Lecture 4: Using Brouwer’s fixed point theorem

Nabil H. Mustafa

Dept. of Computer Science, LUMS.

http://russell.lums.edu.pk/~nabil
A measure of data depth

Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
A measure of data depth

Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
A measure of data depth

Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
A measure of data depth

Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
A measure of data depth

Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
A measure of data depth

Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
Given a set L of n lines in the plane, does there always exist a ‘deep’ point?
Regression depth

Given a set L of n planes in \mathbb{R}^d, define $RD(q)$ for $q \in \mathbb{R}^d$ as the minimum number of planes any half-infinite ray from q must intersect.
Regression depth

Given a set L of n planes in \mathbb{R}^d, define $\text{RD}(q)$ for $q \in \mathbb{R}^d$ as the minimum number of planes any half-infinite ray from q must intersect.

$$\text{RD}(L) = \max_{q \in \mathbb{R}^d} \text{RD}(q)$$
Regression depth

Given a set L of n planes in \mathbb{R}^d, define $\text{RD}(q)$ for $q \in \mathbb{R}^d$ as the minimum number of planes any half-infinite ray from q must intersect.

\[
\text{RD}(L) = \max_{q \in \mathbb{R}^d} \text{RD}(q)
\]
Regression depth

Given a set \(L \) of \(n \) planes in \(\mathbb{R}^d \), define \(RD(q) \) for \(q \in \mathbb{R}^d \) as the minimum number of planes any half-infinite ray from \(q \) must intersect.

\[
RD(L) = \max_{q \in \mathbb{R}^d} RD(q)
\]

Question: Can one always find a point of high regression depth?
The regression-depth theorem

Regression-depth theorem

For any set L of n planes in \mathbb{R}^d, one can find a point of regression-depth at least $\lceil n/(d + 1) \rceil$. And there are examples where one cannot do any better.
The regression-depth theorem

For any set L of n planes in \mathbb{R}^d, one can find a point of regression-depth at least $\lceil n/(d+1) \rceil$.

... and there are examples where one cannot do any better.
The regression-depth theorem

Regression-depth theorem

For any set L of n planes in \mathbb{R}^d, one can find a point of regression-depth at least $\lceil n/(d + 1) \rceil$.

... and there are examples where one cannot do any better.
Proof of regression-depth theorem

The first proof of this theorem (1996) was complicated.
The first proof of this theorem (1996) was complicated.

Later a very simple, brilliant proof was discovered by me.
Proof of regression-depth theorem

The first proof of this theorem (1996) was complicated.

Later a very simple, brilliant proof was discovered by me.

That turned out to be completely and totally incorrect.
Proof of regression-depth theorem

The first proof of this theorem (1996) was complicated.

Later a very simple, brilliant proof was discovered by me.

That turned out to be completely and totally incorrect.

We now look at an even simpler proof of this theorem by Karasev (2008).
Proof of regression-depth theorem

The first proof of this theorem (1996) was complicated.

Later a very simple, brilliant proof was discovered by me.

That turned out to be completely and totally incorrect.

We now look at an even simpler proof of this theorem by Karasev (2008).

It uses a topological theorem called Brouwer’s fixed point theorem, which we first describe.
Brouwer’s fixed point theorem

Given any continuous function $f: B^n \rightarrow B^n$, there exists a point $p \in B^n$ such that $f(p) = p$. This is called a fixed point of f.
Brouwer’s fixed point theorem

Given any continuous function \(f : B^n \to B^n \), there exists a point \(p \in B^n \) such that \(f(p) = p \). This is called a fixed point of \(f \).
Brouwer’s fixed point theorem in \mathbb{R}

Any continuous function $f : [0, 1] \rightarrow [0, 1]$ has a fixed point.
Brouwer’s fixed point theorem in \mathbb{R}

Any continuous function $f : [0, 1] \to [0, 1]$ has a fixed point.
Brouwer’s fixed point theorem in \mathbb{R}

Any continuous function $f : [0, 1] \to [0, 1]$ has a fixed point.
Brouwer’s fixed point theorem in \mathbb{R}

Any continuous function $f : [0, 1] \to [0, 1]$ has a fixed point.
Brouwer’s fixed point theorem in \mathbb{R}

Any continuous function $f : [0, 1] \to [0, 1]$ has a fixed point.
Back to the centerpoint theorem

To see its beauty and power, let's re-prove the centerpoint theorem.
Centerpoint theorem

Given a set P of n points in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any halfspace containing q contains at least $n/(d + 1)$ points of P.
Back to the centerpoint theorem

To see its beauty and power, let's re-prove the centerpoint theorem.

Centerpoint theorem

Given a set P of n points in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any halfspace containing q contains at least $n/(d + 1)$ points of P.

Recall that we
Back to the centerpoint theorem

To see its beauty and power, let's re-prove the centerpoint theorem.

Centerpoint theorem

Given a set P of n points in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any halfspace containing q contains at least $n/(d + 1)$ points of P.

Recall that we

- First construct all convex polytopes containing $\geq dn/(d + 1)$ points
Back to the centerpoint theorem

To see its beauty and power, let's re-prove the centerpoint theorem.

Centerpoint theorem

Given a set P of n points in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any halfspace containing q contains at least $n/(d+1)$ points of P.

Recall that we

- First construct all convex polytopes containing $> dn/(d + 1)$ points
- Any point lying in all such polytopes is the required point
Back to the centerpoint theorem

To see its beauty and power, let's re-prove the centerpoint theorem.

Centerpoint theorem

Given a set P of n points in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any halfspace containing q contains at least $n/(d + 1)$ points of P.

Recall that we

- First construct all convex polytopes containing $\geq dn/(d + 1)$ points
- Any point lying in all such polytopes is the required point
- Every $(d + 1)$-tuple of the polytopes have a common intersection
Back to the centerpoint theorem

To see its beauty and power, let's re-prove the centerpoint theorem.

Centerpoint theorem

Given a set P of n points in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any halfspace containing q contains at least $n/(d + 1)$ points of P.

Recall that we

- First construct all convex polytopes containing $\geq dn/(d + 1)$ points
- Any point lying in all such polytopes is the required point
- Every $(d + 1)$-tuple of the polytopes have a common intersection

Only have to prove that given a set of convex polytopes where every $(d + 1)$-tuple has a non-empty intersection, all of them have a non-empty intersection. Known as Helly's theorem.
Proof of Helly’s theorem

Let the set of polytopes be \(C = \{ C_1, \ldots, C_m \} \)
Proof of Helly’s theorem

Let the set of polytopes be \(C = \{ C_1, \ldots, C_m \} \)

Let \(B \) be any ball containing \(C \). Define \(f : B \rightarrow B \):
Proof of Helly’s theorem

Let the set of polytopes be $C = \{C_1, \ldots, C_m\}$

Let B be any ball containing C. Define $f : B \rightarrow B$:
Proof of Helly’s theorem

Let the set of polytopes be $\mathcal{C} = \{ C_1, \ldots, C_m \}$
Let B be any ball containing \mathcal{C}. Define $f : B \to B$:
Proof of Helly’s theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$
Let B be any ball containing \mathcal{C}. Define $f : B \rightarrow B$:

For a point p, let q_1, \ldots, q_m be the m closest points to each of the polytopes. $f(p)$ maps p to the centroid of $\{q_1, \ldots, q_m\}$.
Proof of Helly’s theorem

Let the set of polytopes be \(C = \{ C_1, \ldots, C_m \} \)

Let \(B \) be any ball containing \(C \). Define \(f : B \rightarrow B \):
Proof of Helly’s theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$
Let B be any ball containing \mathcal{C}. Define $f : B \to B$:

For a point p, let q_1, \ldots, q_m be the m closest points to each of the polytopes.
$f(p)$ maps p to the centroid of $\{q_1, \ldots, q_m\}$.
Proof of Helly’s theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$

Let B be any ball containing \mathcal{C}. Define $f : B \to B$:

For a point p, let q_1, \ldots, q_m be the m closest points to each of the polytopes. $f(p)$ maps p to the centroid of $\{q_1, \ldots, q_m\}$.
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).

Claim: \(p \) lies in all polytopes of \(\mathcal{C} \)
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).

Claim: \(p \) lies in all polytopes of \(C \)

Centroid of the \(m \) closest points in \(C \) to \(q \) is \(q \) itself
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: p lies in all polytopes of \mathcal{C}

A centroid lies in the convex-hull of its points
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: p lies in all polytopes of \mathcal{C}

Therefore q lies in the convex-hull of some $(d + 1)$ closest points
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: p lies in all polytopes of C

The $(d + 1)$ polytopes have empty common intersection, a contradiction.
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: p lies in all polytopes of C

The $(d + 1)$ polytopes have empty common intersection, a contradiction.
Proof of Helly’s theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: p lies in all polytopes of C

The $(d + 1)$ polytopes have empty common intersection, a contradiction.
A similar problem

\(\mathcal{C} = \{ C_1, \ldots, C_n \} \) are \(n \) disjoint convex polygons in \(\mathbb{R}^2 \).
A similar problem

\[C = \{ C_1, \ldots, C_n \} \text{ are } n \text{ disjoint convex polygons in } \mathbb{R}^2 \]
A similar problem

\[\mathcal{C} = \{C_1, \ldots, C_n\} \text{ are } n \text{ disjoint convex polygons in } \mathbb{R}^2 \]
A similar problem

\(\mathcal{C} = \{ C_1, \ldots, C_n \} \) are \(n \) disjoint convex polygons in \(\mathbb{R}^2 \)
A similar problem

$\mathcal{C} = \{C_1, \ldots, C_n\}$ are n disjoint convex polygons in \mathbb{R}^2
A similar problem

\[\mathcal{C} = \{C_1, \ldots, C_n\} \text{ are } n \text{ disjoint convex polygons in } \mathbb{R}^2 \]

Does there always exist a ‘shallow’ point?
Intersecting Rays Theorem

Given a set \mathcal{C} of n disjoint convex polytopes in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of \mathcal{C}.

... and one really can't do much better.
Intersecting Rays Theorem

Given a set \mathcal{C} of n disjoint convex polytopes in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of \mathcal{C}.

... and one really can’t do much better.
Intersecting Rays Theorem

Given a set \mathcal{C} of n disjoint convex polytopes in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of \mathcal{C}.

... and one really can’t do much better.
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set C of n disjoint unit balls in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of C.

Proof?
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set \(C \) of \(n \) disjoint unit balls in \(\mathbb{R}^d \), there exists a point \(q \in \mathbb{R}^d \) such that any half-infinite ray from \(q \) intersects at most \(dn/(d + 1) \) objects of \(C \).

Proof?
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set C of n disjoint unit balls in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of C.

Proof?
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set C of n disjoint unit balls in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of C.

Proof?
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set C of n disjoint unit balls in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of C.

Proof?
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set C of n disjoint unit balls in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of C.

Proof?
Intersecting rays for unit balls

Intersecting Rays Theorem

Given a set C of n disjoint unit balls in \mathbb{R}^d, there exists a point $q \in \mathbb{R}^d$ such that any half-infinite ray from q intersects at most $dn/(d + 1)$ objects of C.

Proof?
Proof of Intersecting Rays Theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$
Proof of Intersecting Rays Theorem

Let the set of polytopes be $\mathcal{C} = \{ C_1, \ldots, C_m \}$
Let B be any ball containing \mathcal{C}. Define $f : B \to B$:

...
Proof of Intersecting Rays Theorem

Let the set of polytopes be $C = \{ C_1, \ldots, C_m \}$
Let B be any ball containing C. Define $f : B \rightarrow B$:
Proof of Intersecting Rays Theorem

Let the set of polytopes be \(C = \{C_1, \ldots, C_m\} \)

Let \(B \) be any ball containing \(C \). Define \(f : B \rightarrow B \):

For a point \(p \), let \(q_1, \ldots, q_m \) be the \(m \) closest points to each of the polytopes. \(f(p) \) maps \(p \) to a centerpoint of \(\{q_1, \ldots, q_m\} \).
Proof of Intersecting Rays Theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$

Let B be any ball containing \mathcal{C}. Define $f : B \rightarrow B$:
Proof of Intersecting Rays Theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$
Let B be any ball containing \mathcal{C}. Define $f : B \to B$:
Proof of Intersecting Rays Theorem

Let the set of polytopes be $\mathcal{C} = \{C_1, \ldots, C_m\}$

Let B be any ball containing \mathcal{C}. Define $f : B \to B$:

For a point p, let q_1, \ldots, q_m be the m closest points to each of the polytopes. $f(p)$ maps p to a centerpoint of $\{q_1, \ldots, q_m\}$.
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f.
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B

- Easy
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B

- Easy

Claim: f is continuous
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B

- Easy

Claim: f is continuous

- The closest point function $f_C(p) = \arg\min_{q \in C} d(p, q)$ is continuous
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to \(f \) ... except one has to verify two things:

Claim: \(f \) maps \(B \) to \(B \)
 - Easy

Claim: \(f \) is continuous
 - The closest point function \(f_C(p) = \text{arg min}_{q \in C} d(p, q) \) is continuous

But what happens after we take a centerpoint of \(\{q_1, \ldots, q_m\} \)?
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B
- Easy

Claim: f is continuous
- The closest point function $f_C(p) = \arg \min_{q \in C} d(p, q)$ is continuous

But what happens after we take a centerpoint of $\{q_1, \ldots, q_m\}$?
- For any set P, there can be many centerpoints
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B
- Easy

Claim: f is continuous
- The closest point function $f_C(p) = \arg\min_{q \in C} d(p, q)$ is continuous

But what happens after we take a centerpoint of $\{q_1, \ldots, q_m\}$?
- For any set P, there can be many centerpoints
- So if we pick an arbitrary centerpoint, f need not be continuous
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B
- Easy

Claim: f is continuous
- The closest point function $f_C(p) = \arg \min_{q \in C} d(p, q)$ is continuous

But what happens after we take a centerpoint of $\{q_1, \ldots, q_m\}$?

- For any set P, there can be many centerpoints
- So if we pick an arbitrary centerpoint, f need not be continuous
- Need to have a ‘uniform’ way of choosing a centerpoint
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B

- Easy

Claim: f is continuous

- The closest point function $f_C(p) = \arg\min_{q \in C} d(p, q)$ is continuous

But what happens after we take a centerpoint of $\{q_1, \ldots, q_m\}$?

- For any set P, there can be many centerpoints
- So if we pick an arbitrary centerpoint, f need not be continuous
 - Need to have a ‘uniform’ way of choosing a centerpoint

Claim: The set of centerpoints form a convex polytope
Proof of Intersecting Rays Theorem

We now apply Brouwer’s fixed point theorem to f ... except one has to verify two things:

Claim: f maps B to B

- Easy

Claim: f is continuous

- The closest point function $f_C(p) = \arg \min_{q \in C} d(p, q)$ is continuous

But what happens after we take a centerpoint of $\{q_1, \ldots, q_m\}$?

- For any set P, there can be many centerpoints
- So if we pick an arbitrary centerpoint, f need not be continuous
- Need to have a ‘uniform’ way of choosing a centerpoint

Claim: The set of centerpoints form a convex polytope

Take the mean of the centerpoint region for the points $\{q_1, \ldots, q_m\}$.
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: Any half-infinite ray from p intersects at most $dn/(d + 1)$ objects.
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).

Claim: Any half-infinite ray from \(p \) intersects at most \(dn/(d + 1) \) objects.
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: Any half-infinite ray from p intersects at most $dn/(d + 1)$ objects.

Have to prove that any ray \vec{r} intersects at most $dn/(d + 1)$ objects.
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, f has a fixed point, say p.

Claim: Any half-infinite ray from p intersects at most $dn/(d + 1)$ objects

Consider the plane h orthogonal to \vec{r}
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).

Claim: Any half-infinite ray from \(p \) intersects at most \(\dfrac{dn}{d+1} \) objects.

The halfspace \(h^- \) has at most \(\dfrac{n}{d+1} \) closest points on one side.
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).

Claim: Any half-infinite ray from \(p \) intersects at most \(\frac{dn}{d + 1} \) objects.

Each corresponding object cannot intersect \(\vec{r} \).
Proof of Intersecting Rays Theorem

By Brouwer’s fixed point theorem, \(f \) has a fixed point, say \(p \).

Claim: Any half-infinite ray from \(p \) intersects at most \(\frac{dn}{d + 1} \) objects.

Each corresponding object cannot intersect \(\vec{r} \).
Proof of Intersecting Rays Theorem

By Brouwer's fixed point theorem, f has a fixed point, say p.

Claim: Any half-infinite ray from p intersects at most $dn/(d + 1)$ objects.

So \vec{r} intersects at most $n - n/(d + 1) = dn/(d + 1)$ objects.
Proof of Regression Depth Theorem

We come back to the proof of the Regression-depth theorem.
Proof of Regression Depth Theorem

We come back to the proof of the Regression-depth theorem.

Exercise problem
Proof of Regression Depth Theorem

We come back to the proof of the Regression-depth theorem.

Exercise problem

Hint: Very similar to an earlier proof, except one twist.
QUESTIONS?
QUESTIONS?