Chapitre 11

Les bases du langage
Java

Syntaxe

[.es commentaires

/* commentaire sur une ou plusieurs lignes */
= ldentiques a ceux existant dans le langage C

// commentaire sur une seule ligne
= ldentiques a ceux existant en C++

/** commentaire d'explication */

= Les commentaires d'explication se placent genéralement
juste avant une déclaration (d'attribut ou de méthode)

= |lIs sont recupérés par I'utilitaire javadoc et inclus dans la
documentation ainsi généreée.

56

Instructions, blocs, etc.

Les instructions Java se terminent par un ;

Les blocs sont délimités par :
{ pour le début de bloc
} pour la fin du bloc

= Un bloc permet de définir un regroupement d’instructions. La
définition d'une classe ou d’'une méthode se fait dans un
bloc.
Les espaces, tabulations, sauts de ligne sont autoriseés.
» Cela permet de présenter un code plus lisible.

57

I _es identificateurs

On a besoin de nommer les classes, les variables, les
constantes, etc. ; on parle d’identificateur.

Les identificateurs commencent par une lettre, _ou $

Conventions sur les identificateurs :

= Si plusieurs mots sont accolés, mettre une majuscule a
chacun des mots sauf le premier : « uneVariableEntiere »

= La premiere lettre est majuscule pour les classes et les
interfaces : « MaClasse, UneJolieFenetre »

= La premiere lettre est minuscule pour les méthodes, les
attributs et les variables : « setLongueur, i, uneFenetre »

= Les constantes sont entierement en majuscules :
«LONGUEUR_MAX »

58

[.es mots réservés

abstract boolean |break byte case
catch char class continue |default
do double else extends |false
final finally float for If
implements |import long int Interface
instanceof | native new null package
private protected | public return short
static super switch void this
throw throws transient |true try
syncronized |volatile |while

59

II.1.

Les types et les
opérateurs

Les types

Le langage Java est un
langage fortement type :
= Chaque variable et chaque

expression possede un
type bien defini.

Les types de données de
Java sont divisés en deux
grands groupes :

= Les types primitifs (ou de

base)

Exemple : Les types
numeériques, le type
booléen, ...

= Les types références

Types Java

—Types primitifs

— boolean

Types numériques

— Types entiers
~ byte
— short
— int

~— long
— Char
Types a virgule
flottantes
— float
— double

‘J

l'ypes de références

Type Tableau

Type Classe

61

Les types primitifs

= . false ou true

o : entier 8 bits

o : entier 16 bits

= : entier 32 bits

= . entier 64 bits

o . caractere Unicode
16 bits

o : nombre décimal a
virgule flottante 32 bits

o : nombre décimal a

virgule flottante 64 bits

62

Déclaration et initialisation

Type identificateur [= constante ou expression];

= Int int x=12;

= short short x= 32; (short x=33000; //Hors
limite)

= long long x= 200L; // Nombre accolé a un L

= byte byte x=012; // Nombre commencant avec un 0

= double double x=23.2323;

= float float x= 23.233F; // Nombre accolé aunF

= char char c=’a’; char c=‘\u0061’; char

c=(char)97;
= boolean boolean b=true;

Et éventuellement, un « modificateur d’acces ou de
visibilité » : final double pi=38.14159

63

Les types de référence

Un objet est créeé par 'opérateur qui appelle

son constructeur de classe
= String str1; // variable non initialisée = variable vide
= String str2=null; // variable initialisée par une référence null

= String pays = new String(’France”); // pays estle nom de la
variable faisant référence a I'objet String

> Analogue a String pays= France”’;

Un objet ne peut pas exister si une variable de
référence ne pointe pas vers lui : les variables
et n'existent pas

String n'est pas un type primitif, mais une classe

64

Les opérateurs

Les opérateurs dans Java sont regroupés par :
= type d’opérations :
d’affectation
numeérique,
de comparaison,
logique,
sur les chaines de caracteres,
de manipulations binaires.

= le nombre d’'opérandes :
unaire,
binaire,
ternaire.

65

Les opérateurs unaires

Opérateurs unaires Action Exemple
] négation i=-]
++ incrémentation de 1 i=j++ OU i=++j
- décrémentation de 1 i=j-- OU i=--]

++ et -- peuvent prefixer ou postfixer la variable.
= | =j++ : post-incrémentation

La valeur en cours de j est affectée a i et ensuite la valeur
de | est incrémentée de 1.

= i =++ | :pré-incrémentation

La valeur en cours de j est incrémentée de 1 et ensuite la
valeur de j est affectée a .

66

Les opérateurs binaires

Opérateurs
binaires

addition

Syntaxe
équivalent

soustraction

multiplication

division

(tronque si les arguments sont
entiers)

modulo

i=1 %2

décalage vers la droite

2k

décalage vers la gauche

i/2k (i i>0)

Les opérateurs relationnels

Dans le langage Java, le résultat d'une
comparaison est true ou false

Opérateurs Action Exemple
relationnels

plus petit que X<i;

plus grand que i>100;

plus petit ou égal que j<=K;

plus grand ou égal que c>='a’;

égal a I==20;

différent de cl='2’;

Opérateurs logiques

Opérateurs Syntaxe
logiques équivalent

négation Ip;
OU exclusif p " false
ET (i<10) && (a>3)
Oou (a>0) || (b>0)

Opérateurs ternaires

Un unique opérateur ternaire.

Cette expression est une sorte de si-alors-sinon
sous forme d'expression :

= a = (conditione) ?x :y
si la condition e est vraie alors a vaut x sinon elle vaut y.

= Exemple :a = (v==2) 7?1 :0;

Cette expression affecte a la variable a la valeur 1 si v vaut
2, sinon affecte a la variable a la valeur 0.

70

La conversion de types
Il y a 2 catégories de conversions possibles :

= Conversions explicites :
celles faites sur une demande explicite par un programmeur.

= Conversions implicites :

celles faites automatiquement par un compilateur :
lors d'une affectation,
lors d'une opération arithmétique,

lors d'un passage de paramétres (lors de l'invocation d'une
méthode),

71

La conversion de types

Conversion explicite :
= Objecitif :
changer le type d'une donnée si besoin.
= Comment ?:
Prefixer 'opérande par le type choisi.
Encadrer le type choisi par des parentheses.
= Exemple :
doubled =2.5;
long | = (long) d ;
Conversion implicite lors d'une affectation :
= Objecitif :
changer automatiquement le type d'une donnée si besoin.

72

La conversion de types

La conversion numérique est faite automatiqguement
(implicitement) vers le type le plus riche dans une opération

arithmétique
int 1;
7 — IA 5,

System.ocjt.pm'nt(7) ; //vaut 65

La conversion peut étre faite explicitement vers un type plus
pauvre

double x = 2.1;
int a;

a= (int)x ; // vaut 2
int b = a * 1500;

Hierarchie des types : byte < short < int < long < float < double

73

LLa conversion de types

Conversion | Conversion vers
de boolean | byte

int
boolean - N <:)
Y
Y
Y

byte
short
char
int
long
float
double

Y = OUI (YES), N =NON (NO), C = Cast (besoin de conversion explicite)

I1.2.

[es structures de controle

Conditions, boucles, ...

[es structures de contole

Les structures de controles permettent d’arréter I'exécution

linéaire des instructions (de bas en haut et de gauche a

droite)

Elles permettent d’exécuter conditionnellement une
instruction, ou de réaliser une boucle

Type d’instruction

Mots clés utilisés

Décision if() else — switch() case
Boucle for(; ;) — while () — do while()
Traitement

d’exceptions

try catch finally — throw

Branchement

label : -- break — continue -- return

76

1f-else

Instruction conditionnelle :

if (condition)
{bloc 1}

if (condition) {bloc 1}
else {bloc 2}

if (condition 1) {bloc 1}
else if (condition 2) {bloc 2}
else {bloc N}

if (x > y) {
int tmp =
X =Y,
y = tmp;
} else
X =

Xy

0;

if ((x > sl)&& (x < s2))
y=3*x+1;

else
y=0;

if (4 J)
System.out .println
est égal a j ");

(" i

}
else if (1>3j){
System.out .println ("
i est supérieur a j");
}
else {
System.out .println ("
i est inférieur a j ");

}

77

switch-case

switch nomVariable

{

case valeurl : {...
break;

}

case valeurn : {...
break;

}
default : {...

break;

int i = 1;
switch (1)

{ case 0

System.out .println ("Zero");
break;

case 1
System.out.println ("Un");
break;

case 2
System.out.println ("Deux");
break;

default
System.out.println ("Autre");

) break;
Attention en JAVA :

* nomVariable : QUE de type “intégral” :
boolean , char, int, long et short

* break; OBLIGATOIRE !

78

for

Boucle for

for (exprl; expr2;
{bloc}

fonctionnement :
expri
if (expr2==true){
bloc
expr3

expr3)

float moyenne= O0;
// Initialisation d'un tableau d'entier
int[] tab = { 2, 5, -1, 4, 3 };

for (int i1 =0; i < tab.length; i++)
// conversion!
moyenne+=tab[i];

moyenne /= tab.length;

System.out .println("La moyenne est
"+moyenne) ;

// Si moyenne etait un int, la division

// serait entiere

79

while et do-while

Boucles while

while
(condition)

{bloc}

do {bloc}

while
(condition)

// Chercher un élément nul dans un
tableau

int i = 0;

while ((tab[i] !'= 0)&& (i<tab.length))
i++;

System.out .println("Le premier élément
nul est en "+ 1i);

int somme=l;
int i=borneSuperieure;
do{
somme+=1i
i1——
} while (i>0)

80

break

Interruption de boucle

= Interruption non étiquetée : sortie de la boucle la plus haute.
while(i <=100) {
i +=10;
if(i>=2*n+1){
break;
}
}
= Interruption étiquetée : sortie d'une boucle imbriquée.
boucle 1:
while(i <=100) {
i +=10;
boucle 2:
while(i<j){
I++;
if(i>=2*"n+1){
break boucle_ 2;

}

hl

81

continue

Continuation de boucle = court-circuit de la fin d’'une itération

int x = 0;
while (x < 10)
{
X4+
if (x == 5)
{
continue;
}
System.out.print(x + " ");
}
Produira

>123467 89 10

82

[es tableaux

Array
= Stockage d’éléments tous du méme type
= Structure a part entiere
= Un tableau est un objet référencé
= Assimilable a une classe

= Création en trois étapes
1. déclaration
2. allocation de mémoire
3. initialisation des éléments

83

[es tableaux

Indiqué par [1
= Deux possibilités
type[] nom,;
type noml[];

int[] tableaul;

int tableau2]];

int[][] matrice; // tableau bidimensionnel
int[] x, yI[]; //égquivalent a int x[1,v[]1I[];
int tab[10]; // ne compile pas

84

Allocation et 1nitialisation

Alloué dynamiquement
= a l'aide du mot clé new

int[] tableaul; // déclaration
tableaul = new int[10]; // allocation
int tableau2[]; // déclaration
tableau2 = new int[35]; // allocation
int[][] matrice; // déclaration
matrice = new int[2][4]; // allocation
int[] x, yI[]l; // déclaration

x = new int[5]; // allocation

y = new int[3][2]; // allocation

85

Allocation et 1nitialisation

On peut combiner déclaration et allocation
int[] tableaul = new int[10];
int tableau2[] = new int[35];
int[][] matrice = new int[2] [4];
int[] x = new int[5];
int[] y[] = new int[3][2];

Chaque element doit étre initialisé separement
int[] tablo = new int[10];
for (int i = 0; i < 10; i++) {
tablo[i] = i;
}

86

Allocation et 1nitialisation
Valeurs initiales peuvent étre énumérees

= int[] JjoursParMois = {31, 28, 31,30, 31,
30, 31, 31, 30, 31, 30, 31};

m String[] Jours = {"lundi", "mardi",

"mercredi", "jeudi", "vendredi", '"samedi'",
"dimanche"};

Déclaration, allocation, initialisation

87

Acces aux tableaux

Indexage a partirde 0
Acces aux eléements par []

tablo[i] 1 =0..tablo.length -1
Nombre d'éléments donné par la variable
nom. length

for (int i = 0; i1 < tablo.length; i++) ({
System.out .print (tablo[1i] + " ");
tablo[i] = —-tablo[i];

}

88

