
Incremental algorithm for hierarchical minimum
spanning forests and saliency of watershed cuts?

Jean Cousty and Laurent Najman
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Abstract. We study hierarchical segmentations that are optimal in the
sense of minimal spanning forests of the original image. We introduce
a region-merging operation called uprooting, and we prove that optimal
hierarchical segmentations are equivalent to the ones given by uprooting
a watershed-cut based segmentation. Based on those theoretical results,
we propose an efficient algorithm to compute such hierarchies, as well
as the first saliency map algorithm compatible with the morphological
filtering framework.

1 Introduction

We study some optimality properties of hierarchical segmentations ([1–9]) in
the framework of edge-weighted graphs, where the cost of an edge is given by a
dissimilarity between two points of an image. Since the pioneering work of [10, 11]
stating an equivalence between hierarchies and minimum spanning trees (MST),
a large number of hierarchical schemes rely on the construction of such a tree. Its
first appearance for classification in pattern recognition dates from the seminal
work of Zahn [12]. Its use for image segmentation was introduced by Morris
et al. [13] in 1986 and popularized in 2004 by Felzenswalb and Huttenlocher
[14]. Meyer was the first to explicitly use it in a morphological context [1]. In
mathematical morphology, hierarchies of watershed regions have been proposed
notably in [2–4] and recently reviewed in [7].

In this paper, we formalize, in the framework of edge-weighted graph, a
fundamental hierarchical scheme proposed in morphology. This formalism allows
us to prove several strong properties linking hierarchical segmentations and
combinatorial optimality with respect to the original image (Th. 4 and 9). We
derive from those properties the first saliency algorithm proved to be correct,
establishing in particular a compatibility property with morphological filtering
(Th. 11). In contrast, all the previously proposed algorithms (e.g. [2, 3, 15]) are
heuristic by nature, and to date, no property on their result has been proved.
With those previous algorithms, counter-intuitive results are often obtained [16].

After reminding basic notions in Section 2, hierarchies of minimum spanning
forests are presented in Section 3. Then, we formalize, in Section 4, a fundamental
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operation called uprooting that merges a marked region with one of its neighbors
linked by the cheapest cost. When applied sequentially on the weighted graph
of neighboring regions, the uprootings build a MST of this neighboring graph.
Intuitively, one can see that, if one starts from a minimum spanning forest (MSF)
rooted in the minima of the image (or, equivalently, from a watershed cut [17]),
then one builds a hierarchy of MSFs of the original image itself, the last uprooting
step yielding an MST of this original image. More surprisingly, Th. 4 establishes
that the two processes are equivalent. Hence, any MST of the original image
can be built from an uprooting sequence on a watershed cut. Thus, watershed
cuts are the only family of watersheds that allows us to build hierarchical
segmentations that are optimal with respect to the original image, in the sense
that they preserve the MST of the original image. Based on those results, we give
a detailed description of a fast uprooting algorithm that allows MSF hierarchies
to be computed. The time-complexity of this algorithm is analyzed. Then, in
Section 5, a linear-time algorithm is proposed to compute saliency maps from
MSF hierarchies. The correctness of this algorithm is established by Theorem 9.
Finally, in Section 6, the compatibility between the MSF hierarchies and a
morphological filtering is established by an equivalence result (Theorem 11).

2 Basic Notions

We define a (undirected) graph as a pair X = (V,E) where V is a finite set and E
is composed of unordered pairs of V , i.e., E is a subset of {{x, y} ⊆ V | x 6= y}.
If X = (V,E) is a graph, each element of V is called a vertex or a point of X,
and each element of E is called an edge of X.

Let X be a graph, the vertex set and edge set of X are denoted by V (X)
and E(X) respectively. The graph X is nontrivial whenever E(X) 6= ∅, and it is
nonempty whenever V (X) 6= ∅.

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y v X. Let S be a set of graphs. The
supremum (resp. infimum) of S, denoted by tS (resp. uS), is the graph whose
vertex set and edge set are the unions (resp. intersections) of the vertex sets and
of the edge sets of the graphs in S: tS = (∪{V (X) | X ∈ S},∪{E(X) | X ∈ S})
(resp. uS = (∩{V (X) | X ∈ S},∩{E(X) | X ∈ S}) ). We also write X t Y and
X u Y for respectively t{X,Y } and u{X,Y }.

Let X be a graph. The graph X is connected if it cannot be partitioned into
two nonempty graphs, i.e., for any two nonempty graphs Y and Z, if Y tZ = X,
then the graph Y uZ is necessarily nonempty. Let Y be a graph. We say that Y is
a connected component of X, or simply a component of X, if Y is a subgraph of X
that is connected and that is maximal for this property, i.e., for any connected
graph Z, if Y v Z v X, then we have necessarily Z = Y . The set of all connected
components of X is denoted by CC(X).

Important notation. Throughout this paper G = (V,E) denotes a
nontrivial connected graph.



If S is a subset of V (resp. E), we denote by S the complementary set of S
in V (resp. E), i.e., S = V \ S (resp. S = E \ S).

Let S ⊆ E, we denote by δ•(S) the set of all vertices in V that belong
to an edge in S. Remark that (δ•(S), S) is a graph (see [18] for morphological
properties of δ•). This graph (δ•(S), S) is called the graph induced by S.

In the following, the sets of integers and real numbers are denoted by Z and R
respectively. Let i, j ∈ Z, we denote by [i, j] the set {k ∈ Z | i ≤ k ≤ j}.

We denote by F the set of all maps from E into R, and we say that any map
in F weights the edges of G.

Let F ∈ F . If u is an edge of G, the number F (u) is the altitude or weight
of u. Let k ∈ R, we denote by F [k] the set of edges of G whose weight (for F )
is less than or equal to k: F [k] = {u ∈ E | F (u) ≤ k}. The set of edges F [k] is
called the (lower) cross section of F at level k.

Let F ∈ F , and let X v G. We say that X is a connected component of F ,
or simply a component of F , if there exists an element k ∈ R such that X is
a component of the graph induced by F [k]. We denote by CC(F ) the set of all
components of F . The set CC(F ) is closely related to the component tree [19,
20] of F , a tree widely used for filtering.

Let F ∈ F , and let X v G. The graph X is a minimum of F if X is a
component of F that does not strictly contains any component of F , i.e., for
any Y ∈ CC(F ), if Y v X, then we have necessarily Y = X. We denote by MF

the set made of the minima of F , and by MF its supremum: MF = tMF . This
notion of minima, as well as further presented notions, is illustrated in Fig. 1

Important notation. In the sequel of this paper, F denotes an element of
F . Therefore the pair (G,F ) is called an edge-weighted graph.

3 Minimum spanning forests hierarchies

This section first presents the minimum spanning forests rooted in subgraphs
of G. This notion of a forest, which is useful for (seeded) image segmentation (see
e.g. [17, 21, 22]), is known to be equivalent to the one of minimum spanning tree
studied in combinatorial optimization. Then, hierarchies of minimum spanning
forests are introduced. Each such hierarchy induces a hierarchy of partitions
on V , which is thus optimal in the sense of rooted minimum spanning forests.

Let X v G. The weight of X (for F ), denoted by F (X), is the sum of the
weights of the edges in E(X): F (X) =

∑
u∈E(X) F (u). Let V ′ ⊆ V , we say

that X is spanning for V ′ if V (X) = V ′.

Definition 1 (rooted MSF) Let X and Y be two nonempty subgraphs of G.
We say that Y is rooted in X if V (X) ⊆ V (Y ) and if the vertex set of any

component of Y contains the vertex set of exactly one component of X.
We say that Y is a minimum spanning forest (MSF) rooted in X (with

respect to F ) if:

1. Y is spanning for V ;
2. Y is rooted in X; and
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Fig. 1. (a): A graph G and a map F whose minima are depicted in bold. (b):
A graph X0 ∈ MSF (MF ) represented in bold and its induced cut C0 = C(X0)
represented by dashed edges. (c,d): two bold graphs called respectively X1 and X2 such
that T = 〈X0, X1, X2〉 is both an MSF hierarchy for and an uprooting by 〈M1,M2〉
(where Mi is the minimum of F whose altitude is i); their induced cuts C1 = C(X1)
and C2 = C(X2) are represented by dashed edges. (e): The indicator of the uprooting U .
(f): The saliency map of the MSF cut hierarchy 〈C0, C1, C2〉.

3. the weight of Y is less than or equal to the weight of any graph Z satisfying
(1) and (2) (i.e., Z is both spanning for V and rooted in X).

The set of all minimum spanning forests rooted in X is denoted by MSF (X).

The above definition of rooted MSFs, which is illustrated in Fig. 1b, allows
the usual notions of graph theory based on trees and forests to be recovered. In
particular, if x is a vertex of V , it can be seen that any element in MSF (({x}, ∅))
is a minimum spanning tree of (G,F ), and that, conversely, any minimum
spanning tree of (G,F ) belongs to MSF (({x}, ∅)). In the following, by
convention, this remarkable set, which is made of all minimum spanning trees
of (G,F ), will also be denoted by MSF ((∅, ∅)).

A possible definition for watershed, called watershed cuts, follows the drop
of water principle. In [17], we have proved the equivalence between MSF rooted
in the set of minima and watershed cuts. In practice, watersheds from markers
are often computed, and subsets of minima of the original edge-weighted graph
constitute robust markers [23]. The next definition, illustrated in Figs. 1b, c, and
d, presents a notion of hierarchy of MSFs rooted in such subsets.

Definition 2 (MSF hierarchy) Let S = 〈M1, . . . ,M`〉 be a sequence of
pairwise distinct minima of F and let T = 〈X0, . . . X`〉 be a sequence of subgraphs
of G. We say that T is an MSF hierarchy for S if:



1. for any i ∈ [0, `], the graph Xi is an MSF rooted in t[MF \{Mj | j ∈ [1, i]}];
and

2. for any i ∈ [1, `], we have Xi−1 v Xi.

4 Uprootings and MSF hierarchies

In this section, we formalize a simple transformation, called uprooting, that
allows a forest X rooted in a graph M to be incrementally transformed into
a forest Y rooted in a graph M ′ obtained by removing some components
of M . Through an equivalence theorem, we establish an important link between
the uprooting transform and the MSF hierarchies. This result allows efficient
algorithms for computing MSF hierarchies to be considered.

Let X be a subgraph of G that is spanning for V , and let x ∈ V . We denote
by CCx(X) the component of X whose vertex set contains x. Let V ′ ⊆ V , we
set CCV ′(X) = t{CCx(X) | x ∈ V ′}.

Let X ⊆ G, and let u = {x, y} ∈ E. The edge u is outgoing from X if u is
made of a vertex in V (X) and of a vertex in V (X). In the following, by abuse
of notation, we write X t {u} for the supremum of X and the graph induced
by {u}: X t {u} = (V (X) ∪ u,E(X) ∪ {u}).

Let X,Y , and M be three subgraphs of G such that X is spanning for V and
such that X 6= Y . We say that Y is an elementary uprooting of X by M if there
exists an edge u of minimum weight among the edges outgoing from CCV (M)(X)
such that Y = X t {u}. We also say that Y is an elementary uprooting of X
by M if Y = X and if there is no edge outgoing from CCV (M)(X).

Definition 3 Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima
of F . An uprooting by S is a sequence 〈X0, . . . , X`〉 of graphs such that:

1. X0 ∈MSF (MF ) ; and
2. Xi is an elementary uprooting of Xi−1 by Mi, for any i ∈ [1, `].

The following theorem, one of the main results of this paper, states an
equivalence property between MSF hierarchy and uprooting from a subset of
minima of the original graph.

Theorem 4 Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima
of F , and let T = 〈X0, . . . X`〉 be a sequence of subgraphs of G. The sequence T
is an MSF hierarchy for S if and only if the sequence T is an uprooting by S.

Any MSF hierarchy can be represented by a unique edge-weighed graph such
that a given threshold of this graph provides the associated level of the hierarchy.
More formally, let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima
of F , and let T = 〈X0, . . . , X`〉 be an uprooting by S. The indicator of T ,
denoted by IT , is the map from E into [0, `+ 1] defined by:
- IT (u) = min{i ∈ [0, `] | u ∈ E(Xi)}, for any u ∈ E(X`); and
- IT (u) = `+ 1, for any u ∈ E \ E(X`).
The notion of indicator of an uprooting is illustrated in Fig. 1e.



Any uprooting has a unique indicator, and any two distinct uprootings have
distinct indicators. Hence, the indicator of an uprooting is sufficient to recover
all the elements of the uprooting: if T = 〈X0, . . . , X`〉 is an uprooting by a
sequence S = 〈M1, . . . ,M`〉 of minima of F , then Xi is the graph induced by
the cross-section of IT at level i, (i.e., Xi = (δ•(IT [i]), IT [i]).

We are now ready to describe the uprooting algorithm, which by Theorem 4
allows the computation of MSF hierarchies. It inputs a sequence S =
〈M1, . . . ,M`〉 of minima of F and outputs the indicator IT of an uprooting T =
〈X0, . . . , X`〉 by S. From a high level point of view, the algorithm can be
sketched, once a minimum spanning forest X relative to M has been computed,
by iterations of the following three region merging steps:

i Find the component C of X that contains Mi the next element in S.
ii Find a component C ′ of X linked to C by an edge v of minimum weight
iii Merge the two components C and C ′

In order to ease the reading of the algorithm, let us first present the two main
data structures that are used.

The structure C is a collection of disjoint subsets of V . Each set C in C is
represented by a unique element x of C, called the canonical element of C. In
the following, x and y denote two distinct elements of V . The collection C is
managed by three operations:

– MakeSet(x): add the set {x} to the collection C, provided that the element x
does not already belong to a set in C.

– Find(x): returns the canonical element of the set in C that contains x.
– Link(x, y): let Cx and Cy denote two sets in C whose canonical elements

are x and y respectively. Both sets are removed from C, their union C =
Cx∪Cy is added to C and a canonical element for C is selected and returned.

The structure L is a collection of n = |V | lists: L[x1], . . . ,L[xn], with V =
{x1, . . . , xn}. Each element of these lists is a triplet (x, u, w) such that x is a
vertex of G, u is an edge of G, and w is an element in R, called the weight
of the triplet. In the following, x and y denote two distinct elements of V , u
denotes an edge in E, and w an element in R. The collection L is managed by
four operations:

– MakeList(): returns an empty list.
– Insertx(y, u, w): adds the triplet (y, u, w) to the list L[x];
– DeleteMinx() returns and removes from L[x] a triplet of minimum weight.
– Meld(x, y): returns the list of the triplets of L[x] and of L[y] and suppresses

the lists L[x] and L[y].

When the algorithm terminates the map I is the indicator of an uprooting by
the input sequence S. Moreover, using Tarjan’s union find [24] and Fredman and
Tarjan’s Fibonnacci heap [25] algorithms to manage the collections C and L, the
overall complexity of the algorithm is O(|V | × α(|V |, |V |) + |E| × α(|E|, |V |) +
|E| log |E|), where α is a function which grows very slowly: for all practical
purposes α(m,n) is never greater than four. In other words, the complexity of
the algorithm is quasi O(|V |+ |E| log |E|) in the sense of Tarjan’s union find.



Algorithm: Uprooting

Data: (V,E, F ): an edge-weighted graph;
X ← any element in MSF (MF );
A sequence S = 〈M0, . . . ,M`〉 of pairwise distinct minima of F ;
Result: I, the indicator of an uprooting by S;
i← 0; ; /* Initialisation */1

foreach x ∈ E do2

MakeSet(x); L[x]← MakeList();3

foreach u = {x, y} ∈ E do4

if u ∈ E(X) then I(u)← 0;else I(u)← ` + 1;5

foreach u = {x, y} ∈ E(X) do6

x′ ← Find(x); y′ ← Find(y);7

if x′ 6= y′ then Link(x′,y′);8

foreach u = {x, y} ∈ E \ E(X) do9

x′ ← Find(x); y′ ← Find(y);10

if x′ 6= y′ then11

Insertx′(y′, u, F (u));12

Inserty′(x′, u, F (u));13

while i < ` do /* Incremental uprooting */14

i← i + 1;15

Set x to any element of V (Mi);16

x′ ← Find(x);17

repeat18

(y, v, w)← DeleteMinx′();19

y′ ← Find(y);20

until x′ 6= y′ ;21

I(v)← i;22

z ← Link(x′,y′);23

L[z]← Meld(x′,y′);24

5 MSF cut hierarchy, saliency and connection value

Until now, we have dealt with regions (components of forests). Let us now study
their “dual”, that represents borders between regions and that are called cuts.

Let X be a subgraph of G that is spanning for V . The (graph) cut induced
by X, denoted by C(X), is the set of all edges of G made of vertices of two
distinct components of X, i.e. C(X) = {{x, y} ∈ V | CCx(X) 6= CCy(X)}.

Definition 5 (MSF cut hierarchy) Let X be a subgraph of G, and let C ⊆ E.
The set C is called an MSF cut for X (with respect to F ) if there exists an
MSF Y rooted in X, such that C is the cut induced by Y .

Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima of F and
let T = 〈C0, . . . C`〉 be a sequence of subsets of E. We say that T is an MSF cut
hierarchy for S if:



1. for any i ∈ [0, `], the set Ci is an MSF cut for t[MF \{Mj | j ∈ [1, i]}]; and
2. for any i ∈ [1, `], we have Ci ⊆ Ci−1.

The following result asserts that there is indeed an equivalence relation
between MSF hierarchies and MSF cut hierarchies.

Property 6 Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima
of F and let T = 〈C0, . . . C`〉 be a sequence of subsets of E. The sequence T is
an MSF cut hierarchy if and only if there exists an MSF hierarchy 〈X0, . . . , X`〉
such that C(Xi) = Ci, for any i ∈ [0, `].

The hierarchies presented above are hierarchical edge-segmentations as
defined in [9]. Therefore, the MSF cuts belonging to a hierarchy can be “stacked”
to form a map that equivalently represents this hierarchy. Intuitively, such a map,
called a saliency map, weights the cuts with their “level of disappearance” in
the hierarchy. Hence, they are convenient for visualizing hierarchies.

Definition 7 (saliency map) Let S = 〈M1, . . . ,M`〉 be a sequence of minima
of F and let T = 〈C0, . . . C`〉 be an MSF cuts hierarchy for S. The saliency map
of T , denoted by ST , is the map from E into [0, `+ 1] defined by:

1. ST (u) = min{i ∈ [0, `] | u ∈ Ci}, for any u ∈ E \ C`; and
2. ST (u) = `+ 1, for any u ∈ C`.

An illustration of the notion of saliency map is given in Fig. 1f.
Let H be any map and let k ∈ R, the set H[k] of the edges of G whose weight

(for H) is greater than k is called the upper cross section of H at level k.
Let T = 〈C0, . . . , C`〉 be an MSF cut hierarchy for a sequence S of minima

of F , and let H be a map from E into [0, `+ 1]. It can be seen that H = ST if
and only if, for any i ∈ [0, `], the set Ci is the upper cross-section of H at level i.
Thus, the saliency map ST is an equivalent representation of the hierarchy T .

The altitudes of the passes between minima of the image play a fundamental
role in morphological filtering. In our framework, pass altitudes are called
connection values. In the following, we show their importance for computing
a saliency map from the indicator of an uprooting.

Let H ∈ F and let X ⊆ G. The altitude of X for H, denoted by Ȟ(X), is
the maximum value of an edge of X.

Definition 8 (connection value) Let H ∈ F , and let x and y be two points
of G. The connection value between x and y for H (in G) is the value ΥH(x, y) =
min{Ȟ(X) | X ∈ CC(F ) and {x, y} ⊆ V (X)}.

The connection value, for any map H, between any two points can be
computed in constant time (see [26]) from the (min) component tree (CC(H),v)
of H, provided a linear time preprocessing (see [27]). In other words, once
the component tree is built (see [20] for a quasi linear time algorithm) and
preprocessed (in linear time), computing the connection value between any
arbitrary pair of points can be done in constant time.

Hierarchical edge segmentations are in bijection with ultrametric watersheds
[9]. The following theorem provides an analog result for MSF cut hierarchies.



Theorem 9 Let S = 〈M1, . . . ,M`〉 be a sequence of pairwise distinct minima
of F , and let H be a map from E into [0, `+ 1]. The map H is the saliency map
of an MSF cut hierarchy for S if and only if there exists an uprooting T by S
such that, for any u = {x, y}, F (u) = ΥIT (x, y).

Hence, in order to know the value of an edge in a saliency map it is sufficient
to know the connection value between the two points linked by this edge for the
indicator of an uprooting by S. Thus, knowing the indicator of an uprooting
by S and its component tree, a saliency map can be computed in linear time,
i.e., one constant time operation per edge of G.

Figs. 2b,c, and d illustrates the use of this algorithm on the image of Fig. 2a.
The underlying graph is the one induced by the 4-adjacency relation whose edges
are weighted by a simple color gradient (maximum, over the RGB channels,
of the absolute differences of pixel values). The minima are ordered thanks to
extinction values [28] related to dynamics, volume and color consistency, leading
to sequences S1, S2, and S3 of minima. The saliency maps of MSF hierarchies for
S1, S2, and S3 are rendered (up to an anamorphosis) in sub-figures b,c, and d,
respectively. Figs. 3 illustrates the use of the algorithm to segment a surface (i.e.,
a mesh) embedded in the 3D Euclidean space. The vertex set of the considered
graph is the set of triangles of the mesh, and its edge set is composed by the
pair of triangles that share a common side. The edges of this graph are weighted
by map which behaves like the inverse of the mean curvature of the surface
(see [29]). The minima are ordered thanks to volume extinction values and the
saliency maps of the induced MSF hierarchies is rendered up to an anamorphosis.

6 Hierarchy by geodesic reconstructions

A desirable compatibility property in the context of morphological filtering is
that any threshold of a saliency map is a watershed of the geodesic reconstruction
of the original map by the corresponding markers. Theorem 11 below shows that
the results of our algorithm do satisfy such a compatibility property. It has to be
noted that, in other frameworks (e.g., node-weighted graphs), such a property
is in general not guaranteed [16].

Let x ∈ V . We denote by CCx(F ) the set of all components of F whose vertex
sets contain x. Let V ′ ⊆ V , we set CCV ′(F ) = ∪{CCx(F ) | x ∈ V ′}.

Let V ′ ⊆ V . The geodesic reconstruction of F by V ′ is the map F ′ such that,
for any edge u in E, the value F ′(u) is the minimum altitude of a component
in CCV ′(F ) that contains u: F ′(u) = min{F̌ (X) | X ∈ CCV ′(F )}.

Watershed from markers are classically defined through geodesic reconstruc-
tion (also called swamping or flooding). It is shown in [30] that reconstruction
plus MSF cut can be replaced by an MSF cut relative to the initial map.

Property 10 (from Theorem 6.3 in [30]) Let V ′ ⊆ V , let F ′ be the geodesic
reconstruction of F by V ′, and let C be a subset of E. If C is an MSF cut for MH

with respect to F , then C is an MSF cut for MH with respect to F ′.



(a) (b)

(c) (d)

Fig. 2. Illustration of saliencies of watershed cuts (original picture (a) from koakoo:
http://blog.photos-libres.fr/).

The converse of Prop. 10 is, in general, not true. In fact, as long as a sequence of
nested partitions (i.e., a hierarchy) is involved, the MSF cuts of reconstructed
maps and the MSF cuts of the original maps are equivalent.

Theorem 11 (Compatibility) Let S = 〈M1, . . . ,M`〉 be a sequence of
pairwise distinct minima of F . Let Gi denote t[MF \ {Mj | j ∈ [1, i]}],
and let Fi be the geodesic reconstruction of F by V (Gi), for any i ∈ [0, `].
Let T = 〈C0, . . . , C`〉 be a sequence of subsets of E such that Ci ⊆ Ci−1 for
any i ∈ [1, `]. Then, the two following propositions are equivalent:

1. for any i ∈ [0, `], the set Ci is an MSF cut for Gi with respect to Fi; and

2. for any i ∈ [0, `], the set Ci is an MSF cut for Gi with respect to F .



(a) (b): zoom on a part of (a)

Fig. 3. Illustration of saliencies of watershed cuts on a mesh provided by the French
Museum Center for Research and Restoration (C2RMF, Le Louvre, Paris).

7 Conclusion and perspective

In this paper, a classical morphological scheme for building hierarchical
segmentation is formalized. This formalism leads us to establish strong properties
linking hierarchical segmentations and combinatorial optimality in terms of
minimum spanning forests of the original image. Recent work of Couprie et
al. [22] link some schemes based on minimum spanning forests to global energy
minimization. Hence, a promising perspective is the investigation of hierarchical
schemes defined through energy minimization such as the one presented in [5].

The source code of the algorithms presented in this paper is available at:
http://www.esiee.fr/~info/sm
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