
Chapitre II

Les bases du langage 
JavaJava

Syntaxe



Les commentaires

� /* commentaire sur une ou plusieurs lignes */
� Identiques à ceux existant dans le langage C

� // commentaire sur une seule ligne

56

// commentaire sur une seule ligne
� Identiques à ceux existant en C++

� /** commentaire d'explication */
� Les commentaires d'explication se placent généralement 

juste avant une déclaration (d'attribut ou de méthode) 

� Ils sont récupérés par l'utilitaire javadoc et inclus dans la 

documentation ainsi générée.



Instructions, blocs, etc.

� Les instructions Java se terminent par un ;

� Les blocs sont délimités par :

{ pour le début de bloc

} pour la fin du bloc

57

} pour la fin du bloc

� Un bloc permet de définir un regroupement d’instructions. La

définition d’une classe ou d’une méthode se fait dans un

bloc.

� Les espaces, tabulations, sauts de ligne sont autorisés.

� Cela permet de présenter un code plus lisible.



Les identificateurs
� On a besoin de nommer les classes, les variables, les

constantes, etc. ; on parle d’identificateur.
� Les identificateurs commencent par une lettre, _ ou $

� Conventions sur les identificateurs :
� Si plusieurs mots sont accolés, mettre une majuscule à

chacun des mots sauf le premier : « uneVariableEntiere »

58

chacun des mots sauf le premier : « uneVariableEntiere »

� La première lettre est majuscule pour les classes et les
interfaces : « MaClasse, UneJolieFenetre »

� La première lettre est minuscule pour les méthodes, les 
attributs et  les variables : « setLongueur, i, uneFenetre »

� Les constantes sont entièrement en majuscules : 
«LONGUEUR_MAX »



Les mots réservés

59



II.1.

Les types et les 
opérateursopérateurs



Les types

�� Le langage Le langage JavaJava est un est un 
langage fortement typé :langage fortement typé :
� Chaque variable et chaque 

expression possède un 
type bien défini.

Types Java
Types primitifs

Types numériques
Types entiers

boolean

byte
short
int
long

61

�� Les types de données de Les types de données de 
JavaJava sont divisés en deux sont divisés en deux 
grands groupesgrands groupes : : 
�� Les types primitifs (ou de 

base) 
� Exemple : Les types 

numériques, le type 
booléen, …  

� Les types références

Types de références

Types à virgule 
flottantes

Type Tableau

Type Classe

float
double

long
char



Les types primitifs

� boolean : false ou true

� byte : entier 8 bits 

� short : entier 16 bits

� int : entier 32 bits

� long : entier 64 bits

62

� long : entier 64 bits

� char : caractère Unicode 
16 bits

� float : nombre décimal à 
virgule flottante 32 bits

� double : nombre décimal à 
virgule flottante 64 bits 



Déclaration et initialisation

� Type identificateur [= constante ou expression];
� int  int x=12;

� short short x= 32; (short x=33000; // Hors 
limite)

� long        long x= 200L; // Nombre accolé à un L

63

long        long x= 200L; // Nombre accolé à un L

� byte byte x=012; // Nombre commençant avec un 0

� double double x=23.2323;

� float float x= 23.233F; // Nombre accolé à un F

� char char c=‘a’; char c=‘\u0061’; char 
c=(char)97;

� boolean boolean b=true;

� Et éventuellement, un « modificateur d’accès ou de 
visibilité » : final double pi=3.14159



Les types de référence

� Un objet est créé par l’opérateur new qui appelle 

son constructeur de classe
� String str1;  // variable non initialisée = variable vide

� String str2=null; // variable initialisée par une référence null

64

String str2=null; // variable initialisée par une référence null

� String  pays = new String(’’France’’);    // pays est le nom de la 
variable faisant référence à l’objet String 

� Analogue à String pays= ’’France’’;

� Un objet ne peut pas exister si une variable de 

référence ne pointe pas vers lui :  les variables 

str1 et str2 n’existent pas

� String n'est pas un type primitif, mais une classe



Les opérateurs

� Les opérateurs dans Java sont regroupés par : 
� type d’opérations :

� d’affectation 

� numérique,

de comparaison,

65

� de comparaison,

� logique,

� sur les chaînes de caractères,

� de manipulations binaires.

� le nombre d’opérandes :
� unaire,
� binaire,
� ternaire.



Les opérateurs unaires

Opérateurs unaires Action Exemple

- négation i=-j

++ incrémentation de 1 i=j++ ou i=++j

-- décrémentation de 1 i=j-- ou i=--j

66

� ++ et -- peuvent préfixer ou postfixer la variable.
� i = j++ : post-incrémentation

� La valeur en cours de j est affectée à i et ensuite la valeur 
de j est incrémentée de 1.

� i = ++ j : pré-incrémentation

� La valeur en cours de j est incrémentée de 1 et ensuite la 
valeur de j est affectée à i.



Les opérateurs binaires
Opérateurs 

binaires
Action Exemple Syntaxe 

équivalent

+ addition i = j+k;

+= i += 2; i= i + 2

- soustraction i = j - k;

-= i -= j; i= i - j

67

-= i -= j; i= i - j

* multiplication x=2*y;

*= x *=x; x= x * x

/ division 

(tronque si les arguments sont 

entiers)

i =j/k;

/= x /= 10; x= x /10

% modulo i = j %k;

%= i %=2 i= i %2

>> décalage vers la droite i>>k; i*2k

<< décalage vers la gauche i<<k; i/2k (si i>0)



Les opérateurs relationnels

� Dans le langage Java, le résultat d'une 

comparaison est true ou false

Opérateurs 
relationnels

Action Exemple

68

< plus petit que x<i;

> plus grand que i>100;

<= plus petit ou égal que j<=k;

>= plus grand ou égal que c>=‘a’;

== égal à i==20;

!= différent de c!=‘z’;



Opérateurs logiques

Opérateurs 

logiques

Action Exemple Syntaxe 

équivalent

! négation !p;

^ OU exclusif p ^ false

&& ET (i<10) && (a>3)

69

&& ET (i<10) && (a>3)

|| OU (a>0) || (b>0)



Opérateurs ternaires

� Un unique opérateur ternaire. 

� Cette expression est une sorte de si-alors-sinon
sous forme d'expression : 

70

sous forme d'expression : 

� a = (condition e) ? x : y

� si la condition e est vraie alors a vaut x sinon elle vaut y. 

� Exemple : a = (v==2) ? 1 : 0;

� Cette expression affecte à la variable a la valeur 1 si v vaut 
2, sinon affecte à la variable a la valeur 0.



La conversion de types

� Il y a 2 catégories de conversions possibles :

� Conversions explicites :

� celles faites sur une demande explicite par un programmeur.

71

� celles faites sur une demande explicite par un programmeur.

� Conversions implicites : 

� celles faites automatiquement par un compilateur :

� lors d'une affectation,

� lors d'une opération arithmétique, 

� lors d'un passage de paramètres (lors de l'invocation d'une 

méthode),



La conversion de types

� Conversion explicite :
� Objectif : 

� changer le type d'une donnée si besoin. 

� Comment ? :

Préfixer l’opérande par le type choisi. 

72

� Préfixer l’opérande par le type choisi. 

� Encadrer le type choisi par des parenthèses.

� Exemple :

� double d = 2.5 ; 

� long l = (long) d ;

� Conversion implicite lors d'une affectation :
� Objectif : 

� changer automatiquement le type d'une donnée si besoin. 



La conversion de types
� La conversion numérique est faite automatiquement 

(implicitement) vers le type le plus riche dans une opération 
arithmétique

int i;
i  = ‘A’; 
System.out.print( i ) ; // vaut 65

La conversion peut être faite explicitement vers un type plus 

73

� La conversion peut être faite explicitement vers un type plus 
pauvre

double x = 2.1;
int a;

a= (int)x ;  // vaut 2
int b = a * 1500;

� Hiérarchie des types : byte < short < int < long < float < double 



La conversion de types

74

Y = OUI (YES),  N = NON (NO),  C = Cast (besoin de conversion explicite)



II.2. 

Les structures de contrôleLes structures de contrôle

Conditions, boucles, …



Les structures de contôle
� Les structures de contrôles permettent d’arrêter l’exécution 

linéaire des instructions (de bas en haut et de gauche à 
droite)

� Elles permettent d’exécuter conditionnellement une 
instruction, ou de réaliser une boucle

76

Type d’instruction Mots clés utilisés

Décision if() else – switch() case

Boucle for( ; ; ) – while () – do while()

Traitement 
d’exceptions

try catch finally – throw

Branchement label : -- break – continue -- return



if-else

� Instruction conditionnelle : 

if (condition)

{bloc 1}

if (x > y) {

int tmp = x; 

x = y;

y = tmp;

} else 

x = 0;

...

if ((x > s1)&& (x < s2))

y=3*x+1;

else 

y=0;

77

if (condition) {bloc 1} 

else {bloc 2}

if (condition 1) {bloc 1} 

else if (condition 2){bloc 2}

else {bloc N}

y=0;

if (i == j ){ 
System.out.println (" i 

est égal à j " );
}
else if ( i>j){

System.out.println (" 
i est supérieur à j" );

}
else {

System.out.println (" 
i est inférieur à j " );

}



switch-case

switch nomVariable

{

case valeur1 : {...

break;

}

...

int i = 1;
switch (i)
{ case 0 :

System.out.println ("Zero");
break;

case 1 :
System.out.println ("Un");
break;

case 2 :
System.out.println ("Deux");
break;

78

...

case valeurn : {...

break;

}

default : {...

break;

}

} ;

Attention en JAVA :

• nomVariable : QUE de type “intégral” :  

boolean , char, int, long et short

• break; OBLIGATOIRE !

break;
default :

System.out.println ("Autre");
break;

}



for

� Boucle for 

for (expr1; expr2; expr3)

{bloc} float moyenne= 0;

// Initialisation d'un tableau d'entier

79

fonctionnement :

expr1

if (expr2==true){

bloc

expr3

}

// Initialisation d'un tableau d'entier

int[] tab = { 2, 5, -1, 4, 3 }; 

for (int i =0; i < tab.length; i++)

// conversion!

moyenne+=tab[i];

moyenne /= tab.length;

System.out.println("La moyenne est 

"+moyenne);

// Si moyenne etait un int, la division 

// serait entière



while et do-while

� Boucles while

while 

(condition)

{bloc}

// Chercher un élément nul dans un 

tableau

int i = 0;

while ((tab[i] != 0)&& (i<tab.length))

i++;

System.out.println("Le premier élément 

80

{bloc}

do {bloc}

while

(condition)

System.out.println("Le premier élément 

nul est en "+ i);

...

int somme=1;

int i=borneSuperieure;

do{

somme+=i

i--

} while (i>0)



break
� Interruption de boucle

� Interruption non étiquetée : sortie de la boucle la plus haute.

while( i <= 100 ) {

i += 10;

if( i >= 2 * n + 1 ) {

break;

}

81

}

}

� Interruption étiquetée : sortie d'une boucle imbriquée.

boucle_1:
while( i <= 100 ) {

i += 10;

boucle_2:
while( i < j ) {

i++;

if( i >= 2 * n + 1 ) {

break boucle_2;

}

}

}



continue

� Continuation de boucle = court-circuit de la fin d’une itération

int x = 0;
while (x < 10)
{
x++;

82

x++;
if (x == 5) 
{
continue;

}
System.out.print(x + " ");

}

Produira
> 1 2 3 4 6 7 8 9 10



Les tableaux

� Array

� Stockage d’éléments tous du même type

� Structure à part entière

Un tableau est un objet référencé

83

� Un tableau est un objet référencé

� Assimilable à une classe 

� Création en trois étapes

1. déclaration

2. allocation de mémoire

3. initialisation des éléments



Les tableaux

� Indiqué par []
� Deux possibilités

type[] nom;

type nom[];

84

type nom[];

int[] tableau1;

int tableau2[];

int[][] matrice;  // tableau bidimensionnel

int[] x, y[]; //équivalent à int x[],y[][];

int tab[10];  // ne compile pas



Allocation et initialisation

� Alloué dynamiquement
� à l'aide du mot clé new

int[] tableau1;  // déclaration

tableau1 = new int[10];  // allocation

85

tableau1 = new int[10];  // allocation

int tableau2[]; // déclaration

tableau2 = new int[35]; // allocation

int[][] matrice; // déclaration

matrice = new int[2][4]; // allocation

int[] x, y[]; // déclaration

x = new int[5]; // allocation

y = new int[3][2]; // allocation



Allocation et initialisation

� On peut combiner déclaration et allocation
int[] tableau1 = new int[10];

int tableau2[] = new int[35];

int[][] matrice = new int[2][4];

int[] x = new int[5];

86

int[] x = new int[5];

int[] y[] = new int[3][2];

� Chaque élément doit être initialisé séparément
int[] tablo = new int[10];

for (int i = 0; i < 10; i++) {

tablo[i] = i;

}



Allocation et initialisation

� Valeurs initiales peuvent être énumérées

� int[] joursParMois = {31, 28, 31,30, 31, 

30, 31, 31, 30, 31, 30, 31};

87

30, 31, 31, 30, 31, 30, 31};

� String[] jours = {"lundi", "mardi", 

"mercredi", "jeudi", "vendredi", "samedi", 

"dimanche"};

� Déclaration, allocation, initialisation



Accès aux tableaux

� Indexage à partir de 0

� Accès aux éléments par []

tablo[i] i = 0..tablo.length - 1

� Nombre d’éléments donné par la variable

88

� Nombre d’éléments donné par la variable

nom.length

for (int i = 0; i < tablo.length; i++) {

System.out.print(tablo[i] + " ");

tablo[i] = -tablo[i];

}


