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Abstract. In this work, we propose a framework that allows to build
morphological operators for processing and filtering objects defined on
(abstract) simplicial complex spaces. We illustrate with applications to
mesh and image processing, for which, on the provided examples, the
proposed approach outperforms the classical one.

1 Introduction

Introduced by Poincaré [11] for studying the topology of spaces of arbitrary
dimensions, a simplicial complex can be seen as a mesh, i.e. a space with a tri-
angulation. The basic building block of the complex is the cell, which can be
thought of as a set of elements having various dimensions glued together accord-
ing to certain rules (e.g., a triangle, its edges and vertices). Although simplicial
complexes have a wide variety of different usages (e.g., in computer graphics,
in Computer-Aided Design or in modeling), their processing has mostly been
considered in term of simplification, for example to obtain a simpler model with
less details. However, it is more and more frequent to have data associated with
the elements of a mesh (e.g. a curvature or a texture). Processing (filtering) the
values associated with a mesh is not a common problem per se in the litera-
ture. On the other hand, filtering is a common theme in image processing, and
abstract (simplicial or cubical) complexes have been promoted, in particular by
Kovalevsky [7], in order to provide a sound topological basis for image analysis,
and are more and more popular [4,1,2]. Then again, the values are most of the
time located on one of the elements of the cell, usually the facet, i.e. the largest
element of the cell. In a purely discrete perspective, being able to deal with
smaller elements of the cell will allow a kind of “subpixelic” processing.

In this perspective, mathematical morphology provides a useful toolbox made
of non-linear operators. Thanks to their algebraic definitions in the framework of
lattices, those morphological operators can be applied to many kinds of organized
information, and in particular to simplicial complexes.

The complexes can be considered as a natural generalization of the graphs in
the sense that a (symmetric) graph is a one dimensional complex. In the past, sev-
eral authors studied morphological operators on graphs [14,5,9,3,13]. However, to
the best of our knowledge, very few studies exist about basic morphological oper-
ators on complexes [8], and none deal with the filtering problem. The goal of this



paper is to help bridging this gap. Our main result is a framework for building
morphological operators on complex spaces. As main examples of application, we
present a set of operators (erosions/dilations, granulometries/anti-granulometry,
and alternate sequential filters) that act on the subcomplexes of a space which
is itself a simplicial complex. Although this work is settled in the framework of
simplicial complexes, all the results extend to cubical complexes.

The article is organized as follows. Section 2 presents the working space, sim-
plicial complexes and lattices. Then, Section 3 introduces operators acting on
the defined spaces and shows that these operators are dilations, identifies their
adjoint erosions, and presents morphological operators on subcomplexes result-
ing from the composition of these adjoint operators. Finally, Section 4 introduces
a framework that allows morphological operators depending on dimension pa-
rameters to be defined and illustrates their use to image and mesh processing.

2 Lattice of simplicial complexes

The goal of this work is to explore mathematical morphology on simplicial com-
plex spaces. To this end, this first section recalls the definition of (abstract)
simplicial complexes. Then, after a reminder on lattices, we state that the set of
all subcomplexes of the space is a lattice. Hence, as will show the next sections
of the paper, morphological operators acting on subcomplexes can be studied.

We call (abstract) simplex any finite nonempty set. The dimension of a sim-
plex x, denoted by dim(x), is the number of its elements minus one. A simplex
of dimension n is also called an n-simplex.

Fig. 1(a) (resp. b, and c) graphically represents a simplex x = {a} (resp.
y = {a, b} and z = {a, b, c}) of dimension 0 (resp. 1, 2). Fig. 1(d) shows a set of
simplices composed of one 2-simplex ({a, b, c}), three 1-simplices ({a, b}, {b, c}
and {a, c}) and three 0-simplices ({a}, {b} and {c}).

(a) (b) (c) (d)

Fig. 1. Graphical representation of (a) a 0-simplex, (b) a 1-simplex, (c) a 2-simplex,
and (d) a 2-cell.

We call simplicial complex, or simply complex, any set X of simplices such
that, for any x ∈ X, any nonempty subset of x also belongs to X. The dimension
of a complex is equal to the greatest dimension of its simplices. In the following,
a complex of dimension n is also called an n-complex.



For instance, Fig. 1(d) represents an elementary 2-complex. The set of black
and gray elements in Fig. 2(a) represents a 2-complex made of more simplices.

Important notations. In this work, the symbol C denotes a nonempty
n-complex, with n ∈ N. This complex C stands for our working space in this
paper. The set of all subsets of C is denoted by P(C ).

Recall that a (complete) lattice is a partially ordered set in which any two
elements have a unique least upper bound, called supremum, and a unique great-
est lower bound, called infimum. Such structures are of particular importance for
mathematical morphology. Note that the set P(C ), equipped with the inclusion
relation, is a lattice. In this lattice P(C ), the supremum and the infimum are
respectively the union and the intersection.

Any subset of C that is also a complex is called a subcomplex (of C ). We
denote by C the set of all subcomplexes of C . The set C equipped with the
inclusion relation, is a sublattice of P(C ) since C is a subset of P(C ) closed
under union and intersection.

A subcomplex X of C is called a cell of C if there exists a simplex x in X
such that X is exactly the set of all subsets of x. Any subcomplex X ∈ C is sup-
generated by the family G of all cells of C that are included in X: X = ∪{Y ∈ G}.
Conversely, any family G of cells sup-generates an element of C. In this sense,
the cells can be seen as the elementary building blocks of the complexes.

IfX is a subset of C , we denote byX the complement ofX (in C ):X = C \X.
The complement of a subcomplex of C , in general, is not a subcomplex. For

instance, observe in Fig. 2(a) that, if C is the complex represented in black and
gray, then the complement of the gray subcomplex X is not a subcomplex. Thus,
contrarily to the lattice P(C ) which is complemented, the lattice C is not.

Any subset X of C whose complement X is a subcomplex is called a star
(in C ). We denote by S the set of all stars in C . As C, S is a sublattice of P(C ).

Note that the intersection C∩S is nonempty since it always contains ∅ and C .
The lattice C is our main working space in the rest of the paper. As a con-

clusion to this section, let us summarize its properties as follows.

Property 1 The set C of the subcomplexes of C is a complete lattice sup-
generated by the set of all cells of C ; this lattice is not complemented.

3 Morphological operators on simplicial complex spaces

Our goal is to investigate morphological dilations and erosions that act on com-
plexes, (where both the inputs and the outputs of the operators are complexes),
and that produce nontrivial granulometries, (i.e., granulometries where the di-
lations are not idempotent). Indeed, such nontrivial granulometries are known
to be important in mathematical morphology for analyzing and filtering digital
objects according to their size. After a short reminder on morphological adjunc-
tions in the framework of lattices, we present operators that are classical for
handling topological spaces such as simplicial complexes. Then, we show that
dilations, erosions and granulometries satisfying the above-mentioned properties
can be obtained by carefully composing these topological operators.



In mathematical morphology (see, e.g., [12]), any operator that associates el-
ements of a lattice L1 to elements of a lattice L2 is called a dilation if it commutes
with the supremum. Similarly, an operator that commutes with the infimum is
called an erosion. The notion of adjunction, recalled below, allows dilations and
erosions to be classified into pairs of operators leading to granulometries.

Let L1 and L2 be two lattices whose order relations and suprema are denoted
by ≤1, ≤2, ∨1, and ∨2. Two operators α : L2 → L1 and αA : L1 → L2 form an
adjunction (αA , α) if α(a) ≤1 b ⇔ a ≤2 α

A (b) for every element a in L2 and
b in L1. It is well known (see, e.g., [12]) that, given two operators α and αA ,
if the pair (αA , α) is an adjunction, then αA is an erosion and α is a dilation.
Furthermore, if α is a dilation, the following relation characterizes its adjoint
erosion αA :

∀a ∈ L1, α
A (a) = ∨2 {b ∈ L2 | α(b) ≤1 a} (1)

Let us now present two pairs of adjoint operators, which are classical in
topology, and that will serve us to obtain nontrivial granulometries on complexes.
Let x be a simplex in C , we set x̂ = {y | y ⊆ x, y 6= ∅} and x̌ = {y ∈ C | x ⊆ y}.

The operators Cl : P(C )→ P(C ) and St : P(C )→ P(C ) are defined by:

∀X ∈ P(C ), Cl(X) =
⋃
{x̂ | x ∈ X}; and (2)

∀X ∈ P(C ), St(X) =
⋃
{x̌ | x ∈ X}. (3)

By definition, the operators Cl and St commute under union. Thus, they
are dilations on P(C ). Hence, by direct application of Eq. (1), the adjoint ero-
sions ClA and StA of Cl and St are given by:

∀X ∈ P(C ), ClA (X) =
⋃
{Y ∈ P(C ) | Cl(Y ) ⊆ X}; and (4)

∀X ∈ P(C ), StA (X) =
⋃
{Y ∈ P(C ) | St(Y ) ⊆ X}. (5)

The four operators presented above are illustrated in Fig. 2, where the sub-
sets X,Y, Z, V , and W , made of gray simplices in Figs. 2(a), 2(b), 2(c), 2(d),
and 2(e), satisfy the following relations Y = St(X), Z = StA(X), V = Cl(Y ),
W = ClA (Z).

Let X ∈ P(C ). The set Cl(X) (resp. St(X)) is the smallest complex (resp.
star) that contains X, and the set ClA (X) (resp. StA (X)) is the largest com-
plex (resp. star) contained in X. Hence, clearly, C (resp. S) is the invariance
domain of Cl and ClA (resp. St and StA ): C = {X ∈ P(C ) | Cl(X) = X} =
{X ∈ P(C ) | ClA (X) = X} (resp. S = {X ∈ P(C ) | St(X) = X} = {X ∈
P(C ) | StA (X) = X}). These facts are well known in the context of topolog-
ical spaces [6] where the sets St(X), St(X), ClA (X), and StA (X) are called
respectively the (simplicial) closure, the star, the core, and the interior of X.

Since the operators Cl and St are dilations, they constitute a straightfor-
ward choice to investigate morphology on complexes. However, these dilations
are idempotent: Cl ◦ Cl(X) = Cl(X) and St ◦ St(X) = St(X). Thus, they
lead to trivial granulometries. In order to obtain nontrivial granulometries, one



could consider the composition Dil = Cl ◦ St. Indeed, the operator Dil is a
dilation (since it is a composition of dilations), which, in general, is not idem-
potent, and whose results are always complexes. By the theorem of compo-
sition of adjunctions (see [12], p. 59), the adjoint erosion Er of Dil is given
by Er = DilA = StA ◦ClA . Due to the remarks of the previous paragraph, the
set Er(X) is always a star. Thus, in general, the set Er(X) is not a complex.
Hence, the pair (Er,Dil) does not lead to granulometries acting on complexes.

In order to obtain nontrivial granulometries on complexes, let us restrict the
operators of Eqs. 2 and 3. More precisely, we define the operators � : S → C
and ? : C → S by:

∀X ∈ S, �(X) = Cl(X); and (6)

∀Y ∈ C, ?(Y ) = St(Y ). (7)

The only differences between � and Cl are the domains of activity of the
operators. A similar remark holds true for ? and St. These operators � and ? are
also obviously two dilations. Then, using again Eq. 1, the adjoint erosions �A
and ?A of � and ? are given by:

∀X ∈ C, �A (X) =
⋃
{Y ∈ S | � (Y ) ⊆ X} ; and (8)

∀Y ∈ S, ?A (Y ) =
⋃
{X ∈ C | ? (X) ⊆ Y } . (9)

It can be easily seen that the star �A (X) is the interior of the complex X
and that the complex ?A (Y ) is the core of the star Y . Therefore, one straightfor-
wardly deduces the following property that links the adjoint of ?, St, �, and Cl
in a surprising way.

Property 2 The two following propositions hold true:

∀X ∈ C, �A (X) = StA (X); and (10)

∀Y ∈ S, ?A (Y ) = ClA (Y ). (11)

It is known in topology that the closure and interior operators are dual with
respect to the complement. Thus, we deduce the following result.

Property 3 The operators � and �A (resp. ? and ?A ) are dual w.r.t. the com-

plement in P(C ): we have �A (X) = �
(
X
)
, for any X ∈ C (resp. ?A (Y ) = ?

(
Y
)
,

for any Y ∈ S)

Note that using directly Eqs. 8 and 9, computing �A (X) (resp. ?A (X)) requires
an exponential time since the family of all stars (complexes) must be considered.
On the other hand, as the operators Cl and St are locally defined, �(X) and ?(X)
can be computed in linear-time. Hence, as a consequence of Property 3, �A (X)
and ?A (X) can also be computed in linear-time.

Let us now compose the dilations � and ?, as well as their adjoints, to obtain
a pair of adjoint dilations and erosions that act on complexes.



(a) X (b) Y (c) Z (d) V (e) W

Fig. 2. Illustration of morphological dilations and erosions on complexes. [see text]

Definition 4 We define the operators δ and ε acting on C by:

δ = � ◦ ? (12)

ε = ?A ◦ �A (13)

For instance, Figs. 2(d) and 2(e) represent, in gray, the complexes V = δ(X)
and W = ε(X), if X is the complex represented in gray in Fig. 2(a).

Due to the theorem of composition of adjunctions (see, e.g., [12], p. 59), the
following result can be deduced.

Theorem 5 The two operators δ and ε are respectively a dilation and an erosion
acting on C. Furthermore, the pair (ε, δ) is an adjunction.

The dilation δ and the erosion ε, as well as the classical dilations and erosions
on grid points by symmetrical structuring elements, are in general not idempo-
tent. However, contrarily to classical dilations and erosions on grid points, the
erosion ε and the dilation δ are not dual with respect to the complement since
the lattice C is not complemented.

As the pair (ε, δ) is an adjunction, the compositions φ = ε ◦ δ and γ =
δ ◦ ε are respectively a closing and an opening. In other words, the operators φ
and γ are both increasing and idempotent, whereas φ is extensive and γ is anti-
extensive. Furthermore, since δ and ε are not idempotent, the operators obtained
by iterating ε and δ lead to nontrivial granulometries, as we will detail in the
next section.

Figs. 3(b) and 3(d) depict, in gray, the results of φ and γ applied to the
gray complexes X of Fig. 3(a) and Y of Fig. 3(c). Observe, in particular, that
these operators can be intuitively regarded as elementary closing and opening
on complexes.

4 Dimensional operators

From their very definition, simplicial complex spaces allow for handling objects
of different dimension (e.g., “curvilinear”, “surfacic” or “volumic” objects), as



(a) X (b) φ(X) (c) Y (d) γ(Y )

Fig. 3. Illustration of morphological closing and opening on complexes.

well as objects of heterogeneous dimension (e.g., made of “curvilinear”, “sur-
facic” and “volumic” sub-objects). The operators introduced in the previous
section add or remove simplices independently of the dimension of the objects.
In this section, we introduce a framework for morphological operators that take
dimension into account. We first present (Definition 6) the building blocks of the
framework: a family of adjoint operators that depend on dimensional parame-
ters. By combining these building blocks, many morphological operators acting
on subcomplexes, substars, and subsets of the space C can be obtained. As an
example, we instantiate (Definition 9) a granulometry and an alternate sequen-
tial filter acting on the lattice of all subcomplexes of C. Then, it is shown that
these filters lead to interesting results on images, as suggested by a comparison
with classical morphological image filters. Finally, the ability of the proposed
filters to smooth subsets of a mesh is also illustrated.

Let X ⊆ C and let i ∈ [0, n], we denote by Xi the set of all i-simplices
of X: Xi = {x ∈ X | dim(x) = i}. In particular, Ci is the set of all i-simplices
of C . We denote by P(Ci) the set of all subsets of Ci.

Definition 6 (dimensional operators) Let i, j ∈ N such that i ≤ j ≤ n.
We define the operators δ+i,j and ε+i,j acting from P(Ci) into P(Cj) and the

operators δ−j,i and ε−j,i acting from P(Cj) into P(Ci) as follows:

P(Ci)→ P(Cj) P(Cj)→ P(Ci)

X → δ+i,j(X) such that X → δ−j,i(X) such that

δ+i,j(X) = {x ∈ Cj | ∃y ∈ X, y ⊆ x} δ−j,i(X) = {x ∈ Ci | ∃y ∈ X,x ⊆ y}
X → ε+i,j(X) such that X → ε−j,i(X) such that

ε+i,j(X) = {x ∈ Cj | ∀y ∈ Ci, y ⊆
x =⇒ y ∈ X}

ε−j,i(X) = {x ∈ Ci | ∀y ∈ Cj , x ⊆
y =⇒ y ∈ X}

In other words, δ+i,j(X) is the set of all j-simplices of C that include an

i-simplex of X, δ−j,i(X) is the set of all i-simplices of C that are included in

a j-simplex of X, ε+i,j(X) is the set of all j-simplices of C whose subsets of

dimension i all belong to X, and ε−j,i(X) is the set of all i-simplices of C that

are not contained in any j-simplex of X.
It is interesting to remark that, since a graph is a 1-complex, the operators

δ+0,1, δ−1,0, ε+0,1 and ε−1,0 are exactly the operators δ×, δ•, ε× and ε•, presented



by Cousty et al. in [3]. These operators are the basic blocks of all morphological
graph operators studied in [3]. Thus, the present framework encompasses the
one of [3] that itself allows for recovering most graph operators from Vincent
and Heijmans [14,5], the operators of Meyer and Angulo [9], and the classical
operators by symmetric structuring elements on grid points.

The next property establishes that the dimensional operators of Definition 6
can be classified into pairs of adjoint operators. Thus, as we shall see later, they
can be used as building blocks for the design of morphological operators acting
on subsets of C such as complexes or stars.

Property 7 (adjunction and duality) Let i, j ∈ N such that i ≤ j ≤ n.
- The pairs (ε+i,j , δ

−
j,i) and (ε−j,i, δ

+
i,j) are adjunctions.

- The operators δ+i,j and ε+i,j (resp. δ−j,i and ε−j,i) are dual of each other: ∀X ⊆ Ci,

ε+i,j(X) = Cj \ δ+i,j(Ci \X) (resp. ∀X ⊆ Cj, ε−j,i(X) = Ci \ δ−j,i(Cj \X)).

The operators of Section 3 can all be characterized through dimensional
operators since, for any X in P(C ), we have Cl(X) =

⋃
{δ−j,i(Xj) | i, j ∈ N, i ≤

j}, and St(X) =
⋃
{δ+i,j(Xi) | i, j ∈ N, i ≤ j}.

In fact, by compositions, suprema, and infima of the dimensional opera-
tors, many erosions, dilations, openings and closings, which act on C, S, P(Ci)
(with i ∈ [0, n]), and P(C), and which depend of dimensional parameters, can
be designed. As a proof of concept, let us introduce a family of filters that act
on the lattice of all subcomplexes of C and that enriches the granulometries
obtained from Section 3.

Definition 8 Let d be an integer such that 0 ≤ d ≤ n and let X ∈ C. We define
the operators γd/(n+1) and φd/(n+1) by, for any X ∈ C.

γd/(n+1)(X) =
⋃{

δ−j,i(Xj) | j ∈ [d, n], i ∈ [0, j]
}

; and (14)

φd/(n+1)(X) =
⋃[
{Xi | i ∈ [0, n− d− 1]} ∪ {ε+n−d,j(Xd) | j ∈ [n− d, n]}

]
(15)

For instance Figs. 4(a), 4(b), 4(c) and 4(d) represent in gray the complexes
φ1/3(X), φ2/3(X), γ1/3(Y ), and γ2/3(Y ), where X and Y are the subcomplexes
shown in gray in Figs. 3(a) and 3(c).

Let d ∈ [0, n], and letX be a subcomplex of C. It can be seen that γd/(n+1)(X)
is the union of the cells of dimension greater than or equal to d that are included
in X. On the other hand, φd/(n+1)(X) is the union of the cells of X and of those
of C whose elements of dimension between 0 and n− d belong to X.

From these characterizations, we can deduce that the operators γd/(n+1)

and φd/(n+1) are respectively an opening and a closing on C.
It can also be remarked that the family of operators {γd/(n+1) | d ∈ [0, n]}

and {φd/(n+1) | d ∈ [0, n]} are ordered with respect to the value of the in-
dex d: ∀X ∈ C, ∀d1, d2 ∈ [0, n − 1], if d1 ≤ d2, then we have φd1/(n+1)(X) ⊆
φd2/(n+1)(X) and γd2/(n+1)(X) ⊆ γd1/(n+1)(X). In morphology, such families



(a) φ1/3(X) (b) φ2/3(X) (c) γ1/3(Y ) (d) γ2/3(Y )

Fig. 4. Dimensional openings and closings applied to the complexes X and Y of Fig. 3.

are called granulometries. For direct applications to real-life problems, these
granulometries may appear useless since they contain only a fixed number n
of operators whereas the size of the objects to be analyzed can be arbitrarily
large. In order to overcome this problem, in the next definition, these granulome-
tries are extended by composing them with the adjunctions (and their iterated
version) of Section 3.

Let α be an operator defined on a lattice L and let i be a nonnegative integer.
The operator αi is defined by the identity when i = 0 and by α◦αi−1 otherwise.

Definition 9 (granulometry, ASF) Let k be a nonnegative integer.

1. We define Γk/(n+1) (resp. Φk/(n+1)) by δi ◦ γd/(n+1) ◦ εi (resp. εi ◦φd/(n+1) ◦
δi) where i and d denote respectively the quotient and the remainder of the
integer division of k by (n+ 1)

2. We define ASFk/(n+1) by the identity when k = 0 and by ASFk/(n+1) =
Γk/n+1 ◦ Φk/n+1 ◦ASF(k−1)/(n+1) otherwise.

Property 10 1. The families {Γk/(n+1)|k ∈ N} and {Φk/(n+1)|k ∈ N} are
granulometries:
– for any k ∈ N, Γk/(n+1) (resp. Φk/(n+1)) is an opening (resp. closing)

on C.
– for any two elements i, j ∈ N such that i ≤ j, we have Γj/(n+1)(X) ⊆
Γi/(n+1)(X) and Φi/(n+1)(X) ⊆ Φj/(n+1)(X), for any X ∈ C.

2. The family {ASFk/(n+1) | k ∈ N} is a family of alternate sequential filters:
– for any two elements i, j ∈ N, if i ≤ j, then we have ASFj/(n+1) ◦
ASFi/(n+1) = ASFj/(n+1).

Note that if we reduce the granulometric and ASF families of Definition 9
to the operators where k is a multiple of (n + 1), then we recover exactly the
granulometries and ASFs induced by the adjunctions of Section 3. In this sense,
the proposed granulometries and ASFs enrich the elementary ones on complexes.

Let us now illustrate on an 2D image that, in practice, these operators also
enrich the classical morphological filters used in image analysis. To this end , we
consider simplicial complexes based on the neighborhood relation given by the
hexagonal grid (see e.g., Fig. 2(a)) where the grid points (or pixels) correspond
to 0-simplices. In this context, Fig. 5(f) shows the result of ASF6/3 applied



to the complex derived from the white pixels of image 5(a). For comparison,
Fig. 5(c) and Fig. 5(e) show the results of classical alternate sequential filter
and graph alternate sequential filters [3] on hexagonal grid. On this image, the
ASFs introduced in this paper outperform the classical and graph operators.
Nevertheless, they require more iterations (6 vs. 2 and 4). Therefore, in order
to compare the proposed ASF with filters using the same number of iterations,
we produce another filtered image (Fig. 5(d)) that is obtained by tripling the
resolution of the noisy image and applying a classical ASF of size 2 × 3 = 6. It
can be seen that this last procedure removes more noise than the classical ASF
but does not perform as well as the ASF introduced in the present paper. The
mentioned value MSE is the mean square error, multiplied by 100, that is, the
percentage of wrong pixels w.r.t. the original image.

Fig. 6(a) shows a rendering of a tridimensional mesh of a statue. Fig. 6(b)
shows, in black, the complex resulting from the threshold at level 0.51 of the
pseudo-inverse of the mean curvature of that mesh (see [10] for further details
and motivations on such procedures). To illustrate the possible smoothing effect
of the operator on values associated to a mesh, we present in Fig. 6(c) the result
of ASF8/3 applied to the black subset of the mesh shown on Fig. 6(b). Fig. 6(d)
presents, from top to bottom, zooms on the parts of Fig. 6(b) and 6(c) that are
marked by bold rectangles.

5 Conclusion and future work

This paper proposes a framework that allows to build morphological operators
for analyzing and filtering objects defined on simplicial complex spaces. In par-
ticular, using this framework, we propose a set of operators (erosions/dilations,
granulometries, and alternate sequential filters), which act on the lattice of sub-
complexes, that are shown to be useful for mesh and image filtering. Further-
more, the proposed framework extends straightforwardly to define operators
with similar behavior acting on the lattice of stars of C . Future work includes a
systematic investigation of the morphological operators that can be built based
on our framework as well as its straightforward extension to weighted simplicial
complexes [4,2]. In particular, links with operators from discrete calculus will be
highlighted.

Acknowledgements. The authors are grateful to Christian Ronse for his in-
depth reading of a previous version of this paper and his numerous helpful com-
ments.
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