Chapitre 11

Les bases du langage
Java

Syntaxe




[.es commentaires

/* commentaire sur une ou plusieurs lignes */
= ldentiques a ceux existant dans le langage C

// commentaire sur une seule ligne
= ldentiques a ceux existant en C++

/** commentaire d'explication */

= Les commentaires d'explication se placent genéralement
juste avant une déclaration (d'attribut ou de méthode)

= |lIs sont recupérés par I'utilitaire javadoc et inclus dans la
documentation ainsi généreée.
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Instructions, blocs, etc.

Les instructions Java se terminent par un ;

Les blocs sont délimités par :
{ pour le début de bloc
} pour la fin du bloc

= Un bloc permet de définir un regroupement d’instructions. La
définition d'une classe ou d’'une méthode se fait dans un
bloc.
Les espaces, tabulations, sauts de ligne sont autoriseés.
» Cela permet de présenter un code plus lisible.
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I _es identificateurs

On a besoin de nommer les classes, les variables, les
constantes, etc. ; on parle d’identificateur.

Les identificateurs commencent par une lettre, _ou $

Conventions sur les identificateurs :

= Si plusieurs mots sont accolés, mettre une majuscule a
chacun des mots sauf le premier : « uneVariableEntiere »

= La premiere lettre est majuscule pour les classes et les
interfaces : « MaClasse, UneJolieFenetre »

= La premiere lettre est minuscule pour les méthodes, les
attributs et les variables : « setLongueur, i, uneFenetre »

= Les constantes sont entierement en majuscules :
«LONGUEUR_MAX »
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[.es mots réservés

abstract boolean |break byte case
catch char class continue |default
do double else extends |false
final finally float for If
implements |import long int Interface
instanceof | native new null package
private protected | public return short
static super switch void this
throw throws transient |true try
syncronized |volatile |while
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II.1.

Les types et les
opérateurs




Les types

Le langage Java est un
langage fortement type :
= Chaque variable et chaque

expression possede un
type bien defini.

Les types de données de
Java sont divisés en deux
grands groupes :

= Les types primitifs (ou de

base)

Exemple : Les types
numeériques, le type
booléen, ...

= Les types références

Types Java

—Types primitifs

— boolean

Types numériques

— Types entiers
~ byte
— short
— int

~— long
— Char
Types a virgule
flottantes
— float
— double

‘J

l'ypes de références

Type Tableau

Type Classe
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Les types primitifs

= . false ou true

o : entier 8 bits

o : entier 16 bits

= : entier 32 bits

= . entier 64 bits

o . caractere Unicode
16 bits

o : nombre décimal a
virgule flottante 32 bits

o : nombre décimal a

virgule flottante 64 bits
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Déclaration et initialisation

Type identificateur [= constante ou expression];

= Int int x=12;

= short short x= 32; (short x=33000; //Hors
limite)

= long long x= 200L; // Nombre accolé a un L

= byte byte x=012; // Nombre commencant avec un 0

= double double x=23.2323;

= float float x= 23.233F; // Nombre accolé aunF

= char char c=’a’; char c=‘\u0061’; char

c=(char)97;
= boolean boolean b=true;

Et éventuellement, un « modificateur d’acces ou de
visibilité » : final double pi=38.14159
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Les types de référence

Un objet est créeé par 'opérateur qui appelle

son constructeur de classe
= String str1; // variable non initialisée = variable vide
= String str2=null; // variable initialisée par une référence null

= String pays = new String(’France”); // pays estle nom de la
variable faisant référence a I'objet String

> Analogue a String pays= France”’;

Un objet ne peut pas exister si une variable de
référence ne pointe pas vers lui : les variables
et n'existent pas

String n'est pas un type primitif, mais une classe
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Les opérateurs

Les opérateurs dans Java sont regroupés par :
= type d’opérations :
d’affectation
numeérique,
de comparaison,
logique,
sur les chaines de caracteres,
de manipulations binaires.

= le nombre d’'opérandes :
unaire,
binaire,
ternaire.
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Les opérateurs unaires

Opérateurs unaires Action Exemple
] négation i=-]
++ incrémentation de 1 i=j++ OU i=++j
- décrémentation de 1 i=j-- OU i=--]

++ et -- peuvent prefixer ou postfixer la variable.
= | =j++ : post-incrémentation

La valeur en cours de j est affectée a i et ensuite la valeur
de | est incrémentée de 1.

= i =++ | :pré-incrémentation

La valeur en cours de j est incrémentée de 1 et ensuite la
valeur de j est affectée a .
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Les opérateurs binaires

Opérateurs
binaires

addition

Syntaxe
équivalent

soustraction

multiplication

division

(tronque si les arguments sont
entiers)

modulo

i=1 %2

décalage vers la droite

2k

décalage vers la gauche

i/2k (i i>0)




Les opérateurs relationnels

Dans le langage Java, le résultat d'une
comparaison est true ou false

Opérateurs Action Exemple
relationnels

plus petit que X<i;

plus grand que i>100;

plus petit ou égal que j<=K;

plus grand ou égal que c>='a’;

égal a I==20;

différent de cl='2’;




Opérateurs logiques

Opérateurs Syntaxe
logiques équivalent

négation Ip;
OU exclusif p " false
ET (i<10) && (a>3)
Oou (a>0) || (b>0)




Opérateurs ternaires

Un unique opérateur ternaire.

Cette expression est une sorte de si-alors-sinon
sous forme d'expression :

= a = (conditione) ?x :y
si la condition e est vraie alors a vaut x sinon elle vaut y.

= Exemple :a = (v==2) 7?1 :0;

Cette expression affecte a la variable a la valeur 1 si v vaut
2, sinon affecte a la variable a la valeur 0.
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La conversion de types
Il y a 2 catégories de conversions possibles :

= Conversions explicites :
celles faites sur une demande explicite par un programmeur.

= Conversions implicites :

celles faites automatiquement par un compilateur :
lors d'une affectation,
lors d'une opération arithmétique,

lors d'un passage de paramétres (lors de l'invocation d'une
méthode),
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La conversion de types

Conversion explicite :
= Objecitif :
changer le type d'une donnée si besoin.
= Comment ?:
Prefixer 'opérande par le type choisi.
Encadrer le type choisi par des parentheses.
= Exemple :
doubled =2.5;
long | = (long) d ;
Conversion implicite lors d'une affectation :
= Objecitif :
changer automatiquement le type d'une donnée si besoin.
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La conversion de types

La conversion numérique est faite automatiqguement
(implicitement) vers le type le plus riche dans une opération

arithmétique
int 1;
7 — IA 5,

System.ocjt.pm'nt( 7 ) ; //vaut 65

La conversion peut étre faite explicitement vers un type plus
pauvre

double x = 2.1;
int a;

a= (int)x ; // vaut 2
int b = a * 1500;

Hierarchie des types : byte < short < int < long < float < double
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LLa conversion de types

Conversion | Conversion vers
de boolean | byte

int
boolean - N <:)
Y
Y
Y

byte
short
char
int
long
float
double

Y = OUI (YES), N =NON (NO), C = Cast (besoin de conversion explicite)




I1.2.

[ es structures de controle

Conditions, boucles, ...




[ es structures de contole

Les structures de controles permettent d’arréter I'exécution

linéaire des instructions (de bas en haut et de gauche a

droite)

Elles permettent d’exécuter conditionnellement une
instruction, ou de réaliser une boucle

Type d’instruction

Mots clés utilisés

Décision if() else — switch() case
Boucle for( ; ;) — while () — do while()
Traitement

d’exceptions

try catch finally — throw

Branchement

label : -- break — continue -- return
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1f-else

Instruction conditionnelle :

if (condition)
{bloc 1}

if (condition) {bloc 1}
else {bloc 2}

if (condition 1) {bloc 1}
else if (condition 2) {bloc 2}
else {bloc N}

if (x > y) {
int tmp =
X =Y,
y = tmp;
} else
X =

Xy

0;

if ((x > sl)&& (x < s2))
y=3*x+1;

else
y=0;

if (4 J )
System.out .println
est égal a j " );

(" i

}
else if ( 1>3j){
System.out .println ("
i est supérieur a j" );
}
else {
System.out .println ("
i est inférieur a j " );

}
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switch-case

switch nomVariable

{

case valeurl : {...
break;

}

case valeurn : {...
break;

}
default : {...

break;

int i = 1;
switch (1)

{ case 0

System.out .println ("Zero");
break;

case 1
System.out.println ("Un");
break;

case 2
System.out.println ("Deux");
break;

default
System.out.println ("Autre");

) break;
Attention en JAVA :

* nomVariable : QUE de type “intégral” :
boolean , char, int, long et short

* break; OBLIGATOIRE !
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for

Boucle for

for (exprl; expr2;
{bloc}

fonctionnement :
expri
if (expr2==true){
bloc
expr3

expr3)

float moyenne= O0;
// Initialisation d'un tableau d'entier
int[] tab = { 2, 5, -1, 4, 3 };

for (int i1 =0; i < tab.length; i++)
// conversion!
moyenne+=tab[i];

moyenne /= tab.length;

System.out .println("La moyenne est
"+moyenne) ;

// Si moyenne etait un int, la division

// serait entiere
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while et do-while

Boucles while

while
(condition)

{bloc}

do {bloc}

while
(condition)

// Chercher un élément nul dans un
tableau

int i = 0;

while ((tab[i] !'= 0)&& (i<tab.length))
i++;

System.out .println("Le premier élément
nul est en "+ 1i);

int somme=l;
int i=borneSuperieure;
do{
somme+=1i
i1——
} while (i>0)
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break

Interruption de boucle

= Interruption non étiquetée : sortie de la boucle la plus haute.
while(i <=100) {
i +=10;
if(i>=2*n+1){
break;
}
}
= Interruption étiquetée : sortie d'une boucle imbriquée.
boucle 1:
while( i <=100) {
i +=10;
boucle 2:
while(i<j){
I++;
if(i>=2*"n+1){
break boucle_ 2;

}

hl
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continue

Continuation de boucle = court-circuit de la fin d’'une itération

int x = 0;
while (x < 10)
{
X4+
if (x == 5)
{
continue;
}
System.out.print(x + " ");
}
Produira

>123467 89 10
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[es tableaux

Array
= Stockage d’éléments tous du méme type
= Structure a part entiere
= Un tableau est un objet référencé
= Assimilable a une classe

= Création en trois étapes
1. déclaration
2. allocation de mémoire
3. initialisation des éléments
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[es tableaux

Indiqué par [1
= Deux possibilités
type[] nom,;
type noml[];

int[] tableaul;

int tableau2]];

int[][] matrice; // tableau bidimensionnel
int[] x, yI[]; //égquivalent a int x[1,v[]1I[];
int tab[10]; // ne compile pas
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Allocation et 1nitialisation

Alloué dynamiquement
= a l'aide du mot clé new

int[] tableaul; // déclaration
tableaul = new int[10]; // allocation
int tableau2[]; // déclaration
tableau2 = new int[35]; // allocation
int[][] matrice; // déclaration
matrice = new int[2][4]; // allocation
int[] x, yI[]l; // déclaration

x = new int[5]; // allocation

y = new int[3][2]; // allocation
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Allocation et 1nitialisation

On peut combiner déclaration et allocation
int[] tableaul = new int[10];
int tableau2[] = new int[35];
int[][] matrice = new int[2] [4];
int[] x = new int[5];
int[] y[] = new int[3][2];

Chaque element doit étre initialisé separement
int[] tablo = new int[10];
for (int i = 0; i < 10; i++) {
tablo[i] = i;
}
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Allocation et 1nitialisation
Valeurs initiales peuvent étre énumérees

= int[] JjoursParMois = {31, 28, 31,30, 31,
30, 31, 31, 30, 31, 30, 31};

m String[] Jours = {"lundi", "mardi",

"mercredi", "jeudi", "vendredi", '"samedi'",
"dimanche"};

Déclaration, allocation, initialisation
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Acces aux tableaux

Indexage a partirde 0
Acces aux eléements par []

tablo[i] 1 =0..tablo.length -1
Nombre d'éléments donné par la variable
nom. length

for (int i = 0; i1 < tablo.length; i++) ({
System.out .print (tablo[1i] + " ");
tablo[i] = —-tablo[i];

}
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