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Abstract—In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter

computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different

image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better

behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance

image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter

naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one

of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of

computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image

matting/feathering, dehazing, joint upsampling, etc.

Index Terms—Edge-preserving filtering, bilateral filter, linear time filtering

Ç

1 INTRODUCTION

MOST applications in computer vision and computer
graphics involve image filtering to suppress and/or

extract content in images. Simple linear translation-invariant
(LTI) filters with explicit kernels, such as the mean,
Gaussian, Laplacian, and Sobel filters [2], have been widely
used in image restoration, blurring/sharpening, edge
detection, feature extraction, etc. Alternatively, LTI filters
can be implicitly performed by solving a Poisson Equation
as in high dynamic range (HDR) compression [3], image
stitching [4], image matting [5], and gradient domain
manipulation [6]. The filtering kernels are implicitly defined
by the inverse of a homogenous Laplacian matrix.

The LTI filtering kernels are spatially invariant and
independent of image content. But usually one may want
to consider additional information from a given guidance
image. The pioneer work of anisotropic diffusion [7] uses the
gradients of the filtering image itself to guide a diffusion
process, avoiding smoothing edges. The weighted least
squares (WLS) filter [8] utilizes the filtering input (instead
of intermediate results, as in [7]) as the guidance, and
optimizes a quadratic function, which is equivalent to
anisotropic diffusion with a nontrivial steady state. The
guidance image can also be another image besides the
filtering input in many applications. For example, in
colorization [9] the chrominance channels should not bleed
across luminance edges; in image matting [10] the alpha
matte should capture the thin structures in a composite
image; in haze removal [11] the depth layer should be

consistent with the scene. In these cases, we regard the
chrominance/alpha/depth layers as the image to be
filtered, and the luminance/composite/scene as the gui-
dance image, respectively. The filtering process in [9], [10],
and [11] is achieved by optimizing a quadratic cost
function weighted by the guidance image. The solution is
given by solving a large sparse matrix which solely
depends on the guide. This inhomogeneous matrix im-
plicitly defines a translation-variant filtering kernel. While
these optimization-based approaches [8], [9], [10], [11] often
yield state-of-the-art quality, it comes with the price of
expensive computational time.

Another way to take advantage of the guidance image is
to explicitly build it into the filter kernels. The bilateral
filter, independently proposed in [12], [13], and [1] and
later generalized in [14], is perhaps the most popular one
of such explicit filters. Its output at a pixel is a weighted
average of the nearby pixels, where the weights depend on
the intensity/color similarities in the guidance image. The
guidance image can be the filter input itself [1] or another
image [14]. The bilateral filter can smooth small fluctua-
tions and while preserving edges. Though this filter is
effective in many situations, it may have unwanted gradient
reversal artifacts [15], [16], [8] near edges (discussed in
Section 3.4). The fast implementation of the bilateral filter
is also a challenging problem. Recent techniques [17], [18],
[19], [20], [21] rely on quantization methods to accelerate
but may sacrifice accuracy.

In this paper, we propose a novel explicit image filter
called guided filter. The filtering output is locally a linear
transform of the guidance image. On one hand, the guided
filter has good edge-preserving smoothing properties like the
bilateral filter, but it does not suffer from the gradient
reversal artifacts. On the other hand, the guided filter can be
used beyond smoothing: With the help of the guidance
image, it can make the filtering output more structured and
less smoothed than the input. We demonstrate that the
guided filter performs very well in a great variety of
applications, including image smoothing/enhancement,
HDR compression, flash/no-flash imaging, matting/feath-
ering, dehazing, and joint upsampling. Moreover, the guided
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filter naturally has an OðNÞ time (in the number of pixelsN)1

nonapproximate algorithm for both gray-scale and high-
dimensional images, regardless of the kernel size and the
intensity range. Typically, our CPU implementation achieves
40 ms per mega-pixel performing gray-scale filtering: To the
best of our knowledge, this is one of the fastest edge-
preserving filters.

A preliminary version of this paper was published in
ECCV ’10 [22]. It is worth mentioning that the guided filter
has witnessed a series of new applications since then. The
guided filter enables a high-quality real-time OðNÞ stereo
matching algorithm [23]. A similar stereo method is
proposed independently in [24]. The guided filter has also
been applied in optical flow estimation [23], interactive
image segmentation [23], saliency detection [25], and
illumination rendering [26]. We believe that the guided
filter has great potential in computer vision and graphics,
given its simplicity, efficiency, and high-quality. We have
provided a public code to facilitate future studies [27].

2 RELATED WORK

We review edge-preserving filtering techniques in this
section. We categorize them as explicit/implicit weighted-
average filters and nonaverage ones.

2.1 Explicit Weighted-Average Filters

The bilateral filter [1] is perhaps the simplest and most
intuitive one among explicit weighted-average filters. It
computes the filtering output at each pixel as the average of
neighboring pixels, weighted by the Gaussian of both
spatial and intensity distance. The bilateral filter smooths
the image while preserving edges. It has been widely used
in noise reduction [28], HDR compression [15], multiscale
detail decomposition [29], and image abstraction [30]. It is
generalized to the joint bilateral filter in [14], where the
weights are computed from another guidance image rather
than the filtering input. The joint bilateral filter is
particularly favored when the image to be filtered is not
reliable to provide edge information, e.g., when it is very
noisy or is an intermediate result, such as in flash/no-flash
denoising [14], image upsamling [31], image deconvolution
[32], stereo matching [33], etc.

The bilateral filter has limitations despite its popularity. It
has been noticed in [15], [16], and [8] that the bilateral filter
may suffer from “gradient reversal” artifacts. The reason is
that when a pixel (often on an edge) has few similar pixels
around it, the Gaussian weighted average is unstable. In this
case, the results may exhibit unwanted profiles around
edges, usually observed in detail enhancement or HDR
compression.

Another issue concerning the bilateral filter is the
efficiency. A brute-force implementation is OðNr2Þ time with
kernel radius r. Durand and Dorsey [15] propose a piece-wise
linear model and enable FFT-based filtering. Paris and
Durand [17] formulate the gray-scale bilateral filter as a 3D
filter in a space-range domain, and downsample this domain
to speed up if the Nyquist condition is approximately true. In

the case of box spatial kernels, Weiss [34] proposes an
OðN log rÞ time method based on distributive histograms, and
Porikli [18] proposes the first OðNÞ time method using
integral histograms. We point out that constructing the
histograms is essentially performing a 2D spatial filter in
the space-range domain with a 1D range filter followed.
Under this viewpoint, both [34] and [18] sample the signal
along the range domain but do not reconstruct it. Yang [19]
proposes another OðNÞ time method which interpolates
along the range domain to allow more aggressive subsam-
pling. All of the above methods are linearly complex w.r.t. the
number of the sampled intensities (e.g., number of linear
pieces or histogram bins). They require coarse sampling to
achieve satisfactory speed, but at the expense of quality
degradation if the Nyquist condition is severely broken.

The space-range domain is generalized to higher
dimension for color-weighted bilateral filtering [35]. The
expensive cost due to the high dimensionality can be
reduced by the Gaussian kd-trees [20], the Permutohedral
Lattices [21], or the Adaptive Manifolds [36]. But the
performance of these methods is not competitive for gray-
scale bilateral filters because they spend much extra time
preparing the data structures.

Given the limitations of the bilateral filter, people began
to investigate new designs of fast edge-preserving filters.
The OðNÞ time Edge-Avoiding Wavelets (EAW) [37] are
wavelets with explicit image-adaptive weights. But the
kernels of the wavelets are sparsely distributed in the image
plane, with constrained kernel sizes (to powers of two),
which may limit the applications. Recently, Gastal and
Oliveira [38] propose another OðNÞ time filter known as the
Domain Transform filter. The key idea is to iteratively and
separably apply 1D edge-aware filters. The OðNÞ time
complexity is achieved by integral images or recursive
filtering. We will compare with this filter in this paper.

2.2 Implicit Weighted-Average Filters

A series of approaches optimize a quadratic cost function
and solve a linear system, which is equivalent to implicitly
filtering an image by an inverse matrix. In image segmenta-
tion [39] and colorization [9], the affinities of this matrix are
Gaussian functions of the color similarities. In image
matting, a matting Laplacian matrix [10] is designed to
enforce the alpha matte as a local linear transform of the
image colors. This matrix is also applied in haze removal
[11]. The weighted least squares filter in [8] adjusts the
matrix affinities according to the image gradients and
produces halo-free edge-preserving smoothing.

Although these optimization-based approaches often
generate high quality results, solving the linear system is
time-consuming. Direct solvers like Gaussian Elimination
are not practical due to the memory-demanding “filled in”
problem [40], [41]. Iterative solvers like the Jacobi method,
Successive Over-Relaxation (SOR), and Conjugate Gradi-
ents [40] are too slow to converge. Though carefully
designed preconditioners [41] greatly reduce the iteration
number, the computational cost is still high. The multigrid
method [42] is proven OðNÞ time complex for homogeneous
Poisson equations, but its quality degrades when the matrix
becomes more inhomogeneous. Empirically, the implicit
weighted-average filters take at least a few seconds to
process a one megapixel image either by preconditioning
[41] or by multigrid [8].
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1. In the literature, “OðNÞ/linear time” algorithms are sometimes
referred to as “O(1)/constant time” (per pixel). We are particularly
interested in the complexity of filtering the entire image, and we will use
the way of “OðNÞ time” throughout this paper.



It has been observed that these implicit filters are closely

related to the explicit ones. In [43], Elad shows that the

bilateral filter is one Jacobi iteration in solving the Gaussian

affinity matrix. The Hierarchical Local Adaptive Precondi-

tioners [41] and the Edge-Avoiding Wavelets [37] are

constructed in a similar manner. In this paper, we show

that the guided filter is closely related to the matting

Laplacian matrix [10].

2.3 Nonaverage Filters

Edge-preserving filtering can also be achieved by nonaver-
age filters. The median filter [2] is a well-known edge-aware
operator, and is a special case of local histogram filters [44].
Histogram filters have OðNÞ time implementations in a way
as the bilateral grid. The Total-Variation (TV) filters [45]
optimize an L1-regularized cost function, and are shown
equivalent to iterative median filtering [46]. The L1 cost
function can also be optimized via half-quadratic split [47],
alternating between a quadratic model and soft shrinkage
(thresholding). Recently, Paris et al. [48] proposed manip-
ulating the coefficients of the Laplacian Pyramid around
each pixel for edge-aware filtering. Xu et al. [49] propose
optimizing an L0-regularized cost function favoring piece-
wise constant solutions. The nonaverage filters are often
computationally expensive.

3 GUIDED FILTER

We first define a general linear translation-variant filtering
process, which involves a guidance image I, an filtering
input image p, and an output image q. Both I and p are
given beforehand according to the application, and they can
be identical. The filtering output at a pixel i is expressed as
a weighted average:

qi ¼
X
j

WijðIÞpj; ð1Þ

where i and j are pixel indexes. The filter kernel Wij is a

function of the guidance image I and independent of p. This

filter is linear with respect to p.
An example of such a filter is the joint bilateral filter [14]

(Fig. 1 (left)). The bilateral filtering kernel Wbf is given by

Wbf
ij ðIÞ ¼

1

Ki
exp �k xi � xj k2

�2
s

� �
exp �k Ii � Ij k

2

�2
r

� �
; ð2Þ

where x is the pixel coordinate and Ki is a normalizing
parameter to ensure that

P
j W

bf
ij ¼ 1. The parameters �s

and �r adjust the sensitivity of the spatial similarity and the
range (intensity/color) similarity, respectively. The joint
bilateral filter degrades to the original bilateral filter [1]
when I and p are identical.

The implicit weighted-average filters (in Section 2.2)
optimize a quadratic function and solve a linear system in
this form:

Aq ¼ p; ð3Þ

where q and p are N-by-1 vectors concatenating fqig and
fpig, respectively, and A is an N-by-N matrix only depends
on I. The solution to (3), i.e., q ¼ A�1p, has the same form as
(1), with Wij ¼ ðA�1Þij.

3.1 Definition

Now we define the guided filter. The key assumption of the
guided filter is a local linear model between the guidance I
and the filtering output q. We assume that q is a linear
transform of I in a window !k centered at the pixel k:

qi ¼ akIi þ bk; 8i 2 !k; ð4Þ

where ðak; bkÞ are some linear coefficients assumed to be
constant in !k. We use a square window of a radius r. This
local linear model ensures that q has an edge only if I has an
edge, because rq ¼ arI. This model has been proven
useful in image super-resolution [50], image matting [10],
and dehazing [11].

To determine the linear coefficients ðak; bkÞ, we need
constraints from the filtering input p. We model the output q
as the input p subtracting some unwanted components n
like noise/textures:

qi ¼ pi � ni: ð5Þ

We seek a solution that minimizes the difference between q
and p while maintaining the linear model (4). Specifically,
we minimize the following cost function in the window !k:

Eðak; bkÞ ¼
X
i2!k

��
akIi þ bk � pi

�2 þ �a2
k

�
: ð6Þ

Here, � is a regularization parameter penalizing large ak. We
will investigate its intuitive meaning in Section 3.2.
Equation (6) is the linear ridge regression model [51], [52]
and its solution is given by
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Fig. 1. Illustrations of the bilateral filtering process (left) and the guided filtering process (right).



ak ¼
1
j!j
P

i2!k Iipi � �k�pk

�2
k þ �

; ð7Þ

bk ¼ �pk � ak�k: ð8Þ

Here, �k and �2
k are the mean and variance of I in !k, j!j is

the number of pixels in !k, and �pk ¼ 1
j!j
P

i2!k pi is the mean
of p in !k. Having obtained the linear coefficients ðak; bkÞ, we
can compute the filtering output qi by (4). Fig. 1 (right)
shows an illustration of the guided filtering process.

However, a pixel i is involved in all the overlapping
windows !k that covers i, so the value of qi in (4) is not
identical when it is computed in different windows. A
simple strategy is to average all the possible values of qi. So
after computing ðak; bkÞ for all windows !k in the image, we
compute the filtering output by

qi ¼
1

j!j
X
kji2!k
ðakIi þ bkÞ: ð9Þ

Noticing that
P

kji2!k ak ¼
P

k2!i ak due to the symmetry of
the box window, we rewrite (9) by

qi ¼ �aiIi þ �bi; ð10Þ

where �ai ¼ 1
j!j
P

k2!i ak and �bi ¼ 1
j!j
P

k2!i bk are the average
coefficients of all windows overlapping i. The averaging
strategy of overlapping windows is popular in image
denoising (see [53]) and is a building block of the very
successful BM3D algorithm [54].

With the modification in (10),rq is no longer scaling ofrI
because the linear coefficients ð�ai; �biÞ vary spatially. But as
ð�ai; �biÞ are the output of a mean filter, their gradients can be
expected to be much smaller than that of I near strong edges.
In this situation we can still have rq � �arI, meaning that
abrupt intensity changes in I can be mostly preserved in q.

Equations (7), (8), and (10) are the definition of the
guided filter. A pseudocode is in Algorithm 1. In this
algorithm, fmean is a mean filter with a window radius r.
The abbreviations of correlation (corr), variance (var), and
covariance (cov) indicate the intuitive meaning of these
variables. We will discuss the fast implementation and the
computation details in Section. 4.

Algorithm 1. Guided Filter.

Input: filtering input image p, guidance image I, radius r,

regularization �

Output: filtering output q.
1: meanI ¼ fmeanðIÞ

meanp ¼ fmeanðpÞ
corrI ¼ fmeanðI: � IÞ
corrIp ¼ fmeanðI: � pÞ

2: varI ¼ corrI �meanI : �meanI
covIp ¼ corrIp �meanI : �meanp

3: a ¼ covIp:=ðvarI þ �Þ
b ¼ meanp � a: �meanI

4: meana ¼ fmeanðaÞ
meanb ¼ fmeanðbÞ

5: q ¼ meana: � I þmeanb
/� fmean is a mean filter with a wide variety of O(N) time

methods. �/

3.2 Edge-Preserving Filtering

Given the definition of the guided filter, we first study the
edge-preserving filtering property. Fig. 2 shows an example
of the guided filter with various sets of parameters. Here we
investigate the special case where the guide I is identical to
the filtering input p. We can see that the guided filter
behaves as an edge-preserving smoothing operator (Fig. 2).

The edge-preserving filtering property of the guided
filter can be explained intuitively as following. Consider the
case where I � p. In this case, ak ¼ �2

k=ð�2
k þ �Þ in (7) and

bk ¼ ð1� akÞ�k. It is clear that if � ¼ 0, then ak ¼ 1 and
bk ¼ 0. If � > 0, we can consider two cases.

Case 1: “High variance.” If the image I changes a lot
within !k, we have �2

k � �, so ak � 1 and bk � 0.
Case 2: “Flat patch.” If the image I is almost constant in

!k, we have �2
k � �, so ak � 0 and bk � �k.

When ak and bk are averaged to get �ai and �bi, combined
in (10) to get the output, we have that if a pixel is in the
middle of a “high variance” area, then its value is
unchanged (a � 1; b � 0; q � p), whereas if it is in the
middle of a “flat patch” area, its value becomes the average
of the pixels nearby (a � 0; b � �; q � ��).

More specifically, the criterion of a “flat patch” or a “high
variance” one is given by the parameter �. The patches with
variance (�2) much smaller than � are smoothed, whereas
those with variance much larger than � are preserved. The
effect of � in the guided filter is similar to the range variance
�2

r in the bilateral filter (2): Both determine “what is an
edge/a high variance patch that should be preserved.”

Further, in a flat region the guided filter becomes a
cascade of two box mean filters whose radius is r. Cascades
of box filters are good approximations of Gaussian filters.
Thus, we empirically set up a “correspondence” between
the guided filter and the bilateral filter: r$ �s and �$ �2

r .
Fig. 2 shows the results of both filters using corresponding
parameters. The table “PSNR” in Fig. 2 shows the
quantitative difference between the guided filter results
and the bilateral filter results of the corresponding para-
meters.2 It is often considered as visually insensitive when
the PSNR � 40 dB [18].

3.3 Filter Kernel

It is easy to show that the relationships among I, p, and q,
given by (7), (8), and (10), are in the weighted-average form
as (1). In fact, ak in (7) can be rewritten as a weighted sum of
p : ak ¼

P
j AkjðIÞpj, where Aij are the weights only

dependent on I. For the same reason, we also have bk ¼P
j BkjðIÞpj from (8) and qi ¼

P
j WijðIÞpj from (10). We can

prove that the kernel weights is explicitly expressed by

WijðIÞ ¼
1

j!j2
X

k:ði;jÞ2!k
1þ ðIi � �kÞðIj � �kÞ

�2
k þ �

� �
: ð11Þ

Proof. Due to the linear dependence between p and q, the
filter kernel is given by Wij ¼ @qi=@pj. Putting (8) into
(10) and eliminating b, we obtain
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2. Note that we do not intend to approximate the bilateral filer, and the
bilateral filter results are not considered as “ground-truth.” So the “PSNR”
measure is just analogous to those used in the bilateral filter approximations
[18].



qi ¼
1

j!j
X
k2!i
ðakðIi � �kÞ þ �pkÞ: ð12Þ

The derivative gives

@qi
@pj
¼ 1

j!j
X
k2!i

@ak
@pj
ðIi � �kÞ þ

@�pk
@pj

� �
: ð13Þ

In this equation, we have

@�pk
@pj
¼ 1

j!j �j2!k ¼
1

j!j �k2!j ; ð14Þ

where �j2!k is one when j is in the window !k, and is zero

otherwise. On the other hand, the partial derivative

@ak=@pj in (13) can be computed from (7):

@ak
@pj
¼ 1

�2
k þ �

1

j!j
X
i2!k

@pi
@pj

Ii �
@�pk
@pj

�k

 !

¼ 1

�2
k þ �

1

j!j Ij �
1

j!j�k
� �

�k2!j:

ð15Þ

Putting (14) and (15) into (13), we obtain

@qi
@pj
¼ 1

j!j2
X

k2!i;k2!j
1þ ðIi � �kÞðIj � �kÞ

�2
k þ �

� �
: ð16Þ

This is the expression of the filter kernel Wij. tu
Some further algebraic manipulations show thatP
j WijðIÞ � 1. No extra effort is needed to normalize

the weights.
The edge-preserving smoothing property can also be

understood by investigating the filter kernel (11). Take an

ideal step edge of a 1D signal as an example (Fig. 3). The

terms Ii � �k and Ij � �k have the same sign (+/-) when Ii
and Ij are on the same side of an edge, while they have

opposite signs when the two pixels are on different sides. So

in (11) the term 1þ ðIi��kÞðIj��kÞ
�2
k
þ� is much smaller (and close to

zero) for two pixels on different sides than on the same

sides. This means that the pixels across an edge are almost

not averaged together. We can also understand the

smoothing effect of � from (11). When �2
k � � (“flat patch”),

the kernel becomes WijðIÞ � 1
j!j2
P

k:ði;jÞ2!k 1: This is an LTI

low-pass filter (it is a cascade of two mean filters).
Fig. 4 illustrate some examples of the kernel shapes in

real images. In the top row are the kernels near a step edge.

Like the bilateral kernel, the guided filter kernel assigns

nearly zero weights to the pixels on the opposite side of the

edge. In the middle row are the kernels in a patch with small

scale textures. Both filters average almost all the nearby

pixels together and appear as low-pass filters. This is more

apparent in a constant region (Fig. 4 (bottom row)), where

the guided filter degrades to a cascade of two mean filters.

HE ET AL.: GUIDED IMAGE FILTERING 5

Fig. 3. A 1D example of an ideal step edge. For a window that exactly
centers on the edge, the variables � and � are as indicated.

Fig. 2. Edge-preserving filtering results of a gray-scale image using the
guided filter (top) and the bilateral filter (bottom). In this example, the
guidance I is identical to the input p. The input image is scaled in ½0; 1	.
The table “PSNR” shows the quantitative difference between the guided
filter results and the bilateral filter results using corresponding
parameters. The input image is from [1].



It can be observed in Fig. 4b that the guided filter is
rotationally asymmetric and slightly biases to the x/y-axis.
This is because we use a box window in the filter design.
This problem can be solved by using a Gaussian weighted
window instead. Formally, we can introduce the weights
wik ¼ expð� k xi � xk k2 =�2

gÞ in (6):

Eðak; bkÞ ¼
X
i2!k

wik
��
akIi þ bk � pi

�2 þ �a2
k

�
: ð17Þ

It is straightforward to show that the resulted Gaussian
guided filter can be computed by replacing all the mean
filters fmean in Algorithm 1 with Gaussian filters fGauss. The
resulting kernels are rotationally symmetric as in Fig. 4d.3

In Section 4, we will show that the Gaussian guided filter is
still OðNÞ time like the original guided filter. But because in
practice we find that the original guided filter is always
good enough, we use it in all the remaining experiments.

3.4 Gradient-Preserving Filtering

Though the guided filter is an edge-preserving smoothing
operator like the bilateral filter, it avoids the gradient
reversal artifacts that may appear in detail enhancement
and HDR compression. A brief introduction to the detail
enhancement algorithm is as follows (see also Fig. 5). Given
the input signal p (black in Fig. 5), its edge-preserving
smoothed output is used as a base layer q (red). The
difference between the input signal and the base layer is
the detail layer (blue): d ¼ p� q . It is magnified to boost the
details. The enhanced signal (green) is the combination of
the boosted detail layer and the base layer. An elaborate
description of this method can be found in [15].

For the bilateral filter (Fig. 5 (top)), the base layer is not
consistent with the input signal at the edge pixels (see
the zoom-in). Fig. 6 illustrates the bilateral kernel of an edge
pixel. Because this pixel has no similar neighbors, the
Gaussian weighted range kernel unreliably averages a
group of pixels. Even worse, the range kernel is biased

due to the abrupt change of the edge. For the example edge
pixel in Fig. 6, its filtered value is smaller than its original
value, making the filtered signal q sharper than the input p.
This sharpening effect has been observed in [15], [16], [8].
Now suppose the gradient of the input p is positive: @xp > 0
(as in Figs. 5 and 6). When q is sharpened, it gives:
@xq > @xp. The detail layer d thus has a negative gradient
@xd ¼ @xp� @xq < 0, meaning it has a reversed gradient
direction w.r.t. the input signal (see Fig. 5 (top)). When the
detail layer is magnified and recombined with the input
signal, the gradient reversal artifact on the edge appears.
This artifact is inherent and cannot be safely avoided by
tuning parameters because natural images usually have
edges at all kinds of scales and magnitudes.

On the other hand, the guided filter performs better on
avoiding gradient reversal. Actually, if we use the patch-wise
model (4), it is guaranteed to not have gradient reversal in the
case of self-guided filtering (I � p). In this case, (7) gives
ak ¼ �2

k=ð�2
k þ �Þ < 1 and bk is a constant. So we have @xq ¼

ak@xp and the detail layer gradient @xd ¼ @xp� @xq ¼ ð1 �
akÞ@xp, meaning that @xd and @xp are always in the same
direction. When we use the overlapping model (9) instead of
(4), we have @xq ¼ �a@xpþ p@x�aþ @x�b. Because �a and �b are
low-pass filtered maps, we obtain @xq � �a@xp and the above
conclusion is still approximately true. In practice, we do not
observe the gradient reversal artifacts in all experiments.
Fig. 5 (bottom) gives an example. In Fig. 6, we show the
guided filter kernel of an edge pixel. Unlike the bilateral
kernel, the guided filter assigns some small but essential
weights to the weaker side of the kernel. This makes the
guided kernel is less biased, avoiding reducing the value of
the example edge pixel in Fig. 5.

We notice that the gradient reversal problem also appears
in the recent edge-preserving Domain Transform filter [38]
(Fig. 7). This very efficient filter is derived from the (1D)
bilateral kernel, so it does not safely avoid gradient reversal.

3.5 Extension to Color Filtering

The guided filter can be easily extended to color images. In
the case when the filtering input p is multichannel, it is
straightforward to apply the filter to each channel inde-
pendently. In the case when the guidance image I is
multichannel, we rewrite the local linear model (4) as

qi ¼ aT
k Ii þ bk; 8i 2 !k: ð18Þ

Here Ii is a 3
 1 color vector, ak is a 3
 1 coefficient vector,
qi and bk are scalars. The guided filter for color guidance
images becomes

ak ¼ ð�k þ �UÞ�1 1

j!j
X
i2!k

Iipi � �k�pk

 !
; ð19Þ

bk ¼ �pk � aT
k �k; ð20Þ

qi ¼ �aT
i Ii þ �bi: ð21Þ

Here, �k is the 3
 3 covariance matrix of I in !k, and U is a
3
 3 identity matrix.

A color guidance image can better preserve the edges
that are not distinguishable in gray-scale (see Fig. 8). This is
also the case in bilateral filtering [20]. A color guidance
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Fig. 4. Filter kernels. Top: A realistic step edge (guided filter:
r ¼ 7; � ¼ 0:12, bilateral filter: �s ¼ 7; �r ¼ 0:1). Middle and Bottom: A
textured patch and a constant patch (guided filter: r ¼ 8; � ¼ 0:22,
bilateral filter: �s ¼ 8; �r ¼ 0:2). The kernels are centered at the pixels
denoted by the red dots. The Gaussian guided filter replaces the mean
filter in Algorithm 1 by a Gaussian filter with �g ¼ �s=

ffiffiffi
2
p

.

3. Because the Gaussian guided filter becomes a cascade of two Gaussian
filters in constant regions, we set the Gaussian parameter �g ¼ �s=

ffiffiffi
2
p

to
ensure the same response in constant regions as the bilateral filter.



image is also essential in the matting/feathering and
dehazing applications, as we show later, because the local
linear model is more likely to be valid in the RGB color
space than in gray-scale [10].

3.6 Structure-Transferring Filtering

Interestingly, the guided filter is not simply a smoothing
filter. Due to the local linear model of q ¼ aI þ b, the output q
is locally a scaling (plus an offset) of the guidance I. This
makes it possible to transfer structure from the guidance I to
the output q, even if the filtering input p is smooth (see Fig. 9).

To show an example of structure-transferring filtering,
we introduce an application of guided feathering: A binary
mask is refined to appear an alpha matte near the object
boundaries (Fig. 10). The binary mask can be obtained from
graph-cut or other segmentation methods, and is used as the
filter input p. The guidance I is the color image. Fig. 10 shows
the behaviors of three filters: guided filter, (joint) bilateral
filter, and a recent domain transform filter [38]. We observe
that the guided filter faithfully recovers the hair, even
though the filtering input p is binary and very rough. The
bilateral filter may lose some thin structures (see zoom-in).
This is because the bilateral filer is guided by pixel-wise
color difference, whereas the guided filter has a patch-wise
model. We also observe that the domain transform filter
does not have a good structure-transferring ability and
simply smooths the result. This is because this filter is based
on geodesic distance of pixels, and its output is a series of 1D
box filters with adaptive spans [38].

The structure-transferring filtering is an important
property of the guided filter. It enables new filtering-based
applications, including feathering/matting and dehazing
(Section 5). It also enables high-quality filtering-based stereo
matching methods in [23] and [24].
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Fig. 8. Guided filtering results guided by the color image (b) and guided
by its gray-scale version (c). The result in (c) has halos because the
edge is not undistinguishable in gray-scale.

Fig. 9. Structure-transferring filtering.

Fig. 7. Gradient reversal artifacts in the domain transform filter [38].

Fig. 6. The filtering results and the filter kernels at a pixel on a clean
edge. In this example, the edge height is 1 and the edge slope spans
20 pixels. The parameters are r ¼ 30; � ¼ 0:152 for the guided filter and
�s ¼ 30; �r ¼ 0:15 for the bilateral filter.

Fig. 5. 1D illustration for detail enhancement. See the text for explanation.



3.7 Relation to Implicit Methods

The guided filter is closely related to the matting Laplacian
matrix [10]. This casts new insights into the understanding
of this filter.

In a closed-form solution to matting [10], the matting
Laplacian matrix is derived from a local linear model.
Unlike the guided filter, which computes the local optimal
for each window, the closed-form solution seeks a global
optimal. To solve for the unknown alpha matte, this method
minimizes the following cost function:

EðqÞ ¼ ðq� pÞT�ðq� pÞ þ qTLq: ð22Þ

Here, q is an N-by-1 vector denoting the unknown alpha
matte, p is the constraint (e.g., a trimap), L is an N 
N
matting Laplacian matrix, and � is a diagonal matrix encoded
with the weights of the constraints. The solution to this
optimization problem is given by solving a linear system

ðLþ �Þq ¼ �p: ð23Þ

The elements of the matting Laplacian matrix are given by

Lij ¼
X

k:ði;jÞ2!k
�ij �

1

j!j 1þ ðIi � �kÞðIj � �kÞ
�2
k þ �

� �� �
: ð24Þ

where �ij is the Kronecker delta. Comparing (24) with (11),
we find that the elements of the matting Laplacian matrix
can be directly given by the guided filter kernel:

Lij ¼ j!jð�ij �WijÞ; ð25Þ

Following the strategy in [43], we prove that the output of
the guided filter is one Jacobi iteration in optimizing (22):

qi �
X
j

WijðIÞpj: ð26Þ

Proof. The matrix form of (25) is

L ¼ j!jðU�WÞ; ð27Þ

where U is a unit matrix of the same size as L. To apply

the Jacobi method [40] on the linear system (23), we

require the diagonal/off-diagonal parts of the matrices.

We decompose W into a diagonal part Wd and an off-

diagonal part Wo, so W ¼Wd þWo. From (27) and (23)

we have

ðj!jU� j!jWd � j!jWo þ �Þq ¼ �p: ð28Þ

Note that only Wo is off-diagonal here. Using p as the initial

guess, we compute one iteration of the Jacobi method:

q � ðj!jU� j!jWd þ �Þ�1ðj!jWo þ �Þp

¼ U�Wd þ
�

j!j

� ��1

W�Wd þ
�

j!j

� �
p:

ð29Þ

In (29), the only convolution is the matrix multiplication
Wp. The other matrices are all diagonal and point-wise
operations. To further simplify (29), we let the matrix �
satisfy: � ¼ j!jWd or, equivalently,

�ii ¼
1

j!j
X
k2!i

1þ ðIi � �kÞ
2

�2
k þ �

 !
: ð30Þ

The expectation value of �ii in (30) is 2, implying that the

constraint in (22) is soft. Equation (29) is then reduced to

q �Wp: ð31Þ

This is the guided filter. tu
In [55], we have shown another relationship between the

guided filter and the matting Laplacian matrix through the

Conjugate Gradient solver [40].
In Section 5, we apply this property to image matting/

feathering and haze removal, which provide some reason-

ably good initial guess p. This is another perspective of the

structure-transferring property of the filter.

4 COMPUTATION AND EFFICIENCY

A main advantage of the guided filter over the bilateral

filter is that it naturally has an OðNÞ time nonapproximate

algorithm, independent of the window radius r and the

intensity range.
The filtering process in (1) is a translation-variant

convolution. Its computational complexity increases when

the kernel becomes larger. Instead of directly performing the

convolution, we compute the filter output from its definition

(7), (8), and (10) by Algorithm 1. The main computational

burden is the mean filter fmean with box windows of radius r.

Fortunately, the (unnormalized) box filter can be efficiently

computed in OðNÞ time using the integral image technique

[57] or a simple moving sum method (see Algorithm 2).

Considering the separability of the box filter, either method

takes two operations (addition/subtraction) per pixel along

each x/y direction. Thus the mean filter fmean takes, per

pixel, five addition/subtraction operations and one @

division (to normalize).
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Fig. 10. Comparisons on structure-transferring filtering. The parameters
are r ¼ 60, � ¼ 0:012 for the guided filter, �s ¼ 60, �r ¼ 0:01 for the (joint)
bilateral filter, and �s ¼ 60, �r ¼ 0:5 for the domain transform filter
(a smaller �r would make the domain transform result more similar to the
input mask and does not improve the quality).



Algorithm 2. 1D Box Filter via Moving Sum

Input: input signal p, radius r

Output: output signal s.

1: s0 ¼
Pr

i¼0 pi
2: for i ¼ 1 to end do

3: si ¼ si�1 þ piþr � pi�r�1

4: end for

With the OðNÞ time mean filter, the guided filter in
Algorithm 1 is naturally OðNÞ time. Likewise, the color-
guidance version in (19), (20), and (21) can be computed in a
similar OðNÞ time manner.4 A public Matlab code is available
in [22], including both gray-scale and color versions.

In Table 1, we summarize the number of mean filters
needed in different scenarios. Here, the dI and dp are the
number of channels in I and p, respectively. We also list the
special case of I � p because the duplication of I and p
saves some mean filters. The case of I � p is most concerned
in practice.

We experiment with the running time in a PC with an
Intel core i7 3.0 GHz CPU and 8 GB RAM. The
implementation is in C++. All the algorithms are single-
core based and without SIMD instructions (e.g., SSE) unless
specified. In our experiments, a mean filter takes about
5-7 ms/Mp. The running time is listed in Table 1.

We would like to highlight that the gray-scale image
edge-preserving smoothing (I � p; dp ¼ 1) takes only
40 ms/Mp. As a comparison (see Table 2), the O(N) time
bilateral filter in [18] is reported 155 ms/Mp using 32-bin
histograms (B ¼ 32) and 310 ms/Mp using 64-bin as
reported in [18]. The method as described in [18] uses
integral histograms, requiring 6B addition/subtraction op-
erations per pixel to build the histogram. Instead, we can
adopt the moving histogram in [56], which requires 2Bþ 2
operations per pixel. With SSE our implementation of
[18]+[56] achieves 40 ms/Mp (B ¼ 32) and 80 ms/Mp
(B ¼ 64). Because the moving histogram in [56] is proposed
only for median filtering, the combination of [18]+[56], to
the best of our knowledge, is an unpublished state-of-the-
art of bilateral filtering in the literature. Yang’s OðNÞ
algorithm [19] takes about 120 ms/Mp when B ¼ 8 (using
the author’s public code, with box spatial kernels).

Note that the OðNÞ time guided filter is nonapproximate
and applicable for intensity of any range. On the contrary,
the OðNÞ time bilateral filter may have noticeable quantiza-
tion artifacts due to range subsampling. Fig. 11 shows an
example where the signal to be filtered is in high dynamic
range. Porikli’s method [18] has apparent quantization
artifacts even when B ¼ 32. Similar artifacts are less visible
in Yang’s method [19] when B ¼ 8 thanks to the range
interpolation (but takes more time, see Table 2), but still
obvious when B ¼ 4 because the Nyquist sampling condi-
tion becomes severely broken.

For color image filtering (see Table 3), the guided filter
takes 300 ms/Mp when I 6¼ p and 150 ms/Mp when I � p.
This is substantially faster than the high-dimensional
bilateral filter algorithms, like the Gaussian kd-tree [20]
(> 10 s=Mp) and the state-of-the-art Permutohedral Lattice
[21] (> 1 s=Mp). After the publication of the guided filter in
[22], most recently [38] proposed the OðNÞ time Domain
Transform filters. Its Normalized Convolution (NC) version
takes 160 ms/Mp, and its Recursive Filter (RF) version takes
60 ms/Mp for color image filtering, as report in [38]. Though
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TABLE 1
Number of Mean Filters (#fm) and Guided Filter Running Time in Different Scenarios

TABLE 2
Time Comparisons with OðNÞ Bilateral Filters

for Gray-Scale Image Filtering

y: reported by the authors.

TABLE 3
Time Comparisons on Color Image Filtering

4. In (19), we have to invert a 3-by-3 symmetric matrix. The solution can
be computed explicitly in about 30 operations (þ� �=) per matrix.



the Domain Transform is very fast, it does not avoid gradient

reversal (Fig. 7) and not suitable for transferring structures

(Fig. 10).
With the OðNÞ time recursive Gaussian filter [58], the

Gaussian guided filter discussed in Section 3.3 is also OðNÞ
time. The recursive Gaussian filter is more expensive than

the box filter (15 operations versus two operations per pixel

per x=y direction).

5 EXPERIMENTS

Next, we experiment with the guided filter in a great variety

of computer vision and graphics applications.

Detail enhancement and HDR compression. The method

for detail enhancement is described in Section 3.4. The HDR

compression is done in a similar way, but compressing the

base layer instead of magnifying the detail layer (see [15]).

Fig. 12 shows an example for detail enhancement and Fig. 13

shows an example for HDR Compression. The results using

the bilateral filter are also provided. As shown in the zoom-in

patches, the bilateral filter leads to gradient reversal artifacts.

Notice that gradient reversal artifacts often introduce new

profiles around edges.
Flash/no-flash denoising. In [14], it is proposed to

denoise a no-flash image under the guidance of its flash

version. Fig. 14 shows a comparison of using the joint

bilateral filter and the guided filter. The gradient reversal

artifacts are noticeable near some edges in the joint bilateral

filter result.
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Fig. 14. Flash/no-flash denoising. The parameters are r ¼ 8, � ¼ 0:22 for
the guided filter, and �s ¼ 8, �r ¼ 0:2 for the joint bilateral filter.

Fig. 15. Guided feathering. A binary mask p is filtered under the
guidance of I. In the zoom-in patches, we compare with the photoshop
refine edge function and the closed-form matting. For closed-form
matting, we erode and dilate the mask to obtain a trimap. The
parameters are r ¼ 60, � ¼ 10�6 for the guided filter.

Fig. 11. Quantization artifacts of O(N) time bilateral filter. (a) Input HDR
image (32 bit float, displayed by linear scaling). (b) Compressed image
using Porikli’s O(N) bilateral filter (32 bins) [18]. (c) Compressed image
using the guided filter. Note both methods have comparable running time.

Fig. 12. Detail enhancement. The parameters are r ¼ 16, � ¼ 0:12 for the
guided filter, and �s ¼ 16, �r ¼ 0:1 for the bilateral filter. The detail layer
is boosted 
5.

Fig. 13. HDR compression. The parameters are r ¼ 15, � ¼ 0:122 for the
guided filter, and �s ¼ 15, �r ¼ 0:12 for the bilateral filter.



Guided feathering/matting. We have introduced the
guided feathering application in Section 3.6. A similar tool,
called “Refine Edge,” is provided by the commercial
software Adobe Photoshop CS4. An accurate matte can also
be computed through the closed-form matting [10]. Fig. 15
shows the comparisons. Our result is visually comparable
with the closed-form solution in this short hair case. Both
our method and Photoshop provide fast feedback (< 1 s) for
this 6-mega-pixel image, while the closed-form solution
takes about two minutes to solve a huge linear system.

In the general matting cases the fuzzy region is large; we
can adopt color sampling strategies [59] to estimate a more
reliable initial guess before filtering. Combined with the
global sampling method [59], the guided filter is the best
performed filtering-based matting method in the alphamat-
ting benchmark (www.alphamatting.com, performance re-
ported in June 2012).

Single image haze removal. In [11], a haze transmission
map is roughly estimated using a dark channel prior, and is
refined by solving the matting Laplacian matrix. On the
contrary, we simply filter the raw transmission map under
the guidance of the hazy image (we first apply a max filter
to counteract the morphological effects of the min filter (see
[11]), and consider this as the filtering input of the guided
filter). The results are visually similar (Fig. 16). The zoom-in
windows in Fig. 16 also demonstrate the structure-transfer-
ring property of the filter. The running time of the guided
filter is about 40 ms for this 600
 400 image, in contrast to
10 seconds using the matting Laplacian matrix as in [11].

Joint upsampling. Joint upsampling [31] is to upsample
an image under the guidance of another image. Taking the
application of colorization [9] as an example. A gray-scale
luminance image is colorized through an optimization
process. To reduce the running time, the chrominance
channels are solved at a coarse resolution and upsampled
under the guidance of the full resolution luminance image
by the joint bilateral filter [31].

This upsampling process can be performed by the
guided filter. The algorithm is slightly different with
Algorithm 1 because now we have a guidance image (e.g.,
luminance) at two scales and a filtering input
(e.g., chrominance) at the coarse scale only. In this case,
we compute the linear coefficient a and b in using (7) and (8)
at the coarse scale, bilinearly upsample them to the fine
scale (replacing the mean filter on a and b), and compute the
output by q ¼ aI þ b at the fine scale. The result is visually
comparable to the joint bilateral upsampling (Fig. 17). In our

implementation, the joint bilateral upsampling takes 180 ms
per mega-pixel output (reported 2s/Mp in [31]), whereas
the guided filter upsampling takes about 20 ms/Mp.

Limitations. The guided filter has a common limitation
of other explicit filters—it may exhibit halos near some
edges. “Halos” refer to the artifacts of unwanted smoothing
of edges. (On the contrary, “gradient reversal” refers to the
artifacts of unwanted sharpening of edges. In the literature,
some studies do not distinguish these two kinds of artifacts
and simply refer to them as “halos.” We discuss them
separately in this paper because the reasons for these
artifacts are different.) Halos are unavoidable for local
filters when the filters are forced to smooth some edges. For
example, if strong textures are to be smoothed (see Fig. 18),
the weaker edges would also be smoothed. Local filters like
guided/bilateral filters would concentrate the blurring near
these edges and introduce halos (Fig. 18). Global optimiza-
tion-based filters (e.g.the WLS filter [8]) would distribute
such blurring more globally. The halos are suppressed at
the price of global intensity shifting (see Fig. 18 (right)).

6 CONCLUSION

In this paper, we have presented a novel filter which is
widely applicable in computer vision and graphics.
Differently from the recent trend toward accelerating the

HE ET AL.: GUIDED IMAGE FILTERING 11

Fig. 17. Joint upsampling for colorization.

Fig. 16. Haze removal. (a) Hazy image. (b) Raw transmission map [11]. (c) The raw transmission map is refined by the guided filter (r ¼ 20,
� ¼ 10�3). (d) Using the matting Laplacian in [11]. (e) Recovered image using (c).



bilateral filter [17], [18], [19], [20], [21], we design a new

filter that exhibits the nice property of edge-preserving

smoothing but which can be computed efficiently and

nonapproximately. Our filter is more generic than “smooth-

ing” and is applicable for structure-transferring, enabling

novel applications of filtering-based feathering/matting

and dehazing. Since the local linear model (4) is a kind of

patch-wise unsupervised learning, other advanced models/

features might be applied to obtain new filters. We leave

this for future studies.
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