

Order this document
 by TPUPN17/D

SEMICONDUCTOR

MOTOROLA

PROGRAMMING NOTE

Pulse Width Modulation TPU Function (PWM)
By Kevin Anderson

1 Functional Overview
This output function generates a pulse-width-modulated waveform in which the period and/or the high
time can be changed at any time by the CPU. PWM uses two modes of operation: level and normal. In
level mode, a 0% or a 100% duty-cycle waveform can be generated. In normal mode, waveforms with
duty-cycles between 0% and 100% can be generated.

In general, any changed period or high time is used in subsequent waveform synthesis, after a low-to-
high transition. An immediate update is possible in either mode. After an immediate update, the new
period and/or high time is reflected in the output waveform during the immediate host-service state, in-
stead of waiting for a subsequent low-to-high transition.

2 Detailed Description
To start a PWM waveform, the CPU configures or updates parameters PWMPER (period desired) and
PWMHI (high time desired), then issues an HSR %10 for initialization. After CPU initialization (refer to
Figure 1), the TPU generates a low-to-high transition and calculates the pulse timing (next fall time,
next rise time). The time of the most recent rising edge is moved from parameter PWMRIS to parameter
OLDRIS, where it can be read at any time by the CPU. Calculation of the fall time is made by adding
OLDRIS to PWMHI. The next rise time is calculated by adding the period desired from PWMPER to the
rise time, now in OLDRIS, and then placing the projected new rise time into PWMRIS.

Figure 1 50% Duty Cycle PWM Waveform

In level mode, where the high time in PWMHI is zero (indicating 0% duty cycle) or is equal to or greater
than the period (indicating 100% duty cycle), a match without a pin transition is set up for the time (OLD-
RIS + PWMPER). In normal mode, a match and fall time is set up for the time (OLDRIS + PWMHI), and
an interrupt request signal is asserted on each match event if the interrupt enable bit is set. To change
the PWM parameters, the CPU coherently writes new 16-bit values to either PWMPER or PWMH. If
both PWMPER and PWMH are to be changed, a coherent 32-bit write is required.

TPU PWM 50% TIM

PWMPER AND
PWMHI CHANGED

PWMPER

PWMHI

NEW PWMPER AND
NEW PWMHI USED

LOW TO HIGH TRANSITION = OLDRIS + PWMPER
HIGH TO LOW TRANSITION = OLDRIS + PWMHI

INITIALIZATION:
 LOW TO HIGH TRANSITION = SELECTED TCR + PWMPER
 HIGH TO LOW TRANSITION = SELECTED TCR + PWMHI
© MOTOROLA INC, 1997

In both normal and level modes the new parameters are referenced to the next low-to-high transition.
An immediate update of either or both parameters may be selected by the CPU by issuing an HSR %01.
The immediate result to the waveform depends upon the point at which the immediate update is taken
(See 7 Performance and Use of Function).

A optional CPU interrupt request can be made at the beginning of each pulse in any mode or after an
immediate update. This allows the CPU to schedule parameter changes in relationship to a known point
in the waveform.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. PWM function code size is:

32 µ instructions + 8 entries = 40 long words

4 Function Parameters
This section provides detailed descriptions of function parameters stored in channel parameter RAM.
Figure 2 shows TPU parameter RAM address mapping. Figure 3 shows the parameter RAM assign-
ment used by the function. In the diagrams, Y = M111, where M is the value of the module mapping bit
(MM) in the system integration module configuration register (Y = $7 or $F).

— = Not Implemented (reads as $00)

Figure 2 TPU Channel Parameter RAM CPU Address Map

Figure 3 shows all of the host interface areas for the PWM function, as well as the parameters, address-
es, reference times, and reference sources. This segment lists and defines the parameters for all modes
of the PWM time function.

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
 MOTOROLA TPU Programming Library
2 TPUPN17/D

Y= Channel number

Figure 3 Function Parameter RAM Assignment

4.1 CHANNEL_CONTROL

CHANNEL_CONTROL contains the channel latch controls and configures the PSC, PAC, and TBS
fields. The PSC field forces the output level of the pin directly without affecting the PAC latches, or forc-
es the output level to the state specified by the PAC latches. The PAC field specifies the pin logic re-
sponse as either a timer channel input or output. The TBS field configures a channel pin as input or
output and configures the time base for output match/input capture events.

NOTE
This channel must be configured as an output because the PWM function is inde-
terminate when programmed as an input.

The PSC field determines the setting of the pin after initialization. In normal mode, PSC is set to force
the pin high. In level mode, where a 0% duty cycle is desired, PSC should be set to force the pin low at
initialization. The PAC field specifies the pin logic response as a timer channel output; however, the
PWM function does not use the PAC field, but uses direct control by the microcode.
CHANNEL_CONTROL must be written by the CPU before initialization.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 CHANNEL_CONTROL

$YFFFW2 OLDRIS

$YFFFW4 PWMHI(1,3)

$YFFFW6 PWMPER(2,3)

$YFFFW8 PWMRIS

$YFFFWA

Parameter Write Access:

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOT USED TBS PAC PSC

Table 1 CHANNEL_CONTROL Options

TBS PAC PSC Action

8 7 6 5 4 3 2 1 0 Input Output

0 0
0 1
1 0
1 1

—
—
—
—

Force Pin as Specified by PAC
Latches

Force Pin High
Force Pin Low

Do Not Force Any State

1 x x Do Not Change PAC Do Not Change PAC

0 1 x x
0 1 0 0
0 1 1 1
1 1 x x

—
—
—

Do Not Change TBS

Output Channel
Capture TCR1, Compare TCR1
Capture TCR2, Compare TCR2

Do Not Change TBS
TPU Programming Library MOTOROLA
TPUPN17/D 3

4.2 OLDRIS

OLDRIS is the time of the previous low-to-high transition. When executing state Init, the TPU sets OLD-
RIS to the value of either TCR1 or TCR2 as specified in CHANNEL_CONTROL. When PWM is execut-
ing in normal mode (PWMPER > PWMHI), the TPU updates OLDRIS at the beginning of each pulse to
the time of the last low-to-high transition.

4.3 PWMRIS

PWMRIS is the current calculated rise time calculated at the beginning of the pulse (on the low-to-high
transition) by adding OLDRIS to PWMPER. The TPU updates this parameter.

4.4 PWMHI

PWMHI, which is updated by the CPU, is the current pulse high time that may be updated at any time.
Estimate for best-case minimum value for PWMHI is greater than 32 system clocks, assuming a single
channel operating. When more than one channel is operating, the minimum value for PWMHI depends
on TPU configuration (the variables are described in 7 Performance and Use of Function). The max-
imum value is $8000. The user should calculate case timing to ensure proper execution of this function.

4.5 PWMPER

PWMPER, which is updated by the CPU, is the current PWM period and is used by the TPU to calculate
the next low-to-high transition time. Estimate for best-case minimum value for PWMPER is greater than
32 system clocks, assuming that a single channel is operating. When more than one channel is oper-
ating, the minimum value for PWMPER depends on TPU configuration (the variables are described in
7 Performance and Use of Function). The maximum usable value is that which satisfies the condition:
(PWMPER – PWMHI) is less than or equal to $8000. PWMHI and PWMPER must be accessed coher-
ently. The user should calculate the case timing to ensure proper execution of this function. Normal,
100%, and 0% duty cycles are defined as follows.

0% → PWMHI = 0
100% → PWMPER ≤ PWMHI, AND PWMHI ≠ 0
Else normal → PWMPER > PWMHI, AND PWMHI ≠ 0
 MOTOROLA TPU Programming Library
4 TPUPN17/D

5 Host Interface to Function
This section provides information concerning the TPU host interface to the function. Figure 4 is a TPU
address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111, where M is
the value of the module mapping bit (MM) in the system integration module configuration register (Y =
$7 or $F).

Figure 4 TPU Address Map

CFS[4:0] — PWM Function Number (Assigned during microcode assembly)

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)
TPU Programming Library MOTOROLA
TPUPN17/D 5

6 Function Configuration
The CPU initializes this time function by the following:

1. Writing CHANNEL_CONTROL, PWMHI, and PWMPER to RAM;
2. Issuing an HSR %10 for initialization; and
3. Enabling channel servicing by assigning a high, middle, or low priority.

The TPU then executes initialization and asserts an interrupt if the interrupt enable bit is set. In the be-
ginning of each period, new pulse parameters are calculated and interrupts are attempted. The CPU
should monitor the HSR register (or the channel interrupt) until the TPU clears the service request to 00
before changing any parameters or issuing a new service request to this channel.

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Action Taken

xx Not used in this function.

HSRR[0:1] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Initialization

00 No Host Service (Reset Condition)

01 Immediate Update

10 Initialization

11 Undefined

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Channel Priority

00 Disabled

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted
 MOTOROLA TPU Programming Library
6 TPUPN17/D

In normal mode (PWMPER > PWMHI), the TPU stores the time of the last low-to-high transition in OLD-
RIS, which can be read by the CPU. The TPU calculates the pulse timing (next fall time, next rise time)
in the beginning of the pulse, after generating a low-to-high transition. An interrupt is then asserted if
the interrupt enable bit is set. To change the PWM parameters, the CPU writes PWMPER and/or PW-
MHI to the parameter RAM. The two parameters must be written as 16-bit values.

Generally, the new parameters are referenced on the next low-to-high transition. For an immediate up-
date of the waveform, the CPU issues HSR %01, which can be issued whenever any previous service
request has been serviced, indicated by the HSR bits of the channel at 00. When immediate update is
executed, the TPU asserts an interrupt if the interrupt enable bit is set. After issuing either HSR %01 or
HSR %10, the CPU should wait for the HSR bits to be cleared by the TPU before changing any param-
eters or issuing another service request to the channel.

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, PWM function performance in an application is to some extent dependent upon
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. When a single PWM channel is in use and no other TPU channels are active, the minimum
time between any two pulse edges is greater than 32 CPU clocks. When more TPU channels are active,
performance decreases. However, worst-case latency in any TPU application can be closely estimated.
To analyze the performance of an application that appears to approach the limits of the TPU, use the
guidelines given in the TPU reference manual and the information in the PWM state timing table below.

7.2 Changing Duty Cycle

The CPU can change the duty cycle at any time once the TPU has completed the initialization state
(indicated by HSR %00 or a CPU interrupt request). Changes are made by writing a new high time value
to PWMHI in the channel's parameter RAM.

The minimum duty cycle (and the maximum non-100% duty cycle) is dependent on the number of active
TPU channels and the maximum channel latency as discussed above. A 0% duty cycle is generated by
setting PWMHI = 0. A 100% duty cycle is scheduled by setting PWMPER less than or equal to PWMHI
when PWMHI is not equal to zero.

Table 2 Host Service Request Bit Encoding

CH[1:0] Action Taken

00 No Host Service Request

01 Immediate Update

10 Initialization

11 Undefined

Table 3 Pulse Width Modulation Function — State Timing

State Number & Name Max. CPU Clock Cycles RAM Accesses by TPU

S1 Init 32 4

S2 Normal_L_H 24 4

S3 Normal_H_L 2 1

S4 Normal_0 24 4

S5 Immed_H 28 3

S6 Immed_L 28 3
TPU Programming Library MOTOROLA
TPUPN17/D 7

Duty cycle changes take effect at the completion of the current period unless an immediate update
(HSR %01) is also requested. Immediate updates may be requested for any duty cycle including 0%
and 100%. A new PWMHI value with an immediate update HSR causes the TPU to change the currently
scheduled high-to-low time. This can cause the undesired side effect of an improper duty cycle for one
period. Figure 5 is an example of such a case.

In Figure 5 the newly requested duty cycle is shorter than the current one. When the immediate HSR
is serviced, the TPU schedules a new high-to-low transition time. However, this new value is less than
the current TCR value, so that the TPU greater-than-or-equal-to comparator fires, generating an imme-
diate high-to-low transition. At the end of the period, the new high time is again used to calculate the
next falling edge, with reference to the latest rise time — from this point, the duty cycle is correct.

Figure 5 Immediate Duty Cycle Update With A One Period Anomaly

If the update in the above example happens at a point in the period that is before the newly specified
fall time, then the new duty cycle occurs as planned in the current cycle, with no intermediate glitches.
This is shown in Figure 6. If the update occurs at a time after the falling edge of the current pulse the
new duty cycle takes effect in the next period. This is shown in Figure 7.

Figure 6 Immediate Duty Cycle Update Without Anomaly

Figure 7 Immediate Duty Cycle Update Delayed One Period

Many applications are intolerant of the duty cycle glitch described above. For that reason the normal
update mode is preferred for most applications.

TPU PWM C UP W/ TIM

PWMHI CHANGED WITH
IMMEDIATE UPDATE

PWMPER

OLD PWMHI NEW PWMHINEITHER

TPU PWM C UP W/O TIM

PWMHI CHANGED WITH
IMMEDIATE UPDATE

PWMPER

OLD PWMHI NEW PWMHI

TPU PWM DEL CYC TIM

PWMHI CHANGED WITH
IMMEDIATE UPDATE

PWMPER

OLD PWMHI NEW PWMHI
 MOTOROLA TPU Programming Library
8 TPUPN17/D

7.3 Changing Period

Once the TPU has completed the initialization state the CPU may at any time specify a new period by
writing to the PWMPER parameter. Unless the CPU also generates an immediate update service re-
quest the new period takes effect at the beginning of the next period, as shown in Figure 1. That is, a
new rise time is calculated at the next low-to-high transition. Thus, the current period is allowed to com-
plete before the new one begins.

If an immediate update is requested in conjunction with a new period, the TPU immediately calculates
a new rise time that is applied during the current period. If the new period is longer than the old period
the new period takes effect immediately. If the new period is shorter than the old, the current period may
actually be shorter than the old period but longer than the new period. An example of this is shown in
Figure 8.

Figure 8 Immediate Period Update With Single Period Anomaly

In this example a new PWMPER and PWMHI time have been requested at the time indicated. Since
the current pulse high time has expired, a shorter high time has no impact on this cycle. However, the
newly calculated low-to-high time (OLDRIS + PWMPER) is now less than the current time and the TPU
greater-than-or-equal-to comparator immediately generates the rising edge. At this point new high-to-
low and low-to-high times are calculated and the new correct period and high time are in effect.

If the update had occurred earlier in the period the result would have been different. This is illustrated
in Figure 9. Here, the update occurs such that both the newly scheduled rising and falling edges are in
the future. Thus both will occur in the proper places and the one cycle anomaly is eliminated.

Figure 9 Immediate Period Update With No Anomaly

Remember that updates made without using the immediate update feature always take effect on the
next rising edge and no anomalous behavior occurs. If an application requires both the period and high
time to be updated coherently, it is best to enable the CPU interrupt before the update. During the in-
terrupt service the new period and high time can be updated. The interrupt occurs at the beginning of
the period, so as long as the interrupt service finishes before the end of the period, the new period and
high time take effect during the same cycle. Without this time reference, the parameter updates could
straddle the end of a period and one would take effect a cycle ahead of the other. This could cause the
single cycle anomalies discussed earlier.

TPU PWM P UP W/ TIM

PWMPER AND PWMHI CHANGED
WITH IMMEDIATE UPDATE

OLD PWMPER

OLD PWMHI NEW PWMHI

NEITHER NEW PWMPER

TPU PWM P UP W/O TIM

PWMPER AND PWMHI CHANGED
WITH IMMEDIATE UPDATE

OLD PWMPER

OLD PWMHI NEW PWMHI

NEW PWMPER
TPU Programming Library MOTOROLA
TPUPN17/D 9

7.4 Counting Periods

The TPU generates a CPU interrupt service request during the channel service at the beginning of each
period. The CPU can respond to these requests to keep track of how many periods have elapsed. In
this way, new pulse widths can be scheduled at a known position in time.

7.5 Stopping the Function

Once PWM operation is initialized on a channel, it runs without CPU intervention until a reset occurs. If
it is necessary to turn off a PWM channel, the CPU can write zeros to the channel function select bits
in registers CFSR[0:3]. This disables the function on the channel. Another way to disable output is to
select 0% or 100% duty cycle in the channel parameter RAM. In this case the PWM continues to run
and receive channel service but no transitions are seen on the pin.

8 PWM Examples
The following examples give an indication of the capabilities of the PWM function. Each example in-
cludes a description of the example, a diagram of the initial parameter RAM content, initial control bit
settings, and a diagram of the output waveform.

8.1 Example A

8.1.1 Description

Generate a 50% duty cycle waveform with a period equal to $800 TCR1 clocks on channel 1.

8.1.2 Initialization

Disable channel 1 by clearing the priority bits (CPR1[3:2]). Select PWM function by programming the
function select register for channel 1 (CFSR3[7:4]). Configure the parameter RAM for channel 1 as
shown below. Write HSRR1[3:2] = %10 to initialize the channel on the first channel service. Write the
priority bits (CPR1[3:2] to high, medium, or low priority to begin channel service.

8.1.3 Output Waveforms

Table 4 PWM Channel Parameter RAM

15 8 0

$YFFF10 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 CH_CNTL

$YFFF12 x x x x x x x x x x x x x x x x

$YFFF14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 PWMHI

$YFFF16 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 PWMPER

$YFFF18 x x x x x x x x x x x x x x x x

$YFFF1A x x x x x x x x x x x x x x x x

TPU PWM EXA TIM

INITIALIZATION
 MOTOROLA TPU Programming Library
10 TPUPN17/D

8.2 Example B

8.2.1 Description

The waveform in Example A is running on Channel 1. Change the duty cycle to 25% using normal up-
date mode.

8.2.2 Initialization

Change the value in PWMHI as shown in below. The new duty cycle becomes effective in the period
following the update.

8.2.3 Output Waveforms

8.3 Example C

8.3.1 Description

Change the waveform in Example B to 100% duty cycle. Use the immediate update mode and a CPU
interrupt so that the update takes effect on the cycle that generates the interrupt (assumes that the in-
terrupt latency and service time is less than the current duty cycle).

8.3.2 Initialization

Enable the channel to generate a CPU interrupt (CIER[1] = 1). During interrupt service set PWMHI =
PWMPER as shown below and signal an immediate update (HSRR1[3:2] = 01).

Table 5 PWM Channel Parameter RAM

15 8 0

$YFFF10 UNCHANGED CH_CNTL

$YFFF12 UNCHANGED OLDRIS

$YFFF14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 PWMHI

$YFFF16 UNCHANGED PWMPER

$YFFF18 UNCHANGED PWMRIS

$YFFF1A UNCHANGED

Table 6 PWM Channel Parameter RAM

15 8 0

$YFFF10 UNCHANGED

$YFFF12 UNCHANGED

$YFFF14 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 PWMHI

$YFFF16 UNCHANGED

$YFFF18 UNCHANGED

$YFFF1A UNCHANGED

TPU PWM EXB TIM

PWMHI = $200
TPU Programming Library MOTOROLA
TPUPN17/D 11

8.3.3 Output Waveforms

9 Function Algorithm
The PWM time function consists of the following six states.

9.1 STATE 1 — Init

This state is entered as a result of HSR %10, which initializes the pulse parameters and channel latches
and generates an interrupt when Init is completed. Start time of the pulse is set to the current TCR time.
The 100% or 0% duty-cycle pulse relationships are checked and processed; flag0 is set to indicate this
condition. The PSC field determines the setting of the pin after initialization. In normal mode, PSC is set
to force the pin high; in level mode where a 0% duty cycle is desired, PSC should be set to force the pin
low at initialization.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 10xxxx
Match Enable: Disable

Configure channel latches via CHANNEL_CONTROL
Store current TCR (indicated in CHANNEL_CONTROL) in OLDRIS
Clear flag0
Set PAC to high to low
Calculate and store next rise time

PWMRIS = OLDRIS + PWMPER
If PWMHI = 0 (0% duty cycle) then {

Assert flag0 /* level mode */
Set pin low
Set PAC to don't change on match
Generate a match on PWMRIS

}
If PWMHI ≥ PWMPER (100% duty cycle) then {

Assert flag0
Set pin high
Set PAC to don't change on match
Generate a match on PWMRIS

If (PWMHI > 0) and (PWMHI < PWMPER) then { /* normal mode */
Generate a match (fall time) = OLDRIS + PWMHI

}
Assert interrupt request

9.2 STATE 2 — Normal_L_H

In this state the TPU sets the fall time of the pulse and calculates the new rise time. This state is entered
as a result of one of the following events:

1. When in normal mode (0% < duty cycle < 100%, indicated by flag0 equals zero) after a match
occurs and a low-to-high transition results;

2. When in level mode (100% duty cycle, indicated by flag0 equals one) after a match occurs and
the pin is high. The 0% or 100% duty-cycle condition is checked and processed. The parame-
ters are rechecked at the rate of PWMPER to determine if they have been updated from the
case of 100% duty cycle.

CIER[1] = 1

TPU PWM EXC TIM

IRQ

PWMHI = PWMPER
 MOTOROLA TPU Programming Library
12 TPUPN17/D

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001010
HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001011

Match Enable: Don't Care

Store transition time into OLDRIS
Calculate and store next rise time

PWMRIS = OLDRIS + PWMPER
Assert flag0
Set PAC to high to low
If PWMHI = 0 (0% duty cycle) then {

Assert flag0 /* level mode */
Set pin low
Set PAC to don't change on match
Generate a match on PWMRIS

}
If PWMHI ≥ PWMPER (100% duty cycle) then {

Assert flag0 /* level mode */
Set pin high
Set PAC to don't change on match
Generate a match on PWMRIS

}
If (PWMHI > 0) and (PWMHI < PWMPER) then {

Generate a match (fall time) on OLDRIS + PWMHI
}
Assert interrupt request

9.3 STATE 3 — Normal_H_L

This state is entered after a match occurs and a high-to-low transition results. In this state, the TPU sets
the rise time of the pulse.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001000
Match Enable: Don't Care

Set PAC to low to high
Generate a match on PWMRIS

9.4 STATE 4 — Normal_0

This state is entered in level mode (indicated by flag0 equals one) when the pin is low, after a match
event occurs. A match on next period time is set up. The 0% or 100% duty cycle condition is checked
and processed and an interrupt is generated. The parameters are rechecked at the rate of PWMPER
to determine if they have been updated from the case of 0% duty cycle. If normal mode is to be re-
sumed, a low-to-high transition is projected for the current match time plus PWMPER.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001001
Match Enable: Don't Care

Calculate and store next rise time
OLDRIS = ERT
PWMRIS = OLDRIS + PWMPER

Set PAC to low to high
Clear flag0
If PWMHI = 0 (0% duty cycle) then {

Assert flag0 /* level mode */
Set pin low
Set PAC to don't change on match
Generate a match on PWMRIS
TPU Programming Library MOTOROLA
TPUPN17/D 13

}
If PWMHI ≥ PWMPER (100% duty cycle) then {

Assert flag0
Set pin high
Set PAC to don't change on match
Generate a match on PWMRIS

}
If (PWMHI > 0) and (PWMHI < PWMPER) then {

Generate a match on next rise time = OLDRIS + PWMPER
}
Assert interrupt request (period time)

9.5 STATE 5 — Immed_H

This state is entered as a result of HSR%01 when the pin is asserted. This state causes an immediate
update of the high time of the pulse starting from OLDRIS. The case of 0% or 100% duty cycle pulse is
checked and processed, and an interrupt is generated.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 01xx1x
Match Enable: Disable

Calculate and store next rise time
PWMRIS = OLDRIS + PWMPER

Clear flag0
Set PAC to high to low
If PWMHI = 0 (0% duty cycle) then {

Assert flag0 (level mode)
Set pin low
Set PAC to don't change on match
Generate a match on PWMRIS

}
If PWMHI ≥ PWMPER (100% duty cycle) then {

Assert flag0 (level mode)
Set pin high
Set PAC to don't change on match
Generate a match on PWMRIS

}
If (PWMHI > 0) and (PWMHI > PWMPER) then {

Generate a match on next rise time = OLDRIS + PWMHI
}
Assert interrupt request (period time)

9.6 STATE 6 — Immed_L

This state is entered as a result of HSR %01 when the pin is low. This state causes an immediate update
of the low time of the pulse starting from OLDRIS. The case of 0% or 100% duty cycle is checked and
processed and an interrupt is generated.

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 01xx0x
Match Enable: Disable

Calculate and store next rise time
PWMRIS = OLDRIS + PWMPER

Set PAC to low to high
Clear flag0
If PWMHI = 0 (0% duty cycle) then {

Assert flag0
Set pin low
 MOTOROLA TPU Programming Library
14 TPUPN17/D

Set PAC to don't change on match
Generate a match on PWMRIS

}
If PWMHI ≥ PWMPER (100% duty cycle) then {

Assert flag0
Set pin high
Set PAC to don't change on match
Generate a match on PWMRIS

}
If (PWMHI > 0) and (PWMHI < PWMPER) then {

Generate a match on next rise time = OLDRIS + PWMPER
}
Assert interrupt request (period time)

The table below shows the PWM transitions listing the service request sources and channel conditions
from current state to next state. Figure 10 illustrates the flow of PWM states, including the initialization
and immediate update states.

NOTES:
1. Conditions not specified are “don't care.”
2. HSR = Host service request

LSR = Link service request
M/TSR = Either a match or transition (input capture) service request occurred (m/tsr = 1) or neither
occurred (m/tsr = 0).

Table 7 PWM State Transition Table

Current State HSR M/TSR LSR Pin Flag0 Next State

All States 10
01
01

—
—
—

—
—
—

—
1
0

—
—
—

S1 Init
S5 Immed_H
S6 Immed_L

S1 Init 00
00
00

1
1
1

—
—
—

0
1
0

0
1
1

S3 Normal_H_L
S2 Normal_L_H

S4 Normal_0

S2 Normal_L_H 00
00
00

1
1
1

—
—
—

0
1
0

0
1
1

S3 Normal_H_L
S2 Normal_L_H

S4 Normal_0

S3 Normal_H_L 00 1 — 1 0 S2 Normal_L_H

S4 Normal_0 00
00

1
1

—
—

1
0

—
1

S2 Normal_L_H
S4 Normal_0

S5 Immed_H 00
00
00

1
1
1

—
—
—

0
1
0

0
1
1

S3 Normal_H_L
S2 Normal_L_H

S4 Normal_0

S6 Immed_L 00
00

1
1

—
—

1
0

—
1

S2 Normal_L_H
S4 Normal_0

Unimplemented
Conditions

11
00

—
0

—
1

—
—

—
—

—
—

TPU Programming Library MOTOROLA
TPUPN17/D 15

Figure 10 PWM State Diagram

1028A

M/T = 1
PIN = 1

FLAG0 = 0

HSR = 01
PIN = 1

HSR = 01
PIN = 0

HSR = 10

KEY:

HSR M/TSR LSR PIN FLAG0 FLAG1
XX X X X X X

01XXXX

S1
INIT

00101X

S2
NORMAL_L_H

001000

S3
NORMAL_H_L

001001

S4
NORMAL_0

01XX0X

S6
IMMED_L

01XX1X

S5
IMMED_H

M/T = 1
PIN = 0

FLAG0 = 0

M/T = 1
PIN = 0

FLAG0 = 0

M/T = 1
PIN = 1

FLAG0 = 1M/T = 1
PIN = 0

FLAG0 = 1

M/T = 1
PIN = 1

M/T = 1
PIN = 0

FLAG0 = 1

M/T = 1
PIN = 0

FLAG0 = 1

M/T = 1
PIN = 0

FLAG0 = 1

M/T = 1
PIN = 1

M/T = 1
PIN = 0

FLAG0 = 0

M/T = 1
PIN = 1

FLAG0 = 1

M/T = 1
PIN = 1

FLAG0 = 1

M/T = 1
PIN = 0

FLAG0 = 1
 MOTOROLA TPU Programming Library
16 TPUPN17/D

NOTES
TPU Programming Library MOTOROLA
TPUPN17/D 17

NOTES
 MOTOROLA TPU Programming Library
18 TPUPN17/D

TPU Programming Library MOTOROLA
TPUPN17/D 19

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	Figure 1 50% Duty Cycle PWM Waveform

	3 Function Code Size
	4 Function Parameters
	Figure 2 TPU Channel Parameter RAM CPU Address Map...
	Figure 3 Function Parameter RAM Assignment
	4.1 CHANNEL_CONTROL
	Table 1 CHANNEL_CONTROL Options

	4.2 OLDRIS
	4.3 PWMRIS
	4.4 PWMHI
	4.5 PWMPER

	5 Host Interface to Function
	Figure 4 TPU Address Map

	6 Function Configuration
	Table 2 Host Service Request Bit Encoding

	7 Performance and Use of Function
	7.1 Performance
	Table 3 Pulse Width Modulation Function — State Ti...

	7.2 Changing Duty Cycle
	Figure 5 Immediate Duty Cycle Update With A One Pe...
	Figure 6 Immediate Duty Cycle Update Without Anoma...
	Figure 7 Immediate Duty Cycle Update Delayed One P...

	7.3 Changing Period
	Figure 8 Immediate Period Update With Single Perio...
	Figure 9 Immediate Period Update With No Anomaly

	7.4 Counting Periods
	7.5 Stopping the Function

	8 PWM Examples
	8.1 Example A
	8.1.1 Description
	8.1.2 Initialization
	Table 4 PWM Channel Parameter RAM

	8.1.3 Output Waveforms

	8.2 Example B
	8.2.1 Description
	8.2.2 Initialization
	Table 5 PWM Channel Parameter RAM

	8.2.3 Output Waveforms

	8.3 Example C
	8.3.1 Description
	8.3.2 Initialization
	Table 6 PWM Channel Parameter RAM

	8.3.3 Output Waveforms

	9 Function Algorithm
	9.1 STATE 1 — Init
	9.2 STATE 2 — Normal_L_H
	9.3 STATE 3 — Normal_H_L
	9.4 STATE 4 — Normal_0
	9.5 STATE 5 — Immed_H
	9.6 STATE 6 — Immed_L
	Table 7 PWM State Transition Table
	Figure 10 PWM State Diagram

