Reductions to Prove \textbf{NP} Hardness

Nabil Mustafa

Computational Complexity
Reductions

- The class \textbf{NP} : languages with succinct membership certificates
Reductions

- The class **NP**: languages with succinct membership certificates
- **Cook-Levin**: All \(L \in \text{NP} \) can be reduced to SAT
 - \(\exists \) polynomial \(g(\cdot) \) such that \(x \in L \iff g(x) \in \text{SAT} \)
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All $L \in \textbf{NP}$ can be reduced to SAT
 - \exists polynomial $g(\cdot)$ such that $x \in L \iff g(x) \in \text{SAT}$
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
- 2-CNF SAT is in P through a poly-time algorithm.
- 3-CNF SAT then becomes a very important problem. Also, an elementary problem, very simple to understand
- Captures the 'pure' combinatorial choices of algorithms
- Given 3-CNF SAT, can construct a host of other reductions.
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All $L \in \textbf{NP}$ can be reduced to SAT
 - \exists polynomial $g(\cdot)$ such that $x \in L \iff g(x) \in \text{SAT}$
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All $L \in \text{NP}$ can be reduced to SAT
 - \exists polynomial $g(\cdot)$ such that $x \in L \iff g(x) \in \text{SAT}$
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
 - 2-CNF SAT is in **P** through a poly-time algorithm.
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All \(L \in \textbf{NP} \) can be reduced to SAT
 - \(\exists \) polynomial \(g(\cdot) \) such that \(x \in L \iff g(x) \in \text{SAT} \)
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
 - 2-CNF SAT is in \(\textbf{P} \) through a poly-time algorithm.

- 3-CNF SAT then becomes a very important problem. Also,
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All $L \in \text{NP}$ can be reduced to SAT
 - \exists polynomial $g(\cdot)$ such that $x \in L \iff g(x) \in \text{SAT}$
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
 - 2-CNF SAT is in P through a poly-time algorithm.

- 3-CNF SAT then becomes a very important problem. Also,
 - An elementary problem, very simple to understand
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All $L \in \text{NP}$ can be reduced to SAT
 - \exists polynomial $g(\cdot)$ such that $x \in L \iff g(x) \in \text{SAT}$
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
 - 2-CNF SAT is in P through a poly-time algorithm.

- 3-CNF SAT then becomes a very important problem. Also,
 - An elementary problem, very simple to understand
 - Captures the ‘pure’ combinatorial choices of algorithms
Reductions

- The class **NP**: languages with succinct membership certificates

- **Cook-Levin**: All $L \in \text{NP}$ can be reduced to SAT
 - \exists polynomial $g(\cdot)$ such that $x \in L \iff g(x) \in \text{SAT}$
 - Very important to remember the implication goes both ways

- Gave a reduction from general CNF SAT to 3-CNF SAT
 - 2-CNF SAT is in P through a poly-time algorithm.

- 3-CNF SAT then becomes a very important problem. Also,
 - An elementary problem, very simple to understand
 - Captures the ‘pure’ combinatorial choices of algorithms

- Given 3-CNF SAT, can construct a host of other reductions.
Claim

INDSET: Given a graph $G = (V, E)$ and a parameter k, does G have an independent set of size k?

The independent set problem (**INDSET**) is **NP** complete.
INDSET

Claim

INDSET: Given a graph $G = (V, E)$ and a parameter k, does G have an independent set of size k?

The independent set problem (INDSET) is NP complete.

- i) It is in NP
Claim

INDSET: Given a graph $G = (V, E)$ and a parameter k, does G have an independent set of size k?

The independent set problem (INDSET) is NP complete.

- i) It is in NP
- ii) Reduce a NP hard problem to it
Claim

INDSET: Given a graph $G = (V, E)$ and a parameter k, does G have an independent set of size k?

The independent set problem (**INDSET**) is **NP** complete.

- i) It is in **NP**
- ii) Reduce a **NP** hard problem to it

Show: If one can solve INDSET in polynomial time, then can solve 3-CNF SAT problem in polynomial time as well.
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x^i_1 \lor x^i_2 \lor x^i_3) \]

- Construct a graph \(G = (V, E) \) as follows:

 - Vertices: Each literal \(x^i_j \) in \(C_i \) corresponds to the vertex \(v^i_j \).
 - Edges: \((v^i_j, v^{i'}_{j'}) \in E\) if \(x^i_j, x^{i'}_{j'} \) are the same variable negated.
 - Add all possible edges between \(v^i_1, v^i_2 \) and \(v^i_3 \) for all \(i \).
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:
 - Vertices: Each literal \(x_j^i \in C_i \) corresponds to the vertex \(v_j^i \).
\(\phi = C_1 \land C_2 \land \ldots \land C_k \), where \(C_i = (x^i_1 \lor x^i_2 \lor x^i_3) \)

- Construct a graph \(G = (V, E) \) as follows:
 - Vertices: Each literal \(x^i_j \in C_i \) corresponds to the vertex \(v^i_j \).
 - Edges: \((v^i_j, v^i_{j'}) \in E \) if \(x^i_j, x^i_{j'} \) are the same variable negated.
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:
 - Vertices: Each literal \(x_j^i \in C_i \) corresponds to the vertex \(v_j^i \).
 - Edges: \((v_j^i, v_j'^i) \in E \) if \(x_j^i, x_j'^i \) are the same variable negated.
 - Add all possible edges between \(v_1^i, v_2^i \) and \(v_3^i \) for all \(i \).
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \]
where \(C_i = (x_1^i \lor x_2^i \lor x_3^i) \)

- Construct a graph \(G = (V, E) \) as follows:
 - Vertices: Each literal \(x_j^i \in C_i \) corresponds to the vertex \(v_j^i \).
 - Edges: \((v_j^i, v_j'^i) \in E \) if \(x_j^i, x_j'^i \) are the same variable negated.
 - Add all possible edges between \(v_1^i \), \(v_2^i \) and \(v_3^i \) for all \(i \).

\[
(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4)
\]
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:
 - Vertices: Each literal \(x_j^i \in C_i \) corresponds to the vertex \(v_j^i \).
 - Edges: \((v_j^i, v_j^{i'}) \in E \) if \(x_j^i, x_j^{i'} \) are the same variable negated.
 - Add all possible edges between \(v_1^i, v_2^i \) and \(v_3^i \) for all \(i \).

\[
(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor x_4) \land (\overline{x_2} \lor x_4)
\]
\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Construct a graph \(G = (V, E) \) *as follows:*

- **Vertices:** Each literal \(x_j^i \in C_i \) corresponds to the vertex \(v_j^i \).
- **Edges:** \((v_j^i, v_j'^i) \in E\) if \(x_j^i, x_j'^i \) are the same variable negated.
- **Add all possible edges between** \(v_1^i, v_2^i \) **and** \(v_3^i \) **for all** \(i \).

\[
(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4)
\]
\(\phi = C_1 \land C_2 \land \ldots \land C_k \), where \(C_i = (x_1^i \lor x_2^i \lor x_3^i) \)

- Construct a graph \(G = (V, E) \) as follows:
 - Vertices: Each literal \(x_{ij}^i \in C_i \) corresponds to the vertex \(v_{ij}^i \).
 - Edges: \((v_{ij}^i, v_{ij'}^i) \in E \) if \(x_{ij}^i, x_{ij'}^i \) are the same variable negated.
 - Add all possible edges between \(v_1^i, v_2^i \) and \(v_3^i \) for all \(i \).

\[
(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4)
\]
Reduction for INDSET

- **Claim:** If G has an independent set of size k, ϕ is satisfiable
Reduction for INDSET

Claim: If G has an independent set of size k, ϕ is satisfiable

- The independent set, say V', cannot have two vertices from the same clause
Reduction for INDSET

- **Claim:** If G has an independent set of size k, ϕ is satisfiable
 - The independent set, say V', cannot have two vertices from the same clause
 - Therefore, V' has exactly one vertex from each of the k clauses
Reduction for INDSET

- **Claim:** If G has an independent set of size k, ϕ is satisfiable

 - The independent set, say V', cannot have two vertices from the same clause
 - Therefore, V' has exactly one vertex from each of the k clauses
 - No pair maps to literals x and \overline{x}
Claim: If G has an independent set of size k, ϕ is satisfiable

- The independent set, say V', cannot have two vertices from the same clause
- Therefore, V' has exactly one vertex from each of the k clauses
- No pair maps to literals x and \overline{x}
- If v^i_j corresponds to literal $x^i_j = x$, set $x^i_j = 1$
Reduction for INDSET

Claim: If G has an independent set of size k, ϕ is satisfiable

- The independent set, say V', cannot have two vertices from the same clause
- Therefore, V' has exactly one vertex from each of the k clauses
- No pair maps to literals x and \overline{x}
- If v^i_j corresponds to literal $x^i_j = x$, set $x^i_j = 1$
- If v^i_j corresponds to literal $x^i_j = \overline{x}$, set $x^i_j = 0$
Claim: If G has an independent set of size k, ϕ is satisfiable

- The independent set, say V', cannot have two vertices from the same clause
- Therefore, V' has exactly one vertex from each of the k clauses
- No pair maps to literals x and \overline{x}
- If v^i_j corresponds to literal $x^i_j = x$, set $x^i_j = 1$
- If v^i_j corresponds to literal $x^i_j = \overline{x}$, set $x^i_j = 0$
- Each clause satisfied, and no variable-setting conflicts between clauses
Reduction for INDSET

- **Claim:** If G has an independent set of size k, ϕ is satisfiable

 - The independent set, say V', cannot have two vertices from the same clause
 - Therefore, V' has exactly one vertex from each of the k clauses
 - No pair maps to literals x and \overline{x}
 - If v_j^i corresponds to literal $x_j^i = x$, set $x_j^i = 1$
 - If v_j^i corresponds to literal $x_j^i = \overline{x}$, set $x_j^i = 0$
 - Each clause satisfied, and no variable-setting conflicts between clauses

- **Claim:** If ϕ is satisfiable, G has an independent set of size k
Claim

CLIQUE: Given a graph $G = (V, E)$ and a parameter k, does G have a clique of size k?

The clique problem (CLIQUE) is **NP complete**.
CLAIM

Claim

CLAIM: Given a graph $G = (V, E)$ and a parameter k, does G have a clique of size k?

The clique problem (CLAIM) is NP complete.

- Reduction from INDSET
Claim

CLIQUE : Given a graph $G = (V, E)$ and a parameter k, does G have a clique of size k?

The clique problem (CLIQUE) is NP complete.

- Reduction from INDSET
- Given G, consider the complement graph \overline{G}
Claim

CLIQUE: Given a graph $G = (V, E)$ and a parameter k, does G have a clique of size k?

The clique problem (CLIQUE) is NP complete.

- Reduction from INDSET
- Given G, consider the complement graph \overline{G}
- Claim: G has an indset of size k iff \overline{G} has clique of size k
Claim

CLIQUE : Given a graph $G = (V, E)$ and a parameter k, does G have a clique of size k?

The clique problem (CLIQUE) is **NP complete**.

- Reduction from INDSET
- Given G, consider the complement graph \overline{G}
- Claim: G has an indset of size k iff \overline{G} has clique of size k
Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]
Same CLIQUE Reduction ‘Unrolled’

Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_i^1 \lor x_i^2 \lor x_i^3) \]

Construct a graph \(G = (V, E) \) as follows:
Same CLIQUE Reduction ‘Unrolled’

Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:
 - **Vertices**: Each literal corresponds to a vertex.
Same CLIQUE Reduction ‘Unrolled’

Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_i^1 \lor x_i^2 \lor x_i^3) \]

Construct a graph \(G = (V, E) \) as follows:

- **Vertices**: Each literal corresponds to a vertex.
- **Edges**: All vertices are connected with an edge except the vertices of the same clause and vertices with negated literals.
Same CLIQUE Reduction ‘Unrolled’

Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Construct a graph \(G = (V, E) \) as follows:

- **Vertices**: Each literal corresponds to a vertex.
- **Edges**: All vertices are connected with an edge except the vertices of the same clause and vertices with negated literals.
 - \(x_i, x_j \in C_k \) does not have an edge.
Same CLIQUE Reduction ‘Unrolled’

Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x_i^1 \lor x_i^2 \lor x_i^3) \]

- Construct a graph \(G = (V, E) \) as follows:
 - **Vertices**: Each literal corresponds to a vertex.
 - **Edges**: All vertices are connected with an edge except the vertices of the same clause and vertices with negated literals.
 - \(x_i, x_j \in C_k \) does not have an edge.
 - \(x_i \in C_k, \bar{x}_i \in C_j \) does not have an edge.
Same CLIQUE Reduction ‘Unrolled’

Reduce 3-CNF SAT to CLIQUE

\[\phi = C_1 \land C_2 \land \ldots \land C_k, \text{ where } C_i = (x^i_1 \lor x^i_2 \lor x^i_3) \]

- **Construct a graph** \(G = (V, E) \) as follows:
 - **Vertices**: Each literal corresponds to a vertex.
 - **Edges**: All vertices are connected with an edge except the vertices of the same clause and vertices with negated literals.
 - \(x_i, x_j \in C_k \) does not have an edge.
 - \(x_i \in C_k, \bar{x}_i \in C_j \) does not have an edge.

- Clique of size \(k \) in \(G \) iff 3-CNF satisfiable.
Example Clique Reduction

\[\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor x_4) \land (x_2 \lor x_4) \]
A Vertex Cover of an undirected graph \(G = (V, E) \) is a subset \(V' \) of vertex set \(V \) of the vertices of \(G \) which contains at least one of the two end points of each edge.

\[
V' \subseteq V : \forall (v_i, v_j) \in E : v_i \in V' \lor v_j \in V'
\]
Claim

VERTEX-COVER : Given a graph $G = (V, E)$ and a parameter k, does G have a vertex cover of size k?

The vertex cover problem (**VERTEX-COVER**) is **NP** complete.
vertex-cover

Claim

vertex-cover: Given a graph \(G = (V, E) \) and a parameter \(k \), does \(G \) have a vertex cover of size \(k \)?

The vertex cover problem (vertex-cover) is \(\text{NP} \) complete.

- Note that vertex-cover is in \(\text{NP} \)
Claim

VERTEX-COVER: Given a graph $G = (V, E)$ and a parameter k, does G have a vertex cover of size k?

The vertex cover problem (VERTEX-COVER) is NP complete.

- Note that VERTEX-COVER is in NP
- We reduce 3-CNF SAT to VERTEX-COVER
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:

1. **Variable vertices:** Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \).
2. **Edge vertices:** Each clause \(C_j \) creates a set \(V(C_j) \) of \(n_j \) vertices.
3. **Edges:** For all \(x_i \), \((v_1^i, v_0^i) \in E\).
4. **Edges:** Add all possible edges between each set \(V(C_j) \).
5. **Edges:** For each literal \(x_i \in C_j \), connect its vertex in \(C_j \) to the corresponding literal vertex.

Question: Does \(G \) have a vertex-cover of size \(k = n + 2m \)?
Reduction for VERTEX–COVER

\[
\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i)
\]

- Construct a graph \(G = (V, E) \) as follows:
 - Variable vertices: Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \)
 - Edge vertices: Each clause \(C_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
 - Edges: For all \(x_i \), \((v_1^i, v_0^i) \in E\)
 - Edges: Add all possible edges between each set \(V(C_j) \)
 - Edges: For each literal \(x_i \in C_j \), connect its vertex in \(C_j \) to the corresponding literal vertex.

\(k = n + 2m \)

Question: Does \(G \) have a vertex-cover of size \(k \)?
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Construct a graph \(G = (V, E) \) as follows:

- Variable vertices: Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \)
- Edge vertices: Each clause \(C_j \) \(n_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
Reduction for VERTEX–COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Construct a graph \(G = (V, E) \) as follows:

- **Variable vertices**: Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \)
- **Edge vertices**: Each clause \(C_j n_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
- **Edges**: For all \(x_i \), \((v_1^i, v_0^i) \in E \)
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Construct a graph \(G = (V, E) \) as follows:

- **Variable vertices:** Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \)
- **Edge vertices:** Each clause \(C_j \) \(n_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
- **Edges:** For all \(x_i \), \((v_1^i, v_0^i) \in E\)
- **Edges:** Add all possible edges between each set \(V(C_j) \)
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_{i1}^i \lor x_{i2}^i \lor x_{i3}^i) \]

Construct a graph \(G = (V, E) \) as follows:

- Variable vertices: Each variable \(x_i \) creates two vertices \(v_{i1} \) and \(v_{i0} \)
- Edge vertices: Each clause \(C_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
- Edges: For all \(x_i \), \((v_{i1}, v_{i0}) \in E \)
- Edges: Add all possible edges between each set \(V(C_j) \)
- Edges: For each literal \(x_i \in C_j \), connect its vertex in \(C_j \) to the corresponding literal vertex.
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:
 - Variable vertices: Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \)
 - Edge vertices: Each clause \(C_j \) \(n_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
 - Edges: For all \(x_i \), \((v_1^i, v_0^i) \in E \)
 - Edges: Add all possible edges between each set \(V(C_j) \)
 - Edges: For each literal \(x_i \in C_j \), connect its vertex in \(C_j \) to the corresponding literal vertex.
 - \(k = n + 2m \)
Reduction for VERTEX-COVER

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Construct a graph \(G = (V, E) \) as follows:
 - Variable vertices: Each variable \(x_i \) creates two vertices \(v_1^i, v_0^i \)
 - Edge vertices: Each clause \(C_j \) \(n_j \) creates a set \(V(C_j) \) of \(n_j \) vertices
 - Edges: For all \(x_i \), \((v_1^i, v_0^i) \in E \)
 - Edges: Add all possible edges between each set \(V(C_j) \)
 - Edges: For each literal \(x_i \in C_j \), connect its vertex in \(C_j \) to the corresponding literal vertex.
 - \(k = n + 2m \)

- Question: Does \(G \) have a vertex-cover of size \(k \)?
Reduction for VERTEX-COVER

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4 \lor x_1), \, n = 4, \, m = 3$$
Reduction for VERTEX-COVER

\[(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4 \lor x_1), n = 4, m = 3\]
Reduction for VERTEX-COVER

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4 \lor x_1), \ n = 4, \ m = 3$$
Reduction for VERTEX-COVER

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4 \lor x_1), \ n = 4, \ m = 3$$
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover

Clearly, the number of vertices picked is $n + 2m$.

An edge between two variable vertices is covered

For each i, exactly one of the variable vertices picked.

For each C_j, edges to the picked vertices covered.

Crucial: What about the edges incident upon x_j^2?

Edges within its clause covered by the other two picked vertices

Remaining edge of the form: (x_j^i, v_i^1) if x_j^i is un-negated.

We know that v_i^1 is picked, since $v_i = 1$.
Reduction for VERTEX–COVER

Claim: If \(\phi \) is satisfiable, then \(\exists \) a vertex cover of size \(k = n + 2m \)

- If variable \(x_i = 0 \), pick \(v^0_i \) to be in the vertex cover
- If variable \(x_i = 1 \), pick \(v^1_i \) to be in the vertex cover
- Each clause \(C_j \) has at least one literal, say \(x^j_2 \), set to \textit{true}.

- Don't pick edge vertex of \(x^j_i \), pick other two edge vertices

Claim: The picked vertices cover all the edges of \(G \).

Clearly, the number of vertices picked is \(n + 2m \).

An edge between two variable vertices is covered

For each \(i \), exactly one of the variable vertices picked.

For each \(C_j \), edges to the picked vertices covered.

Crucial: What about the edges incident upon \(x^j_2 \)?

Edges within its clause covered by the other two picked vertices

Remaining edge of the form: \((x^j_i, v^1_i) \) if \(x^j_i \) is un-negated.

We know that \(v^1_i \) is picked, since \(v^1_i = 1 \).
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{2j}^j, set to true.
 - Don’t pick edge vertex of x_{i}^j, pick other two edge vertices
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{j}^{2}, set to $true$.
 - Don’t pick edge vertex of x_{j}^{2}, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_j^2, set to true.
 - Don’t pick edge vertex of x_j^i, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_j^2, set to $true$.
 - Don’t pick edge vertex of x_j^i, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
- An edge between two variable vertices is covered
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{ij}^j, set to $true$.
 - Don’t pick edge vertex of x_{ij}^j, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
- An edge between two variable vertices is covered
 - For each i, exactly one of the variable vertices picked.
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{2j}^i, set to $true$.
 - Don’t pick edge vertex of x_{2j}^i, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
- An edge between two variable vertices is covered
 - For each i, exactly one of the variable vertices picked.
- For each C_j, edges to the picked vertices covered.
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{2j}^j, set to true.
 - Don’t pick edge vertex of x_{2j}^j, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
- An edge between two variable vertices is covered
 - For each i, exactly one of the variable vertices picked.
- For each C_j, edges to the picked vertices covered.

Crucial: What about the edges incident upon x_{2j}^j?
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{2j}^j, set to true.
 - Don’t pick edge vertex of x_{2j}^j, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
- An edge between two variable vertices is covered
 - For each i, exactly one of the variable vertices picked.
- For each C_j, edges to the picked vertices covered.
- Crucial: What about the edges incident upon x_{2j}^j?
 - Edges within its clause covered by the other two picked vertices
Reduction for VERTEX–COVER

Claim: If \(\phi \) is satisfiable, then \(\exists \) a vertex cover of size \(k = n + 2m \)

- If variable \(x_i = 0 \), pick \(v_i^0 \) to be in the vertex cover
- If variable \(x_i = 1 \), pick \(v_i^1 \) to be in the vertex cover
- Each clause \(C_j \) has at least one literal, say \(x_i^j \), set to \(true \).
 - Don’t pick edge vertex of \(x_i^j \), pick other two edge vertices

Claim: The picked vertices cover all the edges of \(G \).

- Clearly, the number of vertices picked is \(n + 2m \).
- An edge between two variable vertices is covered
 - For each \(i \), exactly one of the variable vertices picked.
- For each \(C_j \), edges to the picked vertices covered.
- Crucial: What about the edges incident upon \(x_2^j \)?
 - Edges within its clause covered by the other two picked vertices
 - Remaining edge of the form: \((x_i^j, v_i^1) \) if \(x_i^j \) is un-negated.
Reduction for VERTEX-COVER

Claim: If ϕ is satisfiable, then \exists a vertex cover of size $k = n + 2m$

- If variable $x_i = 0$, pick v_i^0 to be in the vertex cover
- If variable $x_i = 1$, pick v_i^1 to be in the vertex cover
- Each clause C_j has at least one literal, say x_{2j}^j, set to $true$.
 - Don’t pick edge vertex of x_{2j}^j, pick other two edge vertices

Claim: The picked vertices cover all the edges of G.

- Clearly, the number of vertices picked is $n + 2m$.
- An edge between two variable vertices is covered
 - For each i, exactly one of the variable vertices picked.
- For each C_j, edges to the picked vertices covered.

Crucial: What about the edges incident upon x_{2j}^j?

- Edges within its clause covered by the other two picked vertices
- Remaining edge of the form: (x_{2j}^j, v_i^1) if x_{2j}^j is un-negated.
- We know that v_i^1 is picked, since $v_i = 1$.

Reduction for VERTEX-COVER

Claim: If \(\exists \) a vertex cover of size \(k = n + 2m \), then \(\phi \) satisfiable
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.

In each set $V(C_j)$, at least 2 vertices in vertex cover. This already makes $n + 2m$ vertices!

Exactly one vertex not picked in each clause

Consider the clause $(x_1 \lor x_2 \lor x_3)$

Let's say x_1 and x_2 were picked in vertex cover

The edge (x_3, v_3) must be covered

Therefore v_3 must be in the vertex cover.

Then set the boolean variable $x_3 = 0$

Similarly, whichever vertex not picked in cover, set corresponding literal to 1

Thus, setting variables as above, each clause satisfied
Reduction for VERTEX-COVER

Claim: If \(\exists \) a vertex cover of size \(k = n + 2m \), then \(\phi \) satisfiable

- For each \(i \), at least one of the variable vertices in vertex cover.
- In each set \(V(C_j) \), at least 2 vertices in vertex cover
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover
- This already makes $n + 2m$ vertices!

Consider the clause $(x_1 \lor x_2 \lor x_3)$

Let's say x_1 and x_2 were picked in vertex cover

The edge (x_3, v_3) must be covered

Therefore v_3 must be in the vertex cover.

Then set the boolean variable $x_3 = 0$

Similarly, whichever vertex not picked in cover, set corresponding literal to 1

Thus, setting variables as above, each clause satisfied
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable
- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover.
- This already makes $n + 2m$ vertices!
- Exactly one vertex not picked in each clause.
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover.
- This already makes $n + 2m$ vertices!
- Exactly one vertex *not* picked in each clause.
- Consider the clause $(x_1 \lor x_2 \lor \overline{x}_3)$
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover.
- This already makes $n + 2m$ vertices!
- Exactly one vertex not picked in each clause.
- Consider the clause $(x_1 \lor x_2 \lor \overline{x_3})$
- Lets say x_1 and x_2 were picked in vertex cover.

Therefore, v_3 must be in the vertex cover.

Then set the boolean variable $x_3 = 0$.

Similarly, whichever vertex not picked in cover, set corresponding literal to 1.

Thus, setting variables as above, each clause satisfied.
Reduction for \textsc{VERTEX-COVER}

Claim: If \(\exists \) a vertex cover of size \(k = n + 2m \), then \(\phi \) satisfiable

- For each \(i \), at least one of the variable vertices in vertex cover.
- In each set \(V(C_j) \), at least 2 vertices in vertex cover
- This already makes \(n + 2m \) vertices!
- Exactly one vertex \textit{not} picked in each clause
- Consider the clause \((x_1 \lor x_2 \lor \overline{x}_3)\)
- Lets say \(x_1 \) and \(x_2 \) were picked in vertex cover
- The edge \((\overline{x}_3, \overline{v}_3)\) must be covered
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover
- This already makes $n + 2m$ vertices!
- Exactly one vertex not picked in each clause
- Consider the clause $(x_1 \lor x_2 \lor \overline{x}_3)$
- Lets say x_1 and x_2 were picked in vertex cover
- The edge $(\overline{x}_3, \overline{v}_3)$ must be covered
- Therefore \overline{v}_3 must be in the vertex cover.
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover.
- This already makes $n + 2m$ vertices!
- Exactly one vertex not picked in each clause.
- Consider the clause $(x_1 \lor x_2 \lor \overline{x_3})$
- Let's say x_1 and x_2 were picked in vertex cover.
- The edge $(\overline{x_3}, \overline{v_3})$ must be covered.
- Therefore $\overline{v_3}$ must be in the vertex cover.
- Then set the boolean variable $x_3 = 0$
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover
- This already makes $n + 2m$ vertices!
- Exactly one vertex not picked in each clause
- Consider the clause $(x_1 \lor x_2 \lor \overline{x}_3)$
- Lets say x_1 and x_2 were picked in vertex cover
- The edge $(\overline{x}_3, \overline{v}_3)$ must be covered
- Therefore \overline{v}_3 must be in the vertex cover.
- Then set the boolean variable $x_3 = 0$
- Similarly, whichever vertex not picked in cover, set corresponding literal to 1
Reduction for VERTEX-COVER

Claim: If \exists a vertex cover of size $k = n + 2m$, then ϕ satisfiable

- For each i, at least one of the variable vertices in vertex cover.
- In each set $V(C_j)$, at least 2 vertices in vertex cover.
- This already makes $n + 2m$ vertices!
- Exactly one vertex not picked in each clause.
- Consider the clause $(x_1 \lor x_2 \lor \overline{x}_3)$
- Let's say x_1 and x_2 were picked in vertex cover.
- The edge $(\overline{x}_3, \overline{v}_3)$ must be covered.
- Therefore \overline{v}_3 must be in the vertex cover.
- Then set the boolean variable $x_3 = 0$.
- Similarly, whichever vertex not picked in cover, set corresponding literal to 1.
- Thus, setting variables as above, each clause satisfied.
Another reduction for VERTEX-COVER

Claim

V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.
Another reduction for VERTEX–COVER

Claim

V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.

- Let $I = \{v_1, v_2, \ldots, v_{n-k}\}$ be INDSET of size $n - k$
Another reduction for VERTEX-COVER

Claim

V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.

- Let $I = \{v_1, v_2, \ldots, v_{n-k}\}$ be INDSET of size $n - k$
 - There is no edge in G with both endpoints in I
Another reduction for VERTEX-COVER

Claim
V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.

- Let $I = \{v_1, v_2, \ldots, v_{n-k}\}$ be INDSET of size $n - k$
 - There is no edge in G with both endpoints in I
 - So if we pick the remaining k vertices, all edges covered
Another reduction for VERTEX-COVER

Claim

V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.

- Let $I = \{v_1, v_2, \ldots, v_{n-k}\}$ be INDSET of size $n - k$
 - There is no edge in G with *both* endpoints in I
 - So if we pick the remaining k vertices, all edges covered

- $V' = \{v_1, v_2, \ldots, v_k\}$ is a vertex cover of size k
Another reduction for VERTEX-COVER

Claim

V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.

- Let $I = \{v_1, v_2, \ldots, v_{n-k}\}$ be INDSET of size $n - k$
 - There is no edge in G with both endpoints in I
 - So if we pick the remaining k vertices, all edges covered

- $V' = \{v_1, v_2, \ldots, v_k\}$ is a vertex cover of size k
 - Each edge in G has at least one endpoint in V'
Another reduction for VERTEX-COVER

Claim

V' is a vertex cover of size k in $G = (V, E)$ iff $V \setminus V'$ of size $(n - k)$ is an independent set.

- Let $I = \{v_1, v_2, \ldots, v_{n-k}\}$ be INDSET of size $n - k$
 - There is no edge in G with both endpoints in I
 - So if we pick the remaining k vertices, all edges covered

- $V' = \{v_1, v_2, \ldots, v_k\}$ is a vertex cover of size k
 - Each edge in G has at least one endpoint in V'
 - So the remaining $n - k$ vertices form an independent set
HITTING-SET

Claim

HITTING-SET: A collection \(C \) of subsets of a set \(V \), and parameter \(k \), find a hitting set \(V' \subseteq V \) of size \(k \).

The hitting set problem (**HITTING-SET**) is \(\text{NP} \) complete.
Claim

HITTING-SET: A collection C of subsets of a set V, and parameter k, find a hitting set $V' \subseteq V$ of size k.

The hitting set problem (HITTING-SET) is \textbf{NP} complete.
HITTING-SET

Claim

HITTING-SET: A collection C of subsets of a set V, and parameter k, find a hitting set $V' \subseteq V$ of size k.

The hitting set problem (HITTING-SET) is NP complete.

Reduction from?
HITTING-SET

Claim

HITTING-SET : A collection C of subsets of a set V, and parameter k, find a hitting set $V' \subseteq V$ of size k.

The hitting set problem (**HITTING-SET**) is **NP** complete.

Reduction from? Consider each set having size two!
Claim

INTEGER-PROGRAMMING: Given a set of linear inequalities over variables v_1, \ldots, v_n, does there exist an satisfying assignment of v_i to positive integers.

The integer programming problem is **NP complete**.
Claim

INTEGER-PROGRAMMING : Given a set of linear inequalities over variables v_1, \ldots, v_n, does there exist an satisfying assignment of v_i to positive integers

The integer programming problem is **NP** complete.

\[u_1 + 4u_2 - 32u_3 \geq 34 \]
Claim

INTEGER-PROGRAMMING: Given a set of linear inequalities over variables \(v_1, \ldots, v_n \), does there exist an satisfying assignment of \(v_i \) to positive integers

The integer programming problem is **NP** complete.

\[
\begin{align*}
 u_1 + 4u_2 - 32u_3 & \geq 34 \\
 2u_2 - 2u_4 + 7u_3 & \leq 239
\end{align*}
\]
INTEGER-PROGRAMMING

Claim

INTEGER-PROGRAMMING: Given a set of linear inequalities over variables v_1, \ldots, v_n, does there exist an satisfying assignment of v_i to positive integers

The integer programming problem is \textbf{NP} complete.

\[u_1 + 4u_2 - 32u_3 \geq 34 \]
\[2u_2 - 2u_4 + 7u_3 \leq 239 \]
\[43u_4 - 2u_1 + 17u_2 \geq 17 \]
Claim

INTEGER-PROGRAMMING : Given a set of linear inequalities over variables v_1, \ldots, v_n, does there exist an satisfying assignment of v_i to positive integers

The integer programming problem is **NP** complete.

\[
\begin{align*}
 u_1 + 4u_2 - 32u_3 & \geq 34 \\
 2u_2 - 2u_4 + 7u_3 & \leq 239 \\
 43u_4 - 2u_1 + 17u_2 & \geq 17
\end{align*}
\]

Note that **INTEGER-PROGRAMMING** is in **NP**
Claim

INTEGER-PROGRAMMING: Given a set of linear inequalities over variables v_1, \ldots, v_n, does there exist an satisfying assignment of v_i to positive integers?

The integer programming problem is **NP** complete.

\[
\begin{align*}
 u_1 + 4u_2 - 32u_3 & \geq 34 \\
 2u_2 - 2u_4 + 7u_3 & \leq 239 \\
 43u_4 - 2u_1 + 17u_2 & \geq 17
\end{align*}
\]

- Note that **INTEGER-PROGRAMMING** is in **NP**
- Reduction from 3-CNF SAT
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Given \(\phi \), construct the set of inequalities as following:
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Given \(\phi \), construct the set of inequalities as following:

- Each boolean variable \(x_i \) becomes integer variable \(v_i \)
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Given \(\phi \), construct the set of inequalities as following:

- Each boolean variable \(x_i \) becomes integer variable \(v_i \)
- Each clause becomes an equation set to be greater than 1:
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x^i_1 \lor x^i_2 \lor x^i_3) \]

Given \(\phi \), construct the set of inequalities as following:

- Each boolean variable \(x^i \) becomes integer variable \(v^i \)
- Each clause becomes an equation set to be greater than 1:
 \[x^i \rightarrow v^i, \quad \bar{x}^i \rightarrow (1 - v^i), \quad \lor \rightarrow + \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_i^1 \lor x_i^2 \lor x_i^3) \]

- Given \(\phi \), construct the set of inequalities as following:
 - Each boolean variable \(x_i \) becomes integer variable \(v_i \)
 - Each clause becomes an equation set to be greater than 1:
 \[x_i \rightarrow v_i, \quad \overline{x_i} \rightarrow (1 - v_i), \quad \lor \rightarrow + \]
 \[(x_1 \lor x_2 \lor \overline{x_3}) \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x^i_1 \lor x^i_2 \lor x^i_3) \]

Given \(\phi \), construct the set of inequalities as following:
- Each boolean variable \(x_i \) becomes integer variable \(v_i \)
- Each clause becomes an equation set to be greater than 1:
 \[x_i \rightarrow v_i, \quad \overline{x}_i \rightarrow (1 - v_i), \quad \lor \rightarrow + \]

\[(x_1 \lor x_2 \lor \overline{x}_3) \]
\[v_1 + v_2 + (1 - v_3) \geq 1 \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Given \(\phi \), construct the set of inequalities as following:
 - Each boolean variable \(x_i \) becomes integer variable \(v_i \)
 - Each clause becomes an equation set to be greater than 1:
 \[x_i \rightarrow v_i, \quad \overline{x}_i \rightarrow (1 - v_i), \quad \lor \rightarrow + \]

\[(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3 \lor \overline{x}_4) \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

Given \(\phi \), **construct the set of inequalities as following:**

- Each boolean variable \(x_i \) becomes integer variable \(v_i \)
- Each clause becomes an equation set to be greater than 1:
 \[x_i \rightarrow v_i, \quad \overline{x}_i \rightarrow (1 - v_i), \quad \lor \rightarrow + \]

\[(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3 \lor \overline{x}_4) \]

\[v_1 + v_2 + (1 - v_3) \geq 1, \quad (1 - v_1) + v_3 + (1 - v_4) \geq 1 \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Given \(\phi \), construct the set of inequalities as following:
 - Each boolean variable \(x_i \) becomes integer variable \(v_i \)
 - Each clause becomes an equation set to be greater than 1:
 \[x_i \rightarrow v_i, \quad \overline{x}_i \rightarrow (1 - v_i), \quad \lor \rightarrow + \]

\[(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3 \lor \overline{x}_4) \land (\overline{x}_2 \lor x_4 \lor x_1) \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_1^i \lor x_2^i \lor x_3^i) \]

- Given \(\phi \), construct the set of inequalities as following:
 - Each boolean variable \(x_i \) becomes integer variable \(v_i \)
 - Each clause becomes an equation set to be greater than 1:
 \[x_i \to v_i, \quad \overline{x_i} \to (1 - v_i), \quad \lor \to + \]

\[(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (\overline{x_2} \lor x_4 \lor x_1) \]

\[v_1 + v_2 + (1 - v_3) \geq 1, \quad (1 - v_1) + v_3 + (1 - v_4) \geq 1, \quad (1 - v_2) + v_4 + v_1 \geq 1 \]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x^i_1 \lor x^i_2 \lor x^i_3) \]

Given \(\phi \), construct the set of inequalities as following:

- Each boolean variable \(x_i \) becomes integer variable \(v_i \)
- Each clause becomes an equation set to be greater than \(1 \):
 \[x_i \rightarrow v_i, \quad \overline{x}_i \rightarrow (1 - v_i), \quad \lor \rightarrow + \]

\[
(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3 \lor \overline{x}_4) \land (\overline{x}_2 \lor x_4 \lor x_1) \\
\]
\[
v_1 + v_2 + (1 - v_3) \geq 1, \quad (1 - v_1) + v_3 + (1 - v_4) \geq 1, \quad (1 - v_2) + v_4 + v_1 \geq 1
\]
Reduction for INTEGER-PROGRAMMING

\[\phi = C_1 \land C_2 \land \ldots \land C_m, \text{ where } C_i = (x_i^1 \lor x_i^2 \lor x_i^3) \]

Given \(\phi \), construct the set of inequalities as following:

- Each boolean variable \(x_i \) becomes integer variable \(v_i \)
- Each clause becomes an equation set to be greater than 1:
 \[
 x_i \rightarrow v_i, \quad \overline{x}_i \rightarrow (1 - v_i), \quad \lor \rightarrow +
 \]

\[
(x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_3 \lor \overline{x}_4) \land (\overline{x}_2 \lor x_4 \lor x_1) \\
v_1 + v_2 + (1 - v_3) \geq 1, \ (1 - v_1) + v_3 + (1 - v_4) \geq 1, \ (1 - v_2) + v_4 + v_1 \geq 1
\]

\[
0 \leq v_1 \leq 1, \quad 0 \leq v_2 \leq 1, \quad 0 \leq v_3 \leq 1, \quad 0 \leq v_4 \leq 1
\]
Claim: Solve INTEGER-PROGRAMMING to get a valid solution. Set boolean variable $x_i = v_i$. This satisfies ϕ.
Reduction for INTEGER-PROGRAMMING

Claim: Solve INTEGER-PROGRAMMING to get a valid solution. Set boolean variable \(x_i = v_i \). This satisfies \(\phi \).

- Each \(v_i \) can be either 0 or 1
Reduction for INTEGER-PROGRAMMING

Claim: Solve INTEGER-PROGRAMMING to get a valid solution. Set boolean variable $x_i = v_i$. This satisfies ϕ.

- Each v_i can be either 0 or 1
- A clause C_j satisfied \iff corresponding inequality satisfied

 $$(x_1 \lor x_2 \lor \overline{x_3}) = 1 \iff v_1 + v_2 + (1 - v_3) \geq 1$$
Reduction for INTEGER-PROGRAMMING

Claim: Solve INTEGER-PROGRAMMING to get a valid solution. Set boolean variable $x_i = v_i$. This satisfies ϕ.

- Each v_i can be either 0 or 1
- A clause C_j satisfied \iff corresponding inequality satisfied

\[(x_1 \lor x_2 \lor \overline{x_3}) = 1 \iff v_1 + v_2 + (1 - v_3) \geq 1 \]

- Likewise in the other direction, set $v_i = x_i$.