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Abstract

This paper investigates algebraic and continuity properties of increasing set
operators underlying dynamic systems. We recall algebraic properties of in-
creasing operators on complete lattices. The topologies used for the study of
continuity properties are defined by lim sup and lim inf and - and |-continuity
of lattice operators. We apply these notions to several operators induced by
differential equation or differential inclusion. We focus especially on the oper-
ators Viabp and Invy which with any closed subset K associated its viability
kernel Viabp(K) and its invariance kernel Invg, for a differential inclusion.
We provide its algebraic properties, a structure of the set of its fixpoints and
continuity properties. At the end, we show that morphological operators used
in image processing are particular cases of operators induced by constant dif-
ferential inclusion.

Key-words: Complete lattice, algebraic dilation and erosion, algebraic opening and closing, T- and |-
continuity, differential inclusion, contingent cone, reachable set, exit tube, viability kernel, invariance
kernel.

1 Introduction

A complete lattice (£, <) is a partial ordered set such that every subset H of £ has a supremum and and
infimum denoted by V H and A H. As important examples for the following, we mention:

— The power space P(X), the set of all subsets of X supplied with the inclusion order C, F(X)
the space of all closed subsets of X and C(X) the space of all closed convex subsets of X. The



supremum and the infimum on P(X) and C(X) are given by:

(VHcP(X), \VH=UEK and ANH=[)K
KeH KeH

VHcF(X), VH=U K and ANH=[]K
KecH KeH

YH C C(X), \/H:w(u K) and ANH= (] K
. KeH : KeH

where ¢0(K)) represents the closed convex hull of K.

— Every function f : X — IR can be characterized by its hypograph Hp(f), or by its epigraph
Ep(f). These two sets are defined by : Hp(f) = {(z,t) € X xR | f(x) > t} and Ep(f) =
{(z,t) € X xR | f(z) < t}. Then the space ®“**(X) (resp. ®"*(X)) of all upper (resp. lower)
semicontinuous functions defined on X with extended values is a complete lattice for the order
relationship Vf,g € ®“(X), f < g & Hp(f) C Hp(g) (resp. Vf,g € ®*(X), f < g & &p(f) C
Ep(g)), and the supremum and the infimum are defined by:

. usc f = Vfi = Hp(f) = UHp(fz)
vfi € 27HX), { f=nf e Ho(F) = Hp(r)

and,

s f=Vfi & &Ep(f)=UEp(fi)
Vi € 70, {f=/\fz~ & &plf) = nep(f)

The first part of the present paper, is devoted to algebraic properties of increasing operators (i.e. 9 :
L — L such that z < y implies ¥(z) < 9(y) where L is a complete lattice for < order. If we consider an
operator ¥ : L — L, we can classify it as a dilation, erosion, opening or closing. The main example of
these characterization is given by morphological operators in the lattice of closed subsets supplied with
the inclusion order. The morphological dilation of a closed subset K by a structuring element B is given
by: K®B={k—b| ke K, be B}. Furthermore, the study of continuity properties of these operators
on lattice can be done with the lim sup and lim inf topologies.

In this paper, we focus on set operators defined on a complete lattice (in particular on the power space
P(X), or on the space F(X) of closed subsets of X), induced by a differential inclusion. This paper links
algebraic and continuity properties to operators underlying dynamic systems.

A differential inclusion z/(t) € F(xz(t)) is a generalisation of the notion of differential equation z'(t) =
f(z(t)) where the dynamic is multivalued and non deterministic. The main example is given by control
system : F(z) = {f(z,u)}ucu(zs)- Many set operators can be deduced from the framework of differen-
tial inclusions. The operator Viabp which with any closed subset K associated its “viability kernel”!
Viabp(K) for the differential inclusion z'(t) € F(xz(t)), is increasing antieztensive and idempotent. We
say that it is an algebraic opening. We show that it is upper-semi-continuous and we give a structure
of the set of its fixpoints. The operator Invp which with any closed subset K associated its “invariance

'If K is a viability domain, then for any initial state zo € K, there exists a solution z(.) on [0, cof to differential inclusion
#'(t) € F(x(t)) which satisfies z(t) € K. The largest closed subset of K viable under F' (which may be empty) is the viability
kernel of K for F and we denote it by Viabr(K).



kernel”? Invy(K) for the differential inclusion z'(t) € F(z(t)), is an algebraic opening which commutes
with the infimum. We show that it is upper-semi-continuous and we give its dual operator in sense of
the complementation.

In the last part, we will study a particular example: the differential inclusion z/(t) € B where B is a
symmetrical compact convex set. As particular case of the previous results, we provide algebraic and
continuity properties of the induced operators which are morphological operators.

2 Lattice framework

In this section, we briefly recall some basic notions and some results that we shall use later on. For more
details on lattice theory consult [10, 11, 5].

2.1 Algebraic definitions and properties on a complete lattice
By an operator, we shall mean a mapping of a complete lattice £ into a complete lattice M.

- Definition 2.1 We say that an operator ¢ : L — M is:

— increasing if A < B implies ¥(A) < ¥(B),

— extensive (resp. antiextensive) if L= M and (A) > A (resp. Pp(A) < A),
— idempotent if £ = M and ¥? = 1.

It is obvious that if 1 is an increasing operator then for any family K; € £, we have ¥(V K;) > V ¥(K;)
and P(A Ki) < Ao(Ks).

If £ and M are subsets of Boolean lattices® (for example F(X) in P(X)) then every element K in £
(resp. in M) has a unique complement in the Boolean lattice which we denote by K¢ (in P(X), we have
K¢ = X\ K). The dual operator of an operator 9 : £ — M is given by:

P* : L~ M* where ¢*(K)= (¢(K°))° and L* = {K° | K € L}
It is clear that ¢* is increasing if and only if ¢ is, ¥* is idempotent if and only if 9 is, and 9™ is extensive

if and only if ¥ is anti-extensive.
For example, the space F(X) of all closed subsets of X and the space 7*(X) of all open subsets of X

are duals, and we have:

VHCF(X), \VH= | K and \H=()K

KeH KeH
VHCF(X), VH=|J K and \H=Int| ) K>
KeH KeH

where Int(K) denotes the interior of K.

2f K is an invariance domain, then for any initial state zo € K, all solutions z(.) on [0, o[ of the differential inclusion
@' (t) € F(x(t)) starting from zo which satisfies 2(t) € K. The largest closed subset of K invariant under F* (which may be
empty) is the invariant kernel of K for F and we denote it by Inve(K).

3In a complete lattice £, there exists a smallest element denoted by @ and a greatest element denoted by E. Hz,y € £
are such that Ay =0 and z Vy = E, the y is called a complement of z. A lattice £ is called complemented if all elements in
L have a complement. A Boolean lattice is complemented distributive lattice, i.e. every element has a unique complement
and such that the supremun distributes over the infimum and conversely the infimum distributes over the supremum



2.1.1 Algebraic dilation and erosion

Definition 2.2 [13][8, Definition 2.1.] We will say that ¢ is an algebraic dilation (resp. an algebraic
erosion) if 1 distributes over the suprema (resp. over the infima), ie. Y(V K;) = Vo(K;) (resp.
YA Ki) = NP(Ki)). ‘

In set-valued analysis [4], there are two ways to extend the concept of the inverse image by a set-valued
map F of a subset K: FY(K) = {y € X| Fly)NK # 0} and F*Y(K) = {y € X| F(y) C K}.
The subset F~1(K) is called the inverse image of K by F and F*}(K) is called the core of K by F.
They naturally coincide when F is a single valued, and we observe that F*}(K¢) = X \ F71(K) and
FYK°) = X\ FTY(K).

Proposition 2.3 Let F : X ~ X be a set-valued map. The operator K — F~YK) is an algebraic
dilation and the map K — F1Y(K) is an algebraic erosion on P(X) and F~1(.) and F(.) are dudl
operators, i.e. (F~1)* = F*L.

Proof: F*(NK;) = {y € X| Fy) c (NK;)} = {y € X| Vi, F(y) C K;} = nF*}(K;). By
complementation, we see that F~1(UK;) = UF~1(K;). O

We give an other example. Let F': X ~ X be a set-valued map, then the operator r (resp. er) defined
on P(X) by:
@ﬂo=mKw=UFm>(mpqﬂm=r)wuw>
€K z€Ke

is an algebraic dilation (resp. an algebraic erosion) and we have % = ep. If F(x) = B, where B is a
subset of X and B, = B+ represents the translation set of B by the vector z, then §p(K) = K@ B and
er(K) = K © B where @ and © are respectively the Minkowski addition and the Minkowski subtraction
and B = —B is the symmetric set of B.

Definition 2.4 [8, Definition 2.2.] Let § : L — M and € : M +— L) be two operators on a complete
lattice L. Then we will say that (g,6) is an adjunction if for every A € L and for every B € M, we have:

6(4) < B & A < <(B) M
We will denote €® = § and 6® = ¢ when (e, 6) is an adjunction.

If (¢, 6) is an adjunction, it follows automatically that 6 is an algebraic dilation and ¢ an algebraic erosion.
For example, in the case of Minkowski operations on P(IR"), then the subtraction and the addition by a

set B form an adjunction.
An automorphism of £ is both an algebraic dilation and an algebraic erosion and (¢~1,4) and (¢, 9 ~)
are adjunctions.

Proposition 2.5 [8, Theorem 2.7.]

1. For any algebraic dilation 6 : L — M, there exists a unique algebraic erosion 6% : M s L such
that (6®,8) is an adjunction.



2. For any algebraic erosion € : M — L, there ezists a unique algebraic dilation €® : £ — M such
that (¢,e®) is an adjunction.

Let F : X ~» X be a set-valued map. The operator K — F(K) = Uzex F(z) is a dilation and its adjoint
erogion is F® : K v F1(K) on P(X). ‘
Proof: F(K)C H &Vec K, F(z) C HeVre K, z € FY\(H) & K C FY'(H). O

We provide two examples of adjunctions: -
— Let f,g: X — R be two extended functions defined on X with real values. We defined [16] the
supconvolution (resp. the infconvolution) of f by g at scale ¢t > 0 by:

fmtg(z) = sup {f(x—ty)+tg(y)} (resp. fWig(z)= inf {f(z+ty)—tg(y)})
yeR™ yER'

It is obvious that Us : f — f@tg is an algebraic dilation and Uy : f — fWtig is an algebraic erosion
on ®*5¢(X) and (Uy,Um) is an adjunction.

— Let us consider two set-valued maps F,G : X ~ X on a vector space X and h > 0. We say that
the map F 8 hG : X ~ Y defined by [17, Definition 2.1.]

(FEBAG)(z) = |J (F(z - hy) ® hG(y))
. yeX
is the set-convolution of F' and G. The map FEHAG : X ~» Y defined by
(FERG)(z) = [) (F(z+hy) ©hG(y))
yeX

is called the internal set-convolution of F' and G.
It is obvious that the map ¥ : F + F H G is an algebraic dilation and & : F — FBG is an
algebraic erosion for every set-valued map F' and G.

Proposition 2.1: Let G: X ~ Y be a set-valued map. If ¥ : F — FBG and ®: F — FHG
then (®,7¥) is an adjunction.

Proof:
V(F)<H & VreX, FHG(z) C H(z)

& VzeX, UF(z—y)®Gy) C H(z)
& Vr,ye X, Flz—y)® G(y) C H(x)
& Ve,ye X, Flx—y) C H(z)©G(y)
& Vz,z € X, F(z) CH(y+2) 6 G(y)
& Vze X, F(z) cnyH(y+z) © G(y)
& F < 9(H)

(]



2.1.2 Algebraic opening and closing

Definition 2.6 [20, Definition 2.1.] We will say that ¢ : £L — L is an algebraic opening (resp. an
algebraic closing) if ¥ is increasing, idempotent and antiextensive (resp. extensive).

The topological opening K +— Int(K) is an algebraic opening on P(X). The closed convex closure
operator K — ¢o(K) is an algebraic closing on F(X).

Proposition 2.7 [20, Proposition 2.8.] Given an adjunction (g,8), then we have 66 = & and ede = €.
The operator 8¢ is an algebraic opening and the operator €6 is an algebraic closing.

Proof:

— Since ¢ (resp. §) is an algebraic erosion (resp. dilation), then fe and €6 are two increasing
operators.

— g(z) £ e(z) & 6e(z) < z. We deduce that de is an anti-extensive operator. With the same
statement, we deduce that £6 is an extensive operator.

— Since de(x) < z & ebe(x) < be(z), but e6(x) > x & bede(x) > de(x). This yieldsthat dede = be.
With the same statement, we deduce that £6 is an idempotent operator.

Remark 2.8 We observe that if v is an algebraic dilation (resp. an algebraic erosion) then its dual
operator ¥* is an algebraic erosion (resp. an algebraic dilation). Furthermore, if 1 is an algebraic
opening (resp. an algebraic closing) then ¥* is an algebraic closing (resp. an algebraic opening).

2.1.3 Subset of fixpoints of algebraic opening and closing

Definition 2.9 (Subset of fixpoints) Let 1 be an operator on £ and K € L. We say that K 1is a
fixpoint of ¥ if W(K) = K. The set of all fixpoints of 1 is called the subset of fixpoints of ¢ and it is

denoted by:
Fix(y) :={K € L | %(K) = K}

It is obvious that Fix(¢) is 9-closed, because VK € Fix(¢) we have ¥(K) = K, and ¥ (y¥(K)) = ¥(K)
implies that ¥(K) € Fix(v). Then, for every opening ¢ : £ — L, there is an associated subset of fix
points. Since 9 is idempotent, Fix(¢) is nothing but the image of £ under %, i.e. Fix(¢)) = (L).

Lemma 2.10 (Tarski fixpoint theorem, weak version) [7, Theorem 3.3.] The set Fix(v) of fiz-
points of an increasing operator ¥ on the complete lattice £ is nonempty.

Theorem 2.11 (Tarski fixpoint theorem) [14, page 122 Let ¢ be an increasing idempotent operator
on L. Then Fix(v) is a complete lattice included in L.

Algebraic opening and closing are completely characterized by their subset of fixpoints.



Proposition 2.12 [12, Proposition 7.1.1] If 9 is an opening, then its subset of fizpoints is closed under
suprema, that is if K; € Fix(y) for i € I then \;c; K; € Fix(¢). Conversely, every subset B of L which
is closed under suprema is the subset of fizpoints of a unique opening ¢ given by:

$(K)=\/{BeB|BCK}

For example, in P(IR"), the subset of fixpoints of the topological opening K + Int(K) is the family of
all open sets which is closed under union and invariant under translation. Moreover, the interior of a set
K is the union of all open balls inside K, i.e.

Int(K)=U{B € B| BC K} where B is the family of all open balls

Proposition 2.13 [12, Proposition 7.1.1] If ¢ is a closing, then its subset of fizpoints is closed under
infima, that is if K; € Fix(¢) for i € I then \;c; K € Fix(¢p). Conversely, every subset B of L which is
closed under infima is the subset of fizpoints of unique closing ¢ given by:

$(K)=/\{BeB|B>K}

For example, in P(IR™), the subset of fixpoints of the closed convex closure K +— ¢o(K) is the family of
all closed convex sets which is closed under intersection and invariant under translation. Moreover, the
closed convex hull of a set K is the intersection of all closed half hyper-planes which contain K, i.e.

to(K)=nN{B € B| K C B} where B is the family of all closed half hyper-planes

Proposition 2.14 [20, Proposition 2.3.] Let 1 be an algebraic opening and 6 be an increasing antiez-
tensive operator. Then the following four statements are equivalent:

1. v <0, (i.e. VK € L, Y(K) <0(K)),
2. %o =1,
4. Fix(y) C Fix(0).

From this proposition, it follows that an algebraic opening is uniquely determined by its subset of fix-
points.

Corollary 2.15 [20, Corollary 2.4.] Let 1, and 13 be two algebraic openings, then 11 = 12 if and only
if Fix(¢1) = Fix(t2).
2.2 Order continuity of lattice operators

Throughout this section, we assume that £ is a complete lattice.

Definition 2.16 [9, Definition 2.1.] For a sequence K, in L we define:

liminfK, = \/ A K
N>1n>N

limsup K, = /\ \/ K,
N>1n>N



Obviously, for any sequence K, we have liminf K, < limsup K,,. We say that K,, — K if liminf K, =
limsup K, = K.
It is clear that

lim sup(K, /\ L,) < (limsupKy,) /\(lim sup L,,)
lim sup(X, v L,) > (limsupK,) \/(lim sup Ly,)

and the same relations hold for the liminf.

For example, on the lattice 7(X) of the closed subsets of X, the limsup and liminf are given by:

limsup K,, := ﬂ (U Kn>

N>1 \n>N

liminfK, = |J | [) &n
N>1 \n>N
If £ is a Boolean lattice, we have:
limsup K; = (liminfK,)°
liminf K = (limsup K,)°

Definition 2.17 [9, Definition 3.1.] Let £ and M be two complete lattices, and let ¢ : L +— M be an
arbitrary operator. We say that 1 is |-continuous if K, — K implies that limsup¢(K,) < ¥(K) and
that 1 is T-continuous if K, — K implies that ¥(K) < liminf (K, ). If ¢ is both T- and |- continuous
then K, — K implies ¥(K,) — ¢(K), and we say that 9 is continuous.

We can prove that:

Proposition 2.18 [9, Corollary 3.5.]

— Any algebraic erosion is |-continuous,
— Any algebraic dilation is T-continuous.

In fact this proposition is a corollary of the following proposition:

Proposition 2.19 [9, Proposition 3.4.] Let i be an increasing operator on L. Then the operator ¥ 1is
|-continuous if and only if limsup ¥ (K,) < ¥(limsup K,) for any sequence K, in L.

If we now consider the complete lattice F(X), where X is a topological space which is Hausdorff, locally
compact and admits a countable base. On F(X), we can first define limits of sets introduced by Painlevé
in 1902, and called Kuratowski upper and lower limits of sequences of sets:



Definition 2.20 [4, Definition 1.1.1.] Let (Ky,),eN be a sequence of subsets of a metric space X. We

say that the subset
Limsup K, := {z € X | liminf d(z, K,) = 0}

n—oo

is the upper limit of the sequence K, and that the subset
Lrimmen ={z € X | lim,,00d(z, K,) = 0}
s its lower limit. A subset K 15 said to be the limit or the set limit of the sequence K, if

K = Liminf K, = Limsup K,, =: Lim K,
nN—000

=00 n—00

Lower and upper limits are obviously closed. We also see at once that Liminf, oK, C Limsup,_,..Kn
and that the upper limits and lower limits of the subsets K, and of their closures K, do coincide, since
d(z,K,) = d(z,K,), and we have:

LiminfK, = (] U [ (Kn®eB)

e e>0 N<Ln>N
LiminfK, = (] () U (Kx®eB)
nmee e>0 N<1n>N

where B is the unit ball of X.
Any decreasing sequence of subsets K, has a limit, which is the intersection of their closures:

if K,, ¢ K,, when n > m, then Lim K, = ﬂ K,
n—oo >0

We have obviously on F(X), Limsup,,_,., K, = limsup,,_,, Kn.
It is easy to check that:

Proposition 2.21 [4, Proposition 1.1.2] If (Kn),eN 5 a sequence of subsets of a metric space, then
Liminf,— .o Ky is the set of limits of sequences z, € K, and Limsup,,_,. K, is the set of cluster points of
sequences T € K,, i.e., of limits of subsequences xn € Ky.

Definition 2.22 [4, Definition 1.4.1.] Let ¢ : F(X) — F(X) be an operator. We say that 1 is upper-
semi-continuous (u.s.c.) if K, — K implies that Limsup,_,¥(K,) C Y(K) and that 9 is lower-semi-
continuous (L.s.c.) if K, — K implies that Y(K) C Liminf,oo¥(Ky,). If ¢ is both upper and lower
semi-continuous then K, — K implies ¥(K,) — ¥(K), and we say that v is continuous.

Proposition 3.3 of [9] is:

Proposition 2.23 Let ¢ : F(X) — F(X) be an arbitrary operator on F(X).
— If o is u.s.c. then 9 is |-continuous,
— If 1 1s an increasing and |-continuous then v is u.s.c.

We deduce that every increasing erosion is u.s.c. on F(X).



3 Algebraic properties and differential inclusion

3.1 Differential inclusion and reachable set

In this section, we recall some operators induced by differential inclusions as the reachable map, the
exit tube, the viability kernel map and the invariance kernel map. For more details on the differential
inclusion theory and viability theory, see [3], [1] or [6]. We give the algebraic properties of these operators.

Control systems are often governed by a family differential equation z'(t) = f(z(t),u(t)) where u(t) €
U(z(t)). The single-valued map f describes the dynamics of the system: It associates with state z of the
system and the control u the velocity f(z,u) of the system. The set-valued map U describes a feedback
map assigning to the state z the subset U(z) of admissible controls. If we put F(z) := f(z,U(z)) =
{#(z,u)}ueu(a), then the control system is governed by the differential inclusion z'(t) € F(z(t)).

Let us describe the (non deterministic) dynamics of a system by a set-valued map F from the state space
X to itself. We consider initial value problems (or Cauchy problems) associated to differential inclusion

for almost all t € [0, 7],z (t) € F(z(t)) (2)
satisfying the initial condition z(0) = z.

Let F: X ~ X be a set-valued map from the vector space X to itself. We denote by J(z) the set of
solutions z(.) to the differential inclusion :

vtel, ©'(t) € F(z(t), z(0)=z (3)

starting at the initial state z. We also denote by ¢p(h,x) the set of the values x(h) at time A of the
solutions z of (3). For all subsets K C X, ¥p(h, K) = Ugex¥r(h,z) is the reachable set from X at time
h of F. The reachable map t ~ Jr(t,x) enjoys the semi-group property: Vt,s > 0, Jp(t +s,z) =
'ﬁF(t? ﬂF(sa ZL’))

Proposition 3.1 The operator K — Y9p(h,K) is an algebraic dilation on P(X).

Definition 3.2 [1, Definition 5.3.6.] The set-valued map Accr(.,t) :  ~ Accr(z,t) = U, Fr(z,8) is
called the accessibility map for F at t. The Accessibility tube of = is the set-valued map t — Accp(z,t).

Proposition 3.3 Let F be a Marchaud set-valued map in X. The set-valued map Accp(t,.) : K
Accp(K,t) = Ugeg Accr(z,t) is a dilation on F(X).

Proof: For any family (K;) of closed subsets of X,
Accp(, t)(U;K;) = U Accp(z,t) =U; U Accp(z,t) = UsAccp(,t)(K;). O
z€UK; zeK;

10



3.2 Viability domain and viability kernel

Let K be a subset of the domain of F. A function z(-) : [ = X is said to be viable in K on the interval
I c R* if and only if

Viel, z(t)e K
We shall say that K is locally viable under F' (or enjoys the local viability property for the set-valued map
F) if for any initial state zo in K, there exist T > 0 and a solution on [0,7] to differential inclusion (2)
starting at zp which is viable in K. It is said to be (globally) viable under F' (or to enjoy the (global)
viability property) if we can take 7' = co.
The notion of the viability of z(.) is related to tangency of velocities z'(.) to K. Let us make this more
precise and introduce a tangent cone to K et z € K, called the contingent cone, which generelizes the
idea of tangent space in non regular framework.

Let K C X be a subset of the vector space X, and x € K belongs to the closure of K. The contingent
cone Tk (x) to K at x is defined by [4, Definition 4.1.1.]:

. .  d(x+hv,K)
T = | fom
)= {o | gt SR o)
where d(x, K) = infyck d(z,y) and d is the distance on X (see fig. 1). In other words, v belongs to Tk (z)
if and only if there exist a sequence of h, > 0 converging to 07 and a sequence of v, € X converging
to v such that Vn > 0, = + h,v, € K. We see obviously that Vz € Int(K), Tg(z) = X where Int(K)
denotes the interior of K.

(4)

Fig. 1. — Contingent cone of a subset K at x.

Definition 3.4 (Viability Domain) [1, Definition 3.2.1] Let F : X ~» X be a nontrivial set-valued
map. We shall say that a subset K C Dom(F) is a viability domain of F' if and only «f

Ve e K,F(z) NTx(z) #0

Theorem 3.5 (Viability Theorem) [1, Theorem 3.3.5.] Consider a Marchaud map* F : X ~ X and
a closed subset K C Dom(F) of a finite dimensional vector space X. '

“We denote by ||F(z)|| := sup,c () lyll and we say that F has linear growth if there exists a positive constant ¢ such
that: Vz € Dom(F),||F ()| < c(llz]]+1). We shall say that F is a Marchaud map if it is upper semicontinuous, has compact
convex images and linear growth.

11



If K is a viability domain, then for any initial state zo € K, there exists a viable solution on [0,00[ to
differential inclusion (2).

If a closed subset K is not a viability domain, the question arises whether there are closed viability
subsets of K viable under F' and even, whether there exists a largest closed subset of K viable under F.

Definition 3.6 (Viability Kernel) [1, Definition 4.1.1] Let K be a subset of the domain of a set-valued
map F : X ~» X. We shall say that the largest closed subset of K viable under F (which may be empty)
is the viability kernel of K for F' and denote it by Viabp(K).

Assume that F : X ~ X is Marchaud. Then, if O C X is an open subset Viabp (X\2) is the set of
initial states  from which at least one solution never reaches . It is a closed subset. We say that € is
absorbing if this closed set is empty.

Its complement, called the absorbing domain, is the set
Absp(Q) = X\Viabp (X\2)

of initial states = from which all solutions reach ) in finite time.

3.3 Invariance domain and invariance kernel

We shall say that a subset K is invariant under the differential inclusion (2) if for any initial state
zo € K, all solutions to the differential inclusion starting from it are viable in K. We then can prove the
characterization of closed subsets invariant under a Lipschitz map:

Theorem 3.7 [1, Theorem 5.2.1.] Let us assume that F': X ~» X is Lipschitz with nonempty compact
values. Then a closed subset K C Int(Dom(F')) is locally invariant under F' if and only if K is an

invariance domain:
Ve € K,F(z) C Tk(x)

We then can introduce the concept of invariance kernels and invariance envelopes:

Definition 3.8 (Invariance Kernel, Invariance Envelope) [19, Definition 1.| Let K be a closed
subset. We shall say that the largest closed subset of K invariant under F' (which may be empty) is
the invariance kernel of K for F' and denote it by Invp(K). We shall say that the smallest closed subset
invariant under F' containing K is the invariance envelope of K for F' and denote it by Envp(K).

3.4 Exit Tubes

Let K be a closed subset of X and z(:) : [0,40c0[— X be a continuous function. We denote by 7x the
exit functionnal associating with z(-) its exit time 7k (z(-)) defined by [1, Definition 4.2.1] (See fig. 2):

Tr(z(-)) := inf{t € [0, +o0[ | z(t) & K}

It is obvious that V¢ € [0, T (z(-))[, z(t) € K, and if 7x(x(-)) is finite then z(7x(z(-))) € OK).

12



[
N

Fi1G. 2. = Exit time.

Then we can associate the function 'rg( : K +— IR, U {+co} defined by: Tﬁ{ : K — IR, U {+o0} (resp.
75+ K — IR, U {+0c0}) defined by:

7'2((.’17) := sup 7g(z(-)) (resp. 'r?{(x) = inf 7x(z())))
z(-)edr(x) z(-)edp(z)

called the exit function (resp. the global exit function).
Finally, we can associate with any ¢ > 0 the two subsets :

EXITr(K,t) = {z€K |h(z)>1t}
Exitp(K,t) = {z€ K |1h(z)>1t}

We shall say that the set-valued map t — Exitp(K,t) (resp. t — EXITp(K,t)) is the exit tube (resp.
the global exit tube).

One can prove [1] that when F is Lipschitz with closed convex values, the graphs of these four tubes are
closed.

Furthermore Exitp(K,t) (resp. EXITp(K,t)) is the subset of initial states x € K such that one solution
(resp. all solutions) z(-) to differential inclusion (3) starting at x remains in K for all time in [0,1].

In summary, we have:

Exitp(K,t) =95 {z(-) | Vs € [0,t],z(s) € K}

EXITp(K,t) =95 {z(-) | Vs € [0,#],z(s) € K}

When t; <ty then: Exitp(K,ty) C Exitp(K,t1) C ... C Exitp(K,0) = K.

13



In particular, for ¢ = 4o0,

Viabp(K) = Exitp(K, +00) = (| Exitp(K,t) and Invp(K)= | EXITr(K,?)
>0 t>0

Let F : X ~» X be a set-valued map. The operator K — Ezitr(K,t) is an increasing antiextensive
operator.

Proposition 3.9 Let F: X ~ X be a sgt—valued map. The operator EXITr(.,t) : K — EXITp(K, t)y
is an algebraic erosion on F(X).

Proof: Since EXITr(.,t)(K) = EXITp(K,t) = {z € K | Vs <t, dp(s,x) C K}, it is obvious that:
EXITF(.,t)(ﬂKi) = EXITr(NK;, t) = NEXITg(K;,t) = NEXITg(.,t)(K;). O
Let F : X ~ X be a Marchaud map, then K +— 9g(h, K) is {-continuous, since this operator is an

algebraic dilation on P(X), and K — EXITr(.,t)(K) = EXITr(K,t) is |-continuous as an algebraic
. erosion on F(X). Since K — EXITr(.,t)(K) is increasing and |-continuous, we deduce that

Proposition 3.10 Let F: X~ X be a Marchaud map. The operator EXITr(.,t): K+ EXITr(K,t)
is u.s.c. on F(X).

3.5 Accessibility tube

Let F : X ~» X be a Marchaud set-valued map. Let 9r(h,z) be the set of the values z(h) at time h of
the solutions z of (3). We recall that the Accessibility tube of z is the set-valued map t — Accp(z,t) =

U ﬂF(xa 3)'
s<t
Proposition 3.11 [15, Proposition 6.1.]
— Let F be a Lispchitz set-valued map with compact convez values in X, then:

Ezitp(K, h) C Accr(., ) HK)

— Let F be a Marchaud set-valued map in X, then EXITr(K,h) = Accr(., h)* (K).

Proof:

Ezitp(K,h) = {z€ K| sup 7x(z(:)) >t}

z(-)€9r ()

{z € K | Jz(-) € 9r(z), Tr(z(:)) >t}
{z € K | 3z(-) € dp(z), Yt < h, z(t) € K}
{zx € K |Vt <h, 3z(-) € 9p(z), z(t) € K}
{xe X |Vt<h, dp(t,z)NK #0}
{zeX| |J9rt,z)NK #0}

t<h
Accp(., h)"HEK)

N 1N N
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EXITp(K,h) = {ze€K| inf 3 > ¢
P(h) = (seK|  inf ri(a()2 1)

= {ze K |Vz() € Or(x), Tr(z(:)) >t}

= {ze K |Vz() € dr(z), YVt < h, z(t) € K}
= {z e K |Vt<h, Vz() € 9p(x), z(t) € K}
= {zeX |Vt<h, dp(t,z) C K}

{zeX| |J9r(t.z) C K}
t<h

= Accp(.,, h)THK)

. Theorem 3.12 Let F be a Marchaud set-valued map in X. Let us consider the two operators on F(X):
EXITw(.,t): K — EXITr(K,t) and Accp(.,t) : K — Accp(K,t). Then EXITr(.,t)® = Accp(.,t) on
F(X).

Proof: For any K, H € F(X)

Acer(Lt)K)CH & |J9r(s,K)CH

s<t

Vz € K, Vs <t, dp(s,z) C H (In particular z € H)
K CEXITp(H,t)={z € H|Vs <t dp(s,z) C H}
K C EXITs(.,t)(H)

Tt T

0O
It follows from proposition 2.7 that :

Corollary 3.13 The operator K — Accp(EXITr(K,t),t) is an algebraic opening and the operator
K — EXITr(Accr(K,t),t) is an algebraic closing on F(X).

3.6 Properties of the viability kernel

Let us consider a Marchaud map F : X ~ X. Let Viabp be the following operator on F(X) defined by
Viabp : K — Viabp(K). In this section, we will study some properties of this operator.

3.6.1 Algebraic properties

We first recall a characterization of the viability kernel.

15



Theorem 3.14 [2, Theorem 4.1.15.] Let F : X ~ X be a Marchaud map and K C Dom(F) = {z €
X | F(zx) # 0} be closed. Then the viability kernel of K exists (possibly empty) and is equal to the subset
of initial states such that at least one solution starting from them is viable in K:

Viabp(K) = 97" {z(-) | V¢t > 0,z(t) € K}

Proposition 3.15 The operator Viabp : K — Viabp(K) is an algebraic opening on F(X).

Proof:

— By theorem 3.14, Viabr is idempotent.
— Tt is obvious that Viaby is anti-extensive because VK € F(X), Viabp(K) C K.

— Viabp is increasing: Suppose that K C L, Vz € Viabp(K), Jz(.) such that V¢ € [0,T], z(t) =
9p(t,z) and z(t) € K C L, this implies + € Viabg(L), then we deduce that Viabr(K) C
Viabp(L).

O
It follows from proposition 2.8 that:

Corollary 3.16 The operator Absp(.) defined by Absp(2) = X\Viabr (X\Q) is an algebraic closing on
the space F*(X) of all open subsets of X.

Since Viabp is increasing, for all family (K;), we have:

Viabp(ﬂiKi) C ﬂiViabF(Ki)
Viabp(UiKi) D U¢ViabF(Ki)
Let F : X ~ X be a Lipschitz and Marchaud set-valued map. Then from proposition 2.14 we deduce

that:
VK € F(X), V¥t >0, Viabp(Ezitr(t,K)) = Ezitp(t, Viabp(K)) = Viabp(K)

3.6.2 Continuity property

Proposition 3.17 [1, Corollary 4.1.5.] Let us consider a set-valued map F : X ~» X satisfying uniform
linear growth and an arbitrary sequence of closed sets K.
Then Limsup,, o, Viabp(K,) C Viabp(Limsup,,_, o, Kn).

From this proposition, it is obvious that Viabp is a |-continuous map. Since Viabp is increasing, from
proposition 2.23 we have:

Corollary 3.18 Let F : X ~ X be a Marchaud map. Let Viabp : F(X) w F(X) be defined K +—
Viabp(K) then Viabp is u.s.c..

16



3.6.3 Set of fixpoints

From proposition 3.15, we deduce that Viabp(K) = U{L € F(X) | L € Fix(Viabp) L C K} where
Fix(Viabp) is the set of all viability domains for F. This set is a complete lattice. The domain of the
solution map 95 is the largest closed viability domain contained in the domain of F', and:

/\Fix(Viabp) = @
\/ Fix(Viabr) = Dom(dr)

Definition 3.19 (Limit set) [1, Definition 3.7.1] Let z(-) be a solution to differential inclusion (2). We
say that the subset

wp(a()) = [ el (T, 00])) = limsup{a(t)}
T>0 t—too

of its cluster points when t — oo is the limit set of z(-). If K is a subset of Dom(dr) and 95 (., K) the
reachable map, we denote by wp(K) :=limsup;_,, o, Vr(t, K) the w-limit set of the subset K.

Proposition 3.20 (Limit sets are viability domains) [1, Theorem 3.7.2] Let us consider a Mar-
chaud map F : X ~ X. Then the limit sets of the solutions to differential inclusion (2) are closed
viability domains which are connected when wr(z(-)) are compact. In particular, the limits of solutions
to differential inclusion (2), when they ezist, are equilibria of F' and the trajectories of periodic solutions
to the differential inclusion (2) are also closed viability domains.

Proposition 3.21 Let F : X ~ X be a Marchaud map. Then for allz € K and for all z(.) € dp(z)NK:
Er(z(.) = (U{x(t)}> Uwp(z(.))
£>0
is a closed viability domain and,

ViabF(K)=U( U IEF(w(-))>

z€K \z(.)edp(z)NK

Proof: Vz € Viabp(K), the subset {z} is contained into a minimal closed viability domain (Zorn’s
lemma. for the inclusion order on the family of non empty closed viability domains of F'). Minimal
domains which contain z are V() = Uy()eop(@)nk Er(z(.)). It is clear that Viabp(K) = Uzex V(x).

— Let us consider, for all z € K and for all z(.) € dp(z) N K, the following set Ep(z(.)) =
(UtZO{x(t)}> Uwp(z(.)), where z(.) € dp(z)NK. The set IEF(x(.)) is a viability domain because
Vy € IEr(z(.)), we have y = z(t) or y = limy, o z(ts) then y(.) = z(. — t) or y(.) = z(. —t,) is
a solution viable in Ep(z(.)).

— Vz € V(z), 3z(.) € dp(z) viable in V(z), then V¢ > 0, z(t) € V(z). We deduce that
Er(z) C V(x). Since IEp(z(.)) is a viability domain for one of the solutions of the dif-
ferential inclusion (3) and V(z) is a minimal closed viability domain contain in K, we have

V(z) = Us()eor(@nk Er(z(.)-
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— Since Vy € Ep(z(.)) = Er(y(.)) C Ep(z(.)), we have a preorder relationship z(.) > y(.) =
Er(y(.)) C EEp(z(.)). Therefore for every point x € K, the subset {x} is contained in a minimal
element IEg(x(.)) for this preorder.

O
We can deduce that :

Viabp(K) = {E€€|ECK}whereE= ] |J Er(z()
s€X o)V ()

3.7 Properties of the invariance kernel and invariance envelope

Let us consider a Marchaud map F : X ~ X. Let Invy be the following operator on F(X) defined by
K + Invp(K). In this section, we will study some algebraic properties of this operator.
Let us recall a useful characterization of the invariance kernel:

Theorem 3.22 [2, Theorem 4.2.6.] Let us consider a Lipschitz map F : X ~ X with closed values. Let
K be closed. Then the invariance kernel of K exists (possibly empty) and is equal to the subset of initial
states such that all solutions starting from them is viable in K:

Invp(K) = 95 {z(-) | V¢ > 0,z(t) € K}

From theorem 3.22, it is easy to deduce that:

Proposition 3.23 The operator Invp : K +— Invp(K) is an increasing algebraic erosion and an algebraic
opening on F(X).

It is clear that Invp(K;3 N K2) = Invp(K1) NInve(K>y) and more generally, that the invariance kernel of
any intersection of closed subsets K; (i € I') is the intersection of invariance kernels of the Kj.
It follows that:

Proposition 3.24 The operator Invp : K — Invp(K) is u.s.c. on F(X).

Proposition 3.25 [1, Proposition 5.4.5.] Let us assume that the solution map 9 is lower semicontinu-
ous from 2 to C(0,00; X) = {f : [0,00] — X which is continuous}. Then the lower limit of closed subsets
K, C Q invariant under F is also invariant under F. In particular, the lower limit of the invariance
kernels of a sequences of closed subsets K,, C Q contains the invariance kernels of the lower limit of the

sequence Ky :
Liminf (Inv(K,)) O Tnvr (Liminf(K,))

It follows that if the solution map ¥ is lower semicontinuous, then the operator Invg : K +— Invp(K)
is 7-continuous. Since it is an algebraic erosion, it is |-continuous. We deduce that, under the previous
assumptions, the operator Invg : K + Invp(K) is continuous.
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Proposition 3.26 [19, Proposition 2.| Assume that F' : X ~» X is Lipschitz with non empty closed
values. Then the invariance envelope and the accessibility map are related by:

Envp(K) = Accp (K, +00)

Furthermore, if we suppose that K = Int(K) then:

Envp(K) =X \Inv_pK where K=X\K

Let F: X ~ X be Lipschitz with non empty closed values. Let K, H be two non empty closed subsets
of X, then:

— if H C K then Envp(H) C Envp(K),

~ Envp(HNK) C Envp(H) N Envp(K),

— the subset K is invariant if and only if K = Envp(K).
It follows that:

Proposition 3.27 The operator Envy : K — Envp(K) is an algebraic dilation and closing on F(X) N
{K = Int(K)}.

Since the intersection of two invariance domains is still an invariance domain, the invariance envelope
Envp(K) is defined as the intersection of all closed subsets containing K. Then we obtain: Envp(K) =
N{B € B | K C B} where B is the family of all invariant domains under F'.

4 Application to morphological operators

Let B be a subset of a topological vector space X. We cgnsider the multivalued map Tp defined by:
Tg(x) = By = {x +b where b€ B} = B® {z}. We put B = —B = {-b | b € B} the symetrical set of
B.

We recall [12] that if K and B are two subsets of X,
— The morphological dilation of K by B is defined by: K @ B = {z | B, N K # 0}.
— The morphological erosion of K by B is defined by: K © B = {z | B, C K}.
— The morphological opening of K by B is defined by: Kg = (K © B)® B = U,{B, | B, C K}.
— The morphological closing of K by B is defined by: KB =(K®B)oB.

Tt is obvious that the morphological dilation (resp. erosion, opening, closing) is an algebraic dilation
(resp. erosion, opening, closing), and we have:

Tel(K)={z | B,NK#0}=K®B and T (K)={z|B,CK}=KoB

From formula (2.8), it follows that: M (X¢) = M (X)* & X° @ K = (X e R’)c, then the operators
K+— K& B and K — K © B are duals.
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We observe at once that, if F' is the constant set-valued map y ~» F(y) = B where B is a compact convex
set, then 9p(h, K) = K @ hB is the Minkowski addition of K by the homothetic of B at scale k. In fact,
we have: Vp(h,z) = {z(h) | 2'(t) € F(z(t)) & z(0) = z}. Then, differential inclusion (3) is equivalent to
z'(t) € B and z(0) =z, i.e. z(h) =z + fél b(t)dt for b(t) € B. Under the convexity assumption of B, we
deduce that 9p(h,z) = {z} ® hB, and we finally obtain Ip(h, K) = Uzex{9r(h,z)} = Ugex{z} ®hB =
KaohB.

We say that B is a barrel set of the finite dimensional vector space X if B is a convex, symmetric (i.e.
—B = B), compact set with non-empty interior. We can equip the space X with a metric derived from a
norm associated with a barrel set B defined by: || - ||5: ||z]lz = min{A, A > 0; z € AB} and the induced
distance dP is defined by: [21, Chapter 9.]

dB(z,y) = ||z — yllz & d®(z,y) = min{A, A > 0; y € {z} ® AB} (%)

i.e. dB(z,y) is the size of the biggest homothetic set of B centered on x and containing y. It is obvious
that in the plane IR?, the Euclidean norm, the Li-norm, i.e. ||z|l1 =| z1 + x5 |, and the L.,-norm, i.e.
| zlleo = sup(|z1], |z2|) where z = (x1,23), are || - || for B respectively be a disk, a diamond and a
square.

Let us now, consider the following differential inclusion: z'(t) € F(z(t)) where F is the constant set-valued
map equal to the barrel B, i.e. we consider the differential inclusion z'(t) € B, then ¥p(h,z) = {z}®hB,
and we have:

Proposition 4.1 Let K be a closed subset of X and B be a compact convez subset of X containing the
origin. Let ¢ : X — IRT be a 1-Lipschitz single valued map, and let be F(y) = ¢(y)B for ally € X.
Then, for all initial state x, we have:

Accp(z,t) = 9p(t,z) = {z} & sup (/tw(m(s))d3> B (6)

:z:(~)€'l9B (a:) 0

h
Proof: We observe that ¥g(h,z) = {z} & sup (/ go(ac(s))ds) B is the set of solutions of the
z(-)edp(z) \/O
differential inclusion z'(t) € ¢(x(¢))B with initial state £(0) = z. Under the assumption O € B, we

have: For a < b, (/Oa go(x(s))ds) B C (/Ob cp(:c(s))ds) B, and finally:

g ¢
fgtm(»i%};(x) (/0 <p(:13(s))ds> B = w(-)ségg(x) (/0 ‘P(x(s))ds) B
(]

Lemma 4.2 Let B be a barrel and K be a compact subset of X such that Int(K) = K, then we have:
VK € X, 7b(z) = dB(z, K°)
where dB(z,y) = ||z — y||B, and dB(z,Y) = ig}f} dB(z,y) is the distance to K¢ function associated with
y

B.
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From lemma 4.2, we deduce that:

Proposition 4.3 Let B be a barrel and K be a compact subset of X such that Int(K) = K, then we

have: .
Exitg(K, h) = K
r193(h7 K) = 79B(ha ')—-1(K) = K®hB
EXITs(K, k) — 9gp(h,)TY(K) = KOhB
9p(h, EXITs(K, k) = (K©hB)@®hB
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