1.1 Helly’s Theorem and its Applications

One of the fundamental theorems on convexity is Helly’s Theorem, which states the following:

Theorem 1 (Helly’s Theorem). Given a set \(C \) of compact convex objects in \(\mathbb{R}^d \) such that every \((d+1)\) of them have a common intersection, all of them have a common intersection.

Intuitive sketch. Consider the proof for the one-dimensional case, where \(C \) becomes a set of intervals. Our proof will be by induction on \(n = |C| \), the number of intervals. Let \(C = \{C_1, \ldots, C_n\} \) be the set of pair-wise intersecting intervals. Let \(I = \cap_{i=1}^{n-1} C_i \) be the common intersection interval of the first \(n-1 \) intervals of \(C \). By inductive hypothesis, \(I \neq \emptyset \). Now we need to show that the remaining interval \(C_n \) intersects \(I \). Otherwise, say \(C_n \) lies to the right of \(I \) (the case where it lies to the left of \(I \) is similar). Note the following structural fact: the right endpoint of \(I \) is also the right endpoint of an interval \(C_i \in C \setminus C_n \). Then this \(C_i \) and \(C_n \) do not have a common intersection, a contradiction.

The generalization to \(\mathbb{R}^2 \) is immediate by a similar structural claim: given a set of convex polygons \(C \), let \(I \) be their common intersection. See Figure 1.1 (a). Then any fixed vertex, say \(v \), of \(I \) is the intersection of two edges, say \(e_1, e_2 \), of the corresponding two objects of \(C \), say polygons \(C_1 \) and \(C_2 \). Furthermore, the halfspace \(h_i \) supporting the edge \(e_i \), for \(i = 1, 2 \), and containing \(I \) also contains \(C_i \) completely.

Proceed via induction, as before, on the cardinality of \(C \). Let \(I = \cap_{i=1}^{n-1} C_i \). Suppose that \(C_n \) does not intersect \(I \). Then, there exists a plane \(h \) separating \(I \) from \(C_n \). See Figure 1.1 (b). By translating \(h \) towards \(I \), we can assume it passes through some vertex, say vertex \(v \), of \(I \). The common intersection of the two convex objects whose boundary edges define \(v \) lies within the intersection of their corresponding halfspaces, and on the same side of \(h \) as \(I \). Therefore, the common intersection of these two objects with \(C_n \) is empty, a contradiction to the fact that every 3-tuple must have a common intersection.

![Figure 1.1](image.png)

Figure 1.1: a) Each halfspace \(h_i \) completely contains \(C_i \), b) The line \(h \) separating \(C_n \) from \(I \) contains \(h_1 \cap h_2 \).
We now give a formal proof by an extremal configuration argument. We first present the simplest case – pair-wise intersecting intervals in \mathbb{R} – and then generalize it to the d-dimensional case.

Extremal configuration argument. Let C be a set of intervals in \mathbb{R}. Pick the interval, say $C' \in C$, whose left endpoint is as to the right as possible. Formally, define $h(C)$ to be the coordinate of the left endpoint of interval C, and let $h(C) = \max_{C \in C} h(C)$. Let C' be the interval of C which realizes $h(C)$. We claim that the point $h(C')$ is contained in all intervals. Assuming otherwise, an interval C'' not containing $h(C')$ either lies to the left of the point $h(C')$, in which case C' does not intersect C'', or it lies to the right, in which case C' does not realize the maximum of $h(C)$. Either way, we get a contradiction and we’re done.

Now let C be a set of convex objects in \mathbb{R}^d. Define $h(C')$, for any $C' \subseteq C$, to be the y-coordinate of the point with the lowest y-coordinate in the common intersection of C'. Define

$$h(C) = \max_{|C'| = d} h(C')$$

Let C' be the set of d objects of C which realize $h(C)$, and let p be the point in their common intersection with the lowest y-coordinate (i.e., p has y-coordinate equal to $h(C)$). We claim that p is contained in all convex objects. Otherwise, assume some object C does not contain p. Since every $(d+1)$-tuple intersects, $C' \cup C$ has non-empty intersection. Furthermore, note that every point of this common intersection has y-coordinate greater than that of p: the smallest y-coordinate of the common intersection of C' is that of p and C does not contain p. Now it is fairly intuitive (see Figure 1.2(a) for an illustration in \mathbb{R}^2) that from this $(d+1)$-sized intersection of $C' \cup C$, whose lowest point has y-coordinate greater than that of p, one can pick d objects whose lowest y-coordinate of the intersection is greater than that of p, a contradiction to the definition of p.

Figure 1.2: a) Any convex object C (dotted) not containing p but intersecting $C_1 \cap C_2$ must have $h(\{C, C_1\}) > h(\{C_1, C_2\})$ or $h(\{C, C_2\}) > h(\{C_1, C_2\})$, b) C'_{d-1} for two-dimensional case, where any two disjoint intervals must form a pair with greater $h(\cdot)$.

4
Here’s the formal argument: consider convex objects obtained by the intersection of each object of \(\mathcal{C}' \cup \mathcal{C} \) with the plane \(h \) defined by \(y = h(\mathcal{C}) \), i.e., all points with \(y \)-coordinate equal to that of \(p \). Call this set of convex objects in \(\mathbb{R}^{d-1} \) as \(\mathcal{C}_{d-1} \). As the common intersection of \(\mathcal{C}' \cup \mathcal{C} \) lies above this plane, the common intersection of \(\mathcal{C}_{d-1} \) in \(h \) is empty, and so by (the contra-positive statement of) Helly’s theorem in \(\mathbb{R}^{d-1} \), there exist \(d \) objects of \(\mathcal{C}_{d-1} \), say \(\mathcal{C}'' \), whose common intersection lies strictly above \(h \). But then we have \(h(\mathcal{C}'') > h(\mathcal{C}') \), a contradiction. See Figure 1.2(b).

There are several equivalent ways of stating Helly’s theorem, here’s an important one:

Theorem 2 (Locality of Convexity). Given a set \(\mathcal{C} \) of convex objects in \(\mathbb{R}^d \) having a non-empty common intersection \(I \), consider the point \(p \) of \(I \) with the minimum \(y \)-coordinate. Then \(p \) is also the point with the minimum \(y \)-coordinate in the common intersection of some \(d \) objects of \(\mathcal{C} \).

The proof of this statement was essentially given in our proof of Helly’s theorem.

Helly’s Theorem \(\implies \) Locality of Convexity: Given \(\mathcal{C} \), pick the \(d \)-tuple \(\mathcal{C}' \) with the maximum \(h(\mathcal{C}') \). Let \(p \) be the point realizing \(h(\mathcal{C}') \). We complete our proof if we show that every object of \(\mathcal{C} \) contains \(p \). Let \(h \) be the plane defined by \(y = h(\mathcal{C}') \). Assume an object \(C \) does not contain \(p \). Since the intersection of \(\mathcal{C}' \) lies on and above \(h \), the common intersection of \(\mathcal{C}' \cup C \) lies strictly above \(h \), and so the common intersection of the set \(\mathcal{C}_{d-1} = \{ C' \cap h, \ C' \in \mathcal{C}' \cup \mathcal{C} \} \) is empty. By Helly’s theorem in \(\mathbb{R}^{d-1} \), there exists a \(d \)-sized subset of \(\mathcal{C}_{d-1} \) which also has empty intersection, i.e., a \(d \)-sized subset of \(\mathcal{C}' \cup C \) has common intersection strictly above \(h \), a contradiction to the maximality of \(\mathcal{C}' \).

Locality of Convexity \(\implies \) Helly’s Theorem: Given \(\mathcal{C} \) such that every \((d+1) \)-tuple have a common intersection, pick the \(d \)-tuple \(\mathcal{C}' \) with maximum \(h(\mathcal{C}') \). Let \(p \) be this point in the intersection of \(\mathcal{C}' \) realizing \(h(\mathcal{C}') \). We claim that \(p \) is contained in every convex object. Assume a \(C \) does not contain \(p \). The common intersection of \(\mathcal{C}' \cup C \) lies above \(h \), and by the Locality of Convexity, there exists a \(d \)-sized subset of \(\mathcal{C}' \cup C \) with the common intersection above \(h \), a contradiction to \(h(\mathcal{C}') \).

Remark: We defined \(h(\cdot) \) as maximizing the minimum \(y \)-coordinate. All the proofs work when over any direction, instead of just the vertical direction. Similarly, Locality of Convexity holds for the extreme vertex in any direction.

The centerpoint theorem. Helly’s theorem is the starting point of a large number of basic results. Here’s one that we’ll encounter several times again.

Theorem 3 (Centerpoint Theorem). Given any set \(P \) of \(n \) points in \(\mathbb{R}^d \), there exists a point \(c \in \mathbb{R}^d \) such that any closed halfspace containing \(c \) contains at least \(\frac{n}{d+1} \) points of \(P \).

The connection to Helly’s theorem comes from the following statement. Given \(P \), let \(\mathcal{C} \) denote the set of all convex polytopes containing greater than \(\frac{dn}{d+1} \) points of \(P \). We can assume \(\mathcal{C} \)
to be finite by requiring each polytope to be the convex hull of the points it contains. Now, note the following: any point that hits all the convex polytopes in C is a centerpoint, and vice versa. Let c be a centerpoint, and assume a polytope C is not hit by c. Then there exists a plane separating c from C, and the closed halfspace defined by this plane containing c contains less than $\frac{n}{d+1}$ points of P, a contradiction. The other direction is similar.

Now we only need to show that C can be hit by one point. To use Helly’s theorem, one needs to show that every $(d + 1)$-tuple of C has a common point of P. This follows from a counting argument. For contradiction, assume a $(d + 1)$-tuple $C' \subseteq C$ has an empty common intersection. Now count all pairs of type (p, C), where $p \in P$, $C \in C'$ and $p \in C$. This is greater than $|C'| \cdot \frac{dn}{d+1}$, and at most $d \cdot n$. Putting them together gives a contradiction.

The centerpoint theorem now follows from Helly’s theorem.

Remark: Even though every $(d+1)$-tuple of C has a point of P in common, Helly’s theorem does not then imply that a point of P has to be a centerpoint. In fact, that is false; e.g., take P to be in convex position.

Remark: The centerpoint theorem is optimal: take n points, and put them very near the vertices of a regular simplex in \mathbb{R}^d, in groups of size $\frac{n}{d+1}$. It is not hard to see that no point can do better than $\frac{n}{d+1}$. Of course, for some pointsets, one can get a better bound. The depth of a pointset is defined as the largest number $\frac{1}{d+1} \leq q \leq 1/2$ such that there exists a point c such that any closed halfspace containing c contains at least qn points of P. So for example, the depth of a set of points spread uniformly around a circle is $1/2$ (realized by its center). The point that realizes the depth of P is sometimes called the Tukey point.

Final Remarks. The proof of Locality of Convexity given in [M] uses Helly’s theorem in \mathbb{R}^d instead of in \mathbb{R}^{d-1}, which is not really required. The proof of Helly’s theorem in [M] is derived from Radon’s theorem, and though while clever, is somewhat non-intuitive. It uses induction on n to construct the point hitting all convex objects, and is computationally infeasible. A good side-product of the given proof is that computing the point hitting all convex objects is trivial: just enumerate over all d-sized subsets of C, and select $h(C)$. Finally, we will see two more proofs of Helly’s theorem during the course (in different contexts): using a smallest-ball argument, and using Brouwer’s fixed point theorem.