Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

Architecture des ordinateurs

Travaux pratiques N°2

‘Programmation Assembleur M68K - First Step’

Objectif de cette séance

Le but de ce TP est d'introduire 1’édition, la compilation et la simulation avec EASy68K.

Cette fiche est a faire en bindme. Il faudra :
1. Réaliser un rapport a rendre au format pdf contenant les réponses aux questions de cette fiche ;
2. Envoyer le rapport a 1'adresse de votre chargé de TP : mahmoudr@esiee.fr

1. L’environnement de travail ‘EASy68K’

L’environnement ‘EASy68K’ est un ensemble de programme permettant de manipuler, apprendre,
tester ... des programmes en assembleur 68000 (68K) de Motorola. Ce simulateur est gratuit, open
source et sous License GNU — General Public Use Licence.

I ——
dddddd84
1 =1 2 2 1 1

E % 4 3 r 1

e e R T Chatpm
E% % Wiefwoawen WeEawans, Mfrawoan Mhaerrre SSefarmen Wemoaoa
] e

Fig. 1. Un apercu des outils offerts par I’environnement EASy68K

Pour pouvoir [I'utiliser sous Windows, il suffit de télécharger puis lancer I’installateur
SetupEASy68K .exe.
| Télécharger SetupEASy68K.exe depuis http://www.easy68k.com/ |

Sachant que les utilisateurs sous Linux ou Mac peuvent I’installer sous I’émulateur Windows, en tant
que super utilisateur, avec la commande :
| wine ./SetupEASy68K.exe

1/7

Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

Une fois cet environnement est installé, vous disposeriez d’un menu similaire a celui-ci :

— N
= EASy68K Editor/Assembler v5,12.25 - [untitied 1 x68] - E=SEalST)
B File Edit Project Options Window Help _[&]x
DeEd&8 & @ % % | [

; firsc instruction of program

i Insert

| = =

Fig. 2. Le menu de I’environnement EASy68K sous Windows

L’environnement EASy68K comporte un éditeur EASy68K, un Help, un simulateur Sim68K et un
éditeur binaire EASyBIN qui permet de manipuler des zones mémoires ou des fichiers S-Record.
Ces fichiers peuvent étre manipulés en hexadécimal ou en mode texte.

1.1. Les fichiers manipulés

Afin de tester un programme assembleur, vous devez suivre plusieurs étapes. Le diagramme de la
figure suivante illustre les étapes par lesquelles passe un programme écrit en assembleur 68000.

EASy68K
sim68K

EASy68K
editor

*X68

EASYy68K
asm68K

Fig.3. Les fichiers manipulés lors de la programmation assembleur

1) La premiere étape est d’éditer un fichier (EASy68K) contenant le code du programme
assembleur dont I’extension doit étre ‘. X68’

Une fois le fichier *.X68’ est enregistré, vous pouvez le compiler. Cette étape géneére deux

fichier : un pour la simulation (exécutable) d’extension *.S68’ et un autre pour le debuggage
d’extension ‘.68’

3) La simulation de ce programme est assurée par le programme Sim68K.

2)

2/7

Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

1.2. Description d’une ligne de code

Un programme en assembleur 68000 est constitué par des lignes de la forme :

Label Opcode Operand Comment
.loop ADD D0O,D1 Add two numbers
BMI .loop Loop while negative

Fig. 4. Les champs d’une ligne de code assembleur 68000

= Label : une étiquette définie par le programme pour marquer un endroit du programme
= Opcode : une instruction que le processeur peut exécuter
= Operand : les données nécessaires a I’exécution des instructions

= Comments : des explications pour documenter le programme.

2. Edition, compilation et simulation

2.1. Création et édition d’un programme

Lancer I’éditeur EASy68K et créer un nouveau fichier. Saisissez puis enregistrer le programme
suivant dans le répertoire Assembleur68K de votre espace de travail sous le nom Exemple_1.X68.

$1000 The program will load into address $1000
* Display HELLO massage
* See Help / Simulator IO for a complete list of task numbers

START MOVE #14,D0 Put text display task numbers
LEA HELLO, Al Load address of string to display into Al
TRAP #15 Activates input/output task

* Display the contents of register D1

* task number 3 is used to display the contents of D1.L as number
MOVE.L #12345678,D1 Put a number in D1 so we can display it
MOVE #3,D0 Task number 3 in DO
TRAP #15 Display number in D1

* Stop execution
MOVE.B #9,D0

TRAP #15 Halt Simulator
HELLO DC.B ‘Hello World’, $D, $A, 0 Null terminated string with null
END START

3/7

Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

Description du programme:

La premiere instruction spécifie I’adresse a partir de la quelle le programme sera chargé dans la
mémoire. Le $ signifie que 1’adresse est en hexadécimal.

$1000 The program will load into address $1000

Les lignes qui commencent par * sont des commentaires. Exemple :

* Display HELLO massage

Mettre 14 dans le registre DO (14 est le numéro identifiant la tiche d’affichage). Cette ligne est
référencier par 1’étiquette START.

START MOVE #14,D0 Put text display task numbers

Charger I’adresse de début du message a afficher, dans le registre Al, sachant que 1’adresse du
message est référencier par 1’étiquette HELLO :

LEA HELLO, Al Load address of string to display into Al

L’instruction suivante active la routine ‘task’ d’entrée/sortie du simulateur Sim68K, sachant que le
numéro de la tiche a exécuter est dans le registre DO.

TRAP #15 Activates input/output task

Les lignes suivantes permettent de charger le nombre ‘12345678 dans le registre D1 puis de
I"afficher' en utilisant la tiche numéro 3 de la routine TRAP #15.

MOVE.L #12345678,D1 Put a number in D1 so we can display it
MOVE #3,D0 Task number 3 in DO
TRAP #15 Display number in D1

Les deux lignes suivantes indiquent au simulateur d’arréter la simulation :

MOVE.B #9,D0
TRAP #15 Halt Simulator

La chaine de caractere nommée HELLO est définit parla déclaration suivante. Cette variable
contient le message ‘Hello World’ et se termine par un retour a la ligne ($D) poursuivi par une
terminaison nulle.

HELLO DC.B ‘Hello World’, $D, $A, 0 Null terminated string with null

La derniere ligne du programme indique la fin du programme, sachant que START est I’étiquette a
partir de la quelle le simulateur commence 1’exécution.

END START

1AfficherlecontenuduregistreDl.I.entanfcquenombre

4/7

Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

2.2. Compilation, exécution et debuggage

Le bouton (project -> Assemble source) permet de compiler le fichier que vous avez sauvegardé. Si
vous n’avez pas fait de fautes lors de la saisie du programme, vous aurez ‘0 Warnings’ (des erreurs

qui n’arréte pas la compilation)2 et ‘0 Erros’ (Des erreurs qui causent I’arrét de la compilation et la

non génération du fichier .S68)°. La figure suivante illustre ce cas de compilation sans erreurs.

Aszzembler Status - untitled1.x68 |E|
® “Warningz [
Ermorz: 0O

Execute | Load LGS Cloze |

Fig.6. Compilation — Fenétre des erreurs

Cette fenétre permet d’afficher le fichier .L68 (LeadLes |) ou de lancer le simulateur via le bouton
exécute (). Une fois le simulateur est lancé, vous avez le choix entre plusieurs mode
d’exécution. Ces modes seront tres utiles pour le débuggage de vos programmes. L’exécution de ce

programme se termine par 1’affichage de la fenétre donnée par la figure suivante :

%% EASy6BK Simulator Output (Al=13
HELLO YORLD
12345678

Fig.7. Fenétre d’E/S du simulateur

Dans le cas ou le programme contient des erreurs, des messages d’erreurs localisant ces fautes seront
affichés dans la partie basse de 1’éditeur. Il suffit de cliquer sur un message pour étre diriger vers la
aligne contenant I’erreur. Le fichier log .L68 permet aussi de localiser I’erreur avec plus de détails.

2 N .

Des messages auxquels il faut faire attention, car ils peuvent induire a des erreurs sur les résultats
3 .

Les erreurs syntaxiques, les fautes de frappe ...

5/7

Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

2.3. Simulation du programme

La figure suivante affiche la fenétre principale du simulateur permettant de suivre 1’évolution de
I’exécution du programme.

T e T ﬁ

File Search Run View Options Help

| @] wlzE o @

~Registers

o] D2 a0 Ade] T § INT ¥NZVC Cycles
D1] 5] AL a5 k001 | L
D2=§ D6=! Az:; A6=! US=|00FF0000 Clear Cycles
D3 D7 A3 A7-{01000000 $5={01000000 PC~00001000

Address Line >>

00001000 Starting Address .
[hesembler used: EASy6EK Editor/Resembler v5.12.25 1
Created On: 26/02/2013 05:09:33

00000000
00000000
00000000
00000000
00000000
00000000
00001000

* Title

* Written by :
* Date :
* Description:

St e w e

ORG $1000

M

00001000 8 START: ; first instruction of program
00001000] ‘|I
00001000 10 * Put program code here
00001000 11
[W00001000 FFEF FFEE 12 SIMHALT ; halt simulator
00001004 13
00001004 14 * Put variables and constants here
00001004 15
00001004 16 END START : last line of source |
o errors detected i
0 warnings generated
SYMBOL. TABLE INFORMATION i

[+1 | i
S0 = 68KPROG ~ 20CREATED BY EASY68K -
.568 file read successful

Fig.8. La fenétre principal du simulateur

Cette fenétre permet de suivre 1’évolution des registres D0...D7, A0...A7, SS, US, SR et PC au
cours de la simulation d’un programme. Elle offre aussi divers outils pour la manipulation et la
suivie du contenu de la mémoire, de la pile, ainsi qu'une maquette de simulation ‘hardware’.

Cette fenétre affiche aussi le fichier .68’ au cours de la simulation. Ce fichier comporte plusieurs
colonnes qui simplifient la compréhension et la suivie de I’exécution du programme :

= Adress : I’adresse a partir de la quelle I’instruction commence ;
= Code : le code de I’opération en hexadécimal

= Line : Le numéro de la ligne correspondante ;

= Source : le contenu du fichier source du programme

La barre d’outils offre aussi plusieurs boutons permettant d’interagir avec le simulateur, en
sélectionnant le mode de simulation ainsi que 1’opération a réaliser.

Vous pouvez consulter I’aide du logiciel pour plus d’informations sur
les fonctionnalités offertes par le simulateur.

6/7

Architecture des ordinateurs — TP2 [M6800 Prog. — First Step] R. Mahmoudi

3. Travail demandé

Exécuter le programme en mode ligne par ligne et suivez 1’évolution des registres pour répondre aux

questions suivantes :

Q1. Faites une exécution en mode ligne par ligne et dresser un tableau contenant les registres qui
changent a chaque étape.

Q2. Afficher le contenu de la mémoire,

Q3. Donner les adresses de début et de fin de la partie code et de la partie données de ce programme.
Q4. Localiser ka variable Hello dans la mémoire et donner la liste des codes ascii correspondant aux
caracteres de ce message.

QS. Comment peut-ton définir la tAche que doit effectuer I’instruction trap #15, et comment elle

récupere les parametres nécessaires.
4. Bonus

Q1. Modifier le code précédent pour afficher plusieurs lignes de texte. Vous pouvez vous inspirer de

I’exemple donné dans le ‘Quick Start Programs’ a I’adresse suivante :

| http://www.easy68k.com/easy68kexamples.htm

Q2. Tourner puis décrire les résultats renvoyés par les exemples de codes de Lab2 donnés en

téléchargement a 1’adresse suivante :

| http://www.esiee.fr/~mahmoudr/architecture.html

5. Bibliographie

[1] TP programmation assembleur 68000 sous I’environnement « EASy68K », S. Bazine et I. Ben Ameur.
[2] http://www.easy68k.com/
[3] http://mycorner.no-ip.org/68k/easy68k/index.html

7/7

