
TPUPN10/D 11

8.2.2 Initialization

Disable channels 3, 4 and 5 by clearing priority bits. Select HALLD function by programming the func-
tion select register of each channel. Configure parameter RAM of each channel as shown below. Write
HSQ = %00 to channel 3 (A), HSQ = %01 to channel 4 (B) and HSQ = %11 to channel 5 (C). Issue HSR
= %11 to all HALLD channels to initialize and start the decode. Write the priority bits of the three chan-
nels to a non-zero value to enable service.

Table 6 Channel 3 (A) Parameter RAM

$YFFF30
$YFFF32
$YFFF34
$YFFF36
$YFFF38
$YFFF3A

DIRECTION

X| X| o X| X| X
X| X| o] X| X| X
X | X| o X| X| X
X | X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X | X| o X| X| X
X | X| o X| X| X
X| X| o X| X| X
X| X| o X| X| X
X| X| | X| X| X|©

PINSTATE

DIRECTION = $0001

Table 7 Channel 4 (B) Parameter RAM

$YFFF40 [X
$YFFF42 | X
$YFFF44 | X
$YFFF46 | X
X
X

$YFFF48
$YFFF4A

X | X| X[X| X[X
X| X | X[X| X[X
X | X| X| X| X[X
X | X| X| X| X[X
X | X| X| X| X| X
X | X| X| X| X| X
X | X| X| X| X| X
X | X| X| X| X[X
X| X| X[X| X[X
X| X | X[X| X[X
X| X | X| X| X[X
X | X | X[X| X[X
X | X| X| X| X| X
X| X| X| X| X| X
X| X| X| X| X| X| o

PINSTATE

Table 8 Channel 5 (C) Parameter RAM

$YFFF50
$YFFF52
$YFFF54
$YFFF56
$YFFF58
$YFFF5A

STATE_NO_ADDR
PINSTATE

X| X[X| X[X]| X
X| X[X[X[X]| X
X| X[X| X[X]| X
X| X[X| X[X]| X
X| X[X| X[X]| X
X| X[X| X[X]| X
X| X[X| X[X]| X
X| X[X| X[X]| X
X| = X| X[X]| X
X| = X| X[X]| X
X| o] X| X| X| X
X| = X| X[X]| X
X| o] X| X| X| X
X| o] X| X| X| X
X| k| X| X| X[X
X| o X| X| X]| X| o

STATE_NO_ADDR = $D2

The function now runs, and decodes a new STATE_NO whenever a valid transition occurs on one of
the HALLD channels. After initialization is complete, the PINSTATE parameters represent the level of
the corresponding channel after the last transition on that channel. The CPU can change DIRECTION
at any time, but for it to have an immediate effect on STATE_NO, an HSR %11 must be issued to one
of the channels. Each time a new STATE_NO is written, a link is generated to the master COMM chan-
nel.

...
MOTOROLA TPU Programming Library
12 TPUPN10/D

9 Function Algorithm

The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different from that shown, in order to optimize speed and
code size. TPU microcode source listings for all functions in the TPU function library can be downloaded
from the Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation
Mode (TPUPNOO/D) for detailed instructions regarding downloading and compiling microcode.

The HALLD function consists of three states, which operate as described below. For clarity, reference
is made to internal channel flag0. This is an internal TPU control bit that is not available to the user.

9.1 STATEL: INIT_2CH_HALLD

This state is entered as a result of a host service request type %10. It initializes the channel into two
channel mode and performs a STATE_NO decode.

The channel is configured as an input and to detect either transition type
Transition service requests are enabled
Internal channel flagO is cleared to indicate the two channel mode of operation
The current pin state is read and the latches cleared to enable capture of any future edges
If the pin is low
$0000 is stored in PINSTATE
Else
$8000 is stored in PINSTATE
STATE_NO is formed as follows
STATE_NO = DIRECTION + {2 Ochannel A PINSTATE[MSB]} + {4 Ochannel B PINSTATE[MSB]}
STATE_NO is stored in the PRAM location addressed by STATE_NO_ADDR
A link request is generated to the destination channel of the state number
The state ends

9.2 STATEZ2: INIT_3CH_HALLD

This state is entered as a result of a host service request type %11. It initializes the channel into three
channel mode and performs a STATE_NO decode.

The channel is configured as an input and to detect either transition type
Transition service requests are enabled
Internal channel flag0 is set to indicate the three channel mode of operation
The current pin state is read and the latches cleared to enable capture of any future edges
If the pin is low
$0000 is stored in PINSTATE
Else
$8000 is stored in PINSTATE
STATE_NO is formed as follows
STATE_NO = DIRECTION + {2 Ochannel A PINSTATE[MSB]} + {4 Ochannel B PINSTATE[MSB]}
+ {8 Ochannel C PINSTATE[MSB]}
STATE_NO is stored in the PRAM location addressed by STATE_NO_ADDR
A link request is generated to the destination channel of the state number
The state ends

9.3 STATES: TRANS_HALLD

This state is entered as a result of a transition on one of the HALLD channels. It performs a STATE_NO
decode.

The current pin state is read and the latches cleared to enable capture of any future edges
If the pin is low
$0000 is stored in PINSTATE

.|
TPU Programming Library MOTOROLA
TPUPN10/D 13

Else
$8000 is stored in PINSTATE
If internal channel flag0 = 0,
STATE_NO is formed as follows
STATE_NO = DIRECTION + {2 Ochannel A PINSTATE[MSB]}
+ {4 Ochannel B PINSTATE[MSB]}
Else
STATE_NO is formed as follows:
STATE_NO = DIRECTION + {2 Ochannel A PINSTATE[MSB]}

+ {4 Ochannel B PINSTATE[MSB]} + {8 Ochannel C PINSTATE[MSB]
STATE_NO is stored in the PRAM location addressed by STATE_NO_ADDR
A link request is generated to the destination channel of the state number
The state ends

MOTOROLA TPU Programming Library
14 TPUPN10/D

NOTES

.|
TPU Programming Library MOTOROLA
TPUPN10/D 15

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability
of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and
do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part. MOT OROL A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affir-
mative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;

P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140

Mfax™: RMFAXO0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Mfax is a trademark of Motorola, Inc.

I @ MOTOROLA

	1 Functional Overview
	2 Detailed Description
	Figure 1 Hall Effect Sensor Application
	Figure 2 Typical Three Phase Hall Effect Waveforms...
	Table 1 HALLD Decoding In Two Channel Mode
	Table 2 HALLD Decoding In Three Channel Mode

	3 Function Code Size
	4 Function Parameters
	Figure 3 TPU Channel Parameter RAM CPU Address Map...
	Figure 4 HALLD Function Parameter RAM Assignment
	4.1 DIRECTION
	4.2 PINSTATE
	4.3 STATE_NO_ADDRE
	4.4 STATE_NO

	5 Host Interface to Function
	Figure 5 TPU Address Map

	6 Function Configuration
	7 Performance and Use of Function
	7.1 Performance
	Table 3 HALLD State Timing

	7.2 Noise Immunity
	7.3 Case A
	Figure 6 Noise Immunity Case A: Figure 6 Positive ...

	7.4 Case B
	Figure 7 Noise Immunity Case B: Figure 7 Positive ...

	7.5 Case C
	Figure 8 Noise Immunity Case C: Figure 8 Positive ...

	7.6 Using HALLD with the COMM TPU Function
	7.7 Using HALLD for General-Purpose Input Pins

	8 Function Examples
	8.1 Example A
	8.1.1 Description
	8.1.2 Initialization
	Table 4 Channel 1 (A) Parameter RAM
	Table 5 Channel 2 (B) Parameter RAM

	8.2 Example B
	8.2.1 Description
	8.2.2 Initialization
	Table 6 Channel 3 (A) Parameter RAM
	Table 7 Channel 4 (B) Parameter RAM
	Table 8 Channel 5 (C) Parameter RAM

	9 Function Algorithm
	9.1 STATE1: INIT_2CH_HALLD
	9.2 STATE2: INIT_3CH_HALLD
	9.3 STATE3: TRANS_HALLD

