
The Image Foresting Transform:
Theory, Algorithms, and Applications

Alexandre X. Falcão, Jorge Stolfi, and Roberto de Alencar Lotufo

Abstract—The image foresting transform (IFT) is a graph-based approach to the design of image processing operators based on

connectivity. It naturally leads to correct and efficient implementations and to a better understanding of how different operators relate to

each other. We give here a precise definition of the IFT, and a procedure to compute it—a generalization of Dijkstra’s algorithm—with a

proof of correctness. We also discuss implementation issues and illustrate the use of the IFT in a few applications.

Index Terms—Dijkstra’s algorithm, shortest-path problems, image segmentation, image analysis, regional minima, watershed

transform, morphological reconstruction, boundary tracking, distance transforms, and multiscale skeletonization.

�

1 INTRODUCTION

THE image foresting transform (IFT), which we describe
here, is a general tool for the design, implementation,

and evaluation of image processing operators based on
connectivity. The IFT defines a minimum-cost path forest in a
graph, whose nodes are the image pixels and whose arcs are
defined by an adjacency relation between pixels. The cost of a
path in this graph is determined by an application-specific
path-cost function, which usually depends on local image
properties along the path—such as color, gradient, and
pixel position. The roots of the forest are drawn from a
given set of seed pixels. For suitable path-cost functions, the
IFT assigns one minimum-cost path from the seed set to
each pixel, in such a way that the union of those paths is an
oriented forest, spanning the whole image. The IFT outputs
three attributes for each pixel: its predecessor in the
optimum path, the cost of that path, and the corresponding
root (or some label associated with it). A great variety of
powerful image operators, old and new, can be implemen-
ted by simple local processing of these attributes.

We describe a general algorithm for computing the IFT,
which is essentially Dijkstra’s shortest-path algorithm [1],
[2], [3], slightly modified for multiple sources and general
path-cost functions. Since our conditions on the path costs
apply only to optimum paths, and not to all paths, we
found it necessary to rewrite and extend the classical proof
of correctness of Dijkstra’s algorithm. In many practical
applications, the path costs are integers with limited
increments and the graph is sparse; therefore, the optimiza-
tions described by Dial [4] and Ahuja et al. [5] will apply
and the running time will be linear on the number of pixels.

The IFT unifies and extends many image analysis
techniques which, even though based on similar underlying
concepts (ordered propagation, flooding, geodesic dilations,

dynamic programming, region growing, A� graph search,

etc.), are usually presented as unrelated methods. Those

techniques can all be reduced to a partition of the image into

influence zones associated with a given seed set, where the

zone of each seed consists of the pixels that are “more closely

connected” to that seed than toanyother, in someappropriate

sense. These influence zones are simply the trees of the forest

defined by the IFT. Examples are watershed transforms [6],

[7] and fuzzy-connected segmentation [8], [9], [10], [11]. The

IFT also provides a mathematically sound framework for

many image-processing operations that are not obviously

related to image partition, such asmorphological reconstruc-

tion [12], distance transforms [13], [14], multiscale skeletons

[14], shape saliences and multiscale fractal dimension [15],

[16], and boundary tracking [17], [18], [19].
By separating the general forest computation procedure

from the application-specific path-cost function, the IFT
greatly simplifies the implementation of image operators,
and provides a fair testbed for their evaluation and tuning.
For many classical operators, the IFT-based implementation
[6] is much closer to the theoretical definition than the
published algorithms [20], [21]. Indeed, many algorithms
which have been used without proof [20], [21], [22], [23], [24]
have their correctness established by being reformulated in
terms of the IFT [6], [12]. By clarifying the relationship
between different image transforms [12], the IFT approach
often leads to novel image operators and considerably faster
(but still provably correct) algorithms [14], [25], [26].

The IFT definition and algorithms are independent of the

nature of the pixels and of the dimension of the image, and

therefore they apply to color and multispectral images, as

well as to higher-dimensional images such as video

sequences and tomography data [26].
Section 2 reviews the previous relatedwork.Wedefine the

IFT and related concepts in Section 3. Section 4 presents the

basic IFT algorithm, a proof of its correctness and optimiza-

tion hints. Tie-breaking policies are discussed in Section 5. In

Section 6, we illustrate the use of the IFT in a few selected

applications. Section 7 contains the conclusions and current

research on the IFT.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004 19

. A.X. Falcão and J. Stolfi are with the Institute of Computing, University of
Campinas, Av. Albert Einstein, 1251, CEP 13084-851, Campinas, SP,
Brasil. E-mail: {afalcao, stolfi}@ic.unicamp.br.

. R. de Alencar Lotufo is with the Faculty of Electrical and Computing
Engineering, University of Campinas, Av. Albert Einstein, 400, CEP
13083-970, Campinas, SP, Brasil. E-mail: lotufo@dca.fee.unicamp.br.

Manuscript received 17May 2002; revised 27Mar. 2003; accepted 3 July 2003.
Recommended for acceptance by E. Hancock.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 116572.

0162-8828/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society

2 RELATED WORK

2.1 Shortest-Path Problems in General Graphs

The problem of computing shortest paths in a general graph
has an enormous bibliography [27]. Most authors dispose of
the multiple-source problem by trivial reduction to the
single-source version. Solutions to the latter were first
proposed by Moore in 1957 [1] and Bellman in 1958 [2]. The
running time of their algorithms was OðmnÞ, in the worst
case, for a graph with n nodes and m arcs. An improved
algorithm was given by Dijkstra in 1959 [3]; its running time
of Oðn2Þ can be reduced to Oðmþ nlognÞ through the use of
a balanced heap data structure [5]. In 1969, Dial published a
variant of Dijkstra’s algorithm [4], [5], for the special case
where the arc costs are integers in the range ½0::K�, which
uses bucket sorting to achieve running time Oðmþ nKÞ.

The standard path-cost function is the sum of arc costs.
Extensions to more general cost models fall in two major
classes. Thealgebraic or “semiring”model considers fixedarc
costs that are combined by an associative operation, that
distributes over the min function (or, more generally, over a
second associative operator which is used to summarize all
paths leading to a given node) [28], [29]. Another model does
not assume associativity or fixed arc costs, but requires that
the cost of a path be computed incrementally from the cost of
its prefixes through a composition function that satisfies
certain monotonicity constraints [30]. We note that, in both
approaches, the constraints on the path-cost functions are
required to hold for all paths, not just for optimum ones.

2.2 Image Processing Using Graph Concepts

In image processing, Montanari [31] and Martelli [32], [33]
were the first to formulate a boundary finding problem as a
shortest-path problem in a graph. Montanari [31] required
the boundary to be star-shaped [34]. Martelli [32], [33]
considered only a selected subset of the arcs and, therefore,
his algorithm may fail in some situations. These restrictions
have since been lifted by Falcão et al. [17] and Mortensen
and Barrett [35]. In region-based image segmentation,
Udupa and Samarasekera [8], and Saha and Udupa [9]
proposed the fuzzy connectedness theory for object defini-
tion, which was efficiently implemented by Nyúl et al.
using Dial’s bucket queue [10]. Verwer et al. [36] and
Sharaiha and Christofides [37] used the Dial’s algorithm to
compute weighted distance and chamfer distance trans-
forms. Meyer extended their work to some variations of the
watershed transform based on the eikonal equation [38].
Dial’s bucket queue became the core of fast ordered
propagation algorithms for various applications, including
Euclidean distance transform [39], [40], watershed trans-
forms [20], [21], [41], and morphological reconstructions
[22], [23], [24].

2.3 The PDE Approach

There is a certain formal resemblance between the IFT and
the partial differential equations (PDE) approach to image
processing [42], since both involve the sweeping of the
image by a propagating front— which, in the IFT approach,
is the boundary between the sets S and �SS of Dijkstra’s
original algorithm [5]. The eikonal problem, specifically,
asks for the minimum-time path from the initial front to
each point of the domain. The reciprocal of the local speed
of propagation is analogous to the arc costs of the IFT model,
and the Fast Marching method is seen as the analog of
Dijkstra’s algorithm [43].

To a large extent, the comparison of the two approaches is
just another instance of the continuous versus discrete
question. The discreteness of the IFT allows rigorous proofs
and predictable algorithms, free from approximation errors
and numerical instabilities that often affect the PDE. The
IFTmodel also allows the cost of extending a path to depend
on thewhole path andnot just on its current cost.On the other
hand, the PDE approach allows the propagation front to
move back and forth, or with speed that depends on its local
shape—features that are used in contour smoothing, contour
detection, and other applications. It is not obvious whether
similar effects can be achieved in the IFT model, where the
“shape of the front” is not a well-defined concept.

3 NOTATION AND DEFINITIONS

An image I is a pair ðI ; IÞ consisting of a finite set I of pixels
(points in ZZ2), and a mapping I that assigns to each pixel t
in I a pixel value IðtÞ in some arbitrary value space.

An adjacency relation A is an irreflexive binary relation
between pixels of I . Once the adjacency relation A has been
fixed, the image I can be interpreted as a directed graph
whose nodes are the image pixels and whose arcs are the
pixel pairs in A. In what follows, n ¼ jIj is the number of
nodes (pixels) and m ¼ jAj is the number of arcs.

In most image-processing applications, the adjacency
relation A is translation-invariant, meaning that sAt depends
only on the relative position t� s of the pixels. For example,
one often takes A to consist of all pairs of distinct pixels
ðs; tÞ 2 I � I such that dðs; tÞ � �, where dðs; tÞ denotes the
Euclidean distance and � is a specified constant. Figs. 1a, 1b,
and 1c show the adjacent pixels of a fixed central pixel s in
this Euclidean adjacency relation, when � ¼ 1 (the 4-connected
adjacency), � ¼

ffiffiffi
2
p

(8-connected), and � ¼
ffiffiffi
5
p

, respectively.
More generally, we can take a finite subset M of

ZZ2 n fð0; 0Þg; for example, M¼ fð�1;�1Þ; ð1;�1Þg and de-
fineA as all pairs of pixels ðs; tÞ, where t� s 2 M. See Fig. 1d.
Note that the adjacency relation does not have to be
symmetric.

A path is a sequence of pixels � ¼ ht1; t2; . . . ; tki, where
ðti; tiþ1Þ 2 A for 1 � i � k� 1. We denote the origin t1 and

20 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

Fig. 1. (a), (b), and (c) Euclidean adjacency relations for � ¼ 1;
ffiffiffi
2
p

and
ffiffiffi
5
p

, respectively. (d) An asymmetric adjacency relation given by
M¼ fð�1;�1Þ; ð1;�1Þg.

the destination tk of � by orgð�Þ and dstð�Þ, respectively. The
path is trivial if k ¼ 1. If � and � are paths such that
dstð�Þ ¼ orgð�Þ ¼ t, we denote by � � � the concatenation of
the two paths, with the two joining instances of t merged
into one.

3.1 Path Costs

Weassumegivena functionf that assigns to eachpath�apath
costfð�Þ, in some totally ordered set V of cost values.Without
loss of generality, we can always assume that V contains a
maximum element, which we denote by þ1. Usually, the
path cost depends on local properties of the image I—such as
color, gradient, and pixel position—along the path.

A popular example is the additive path-cost function,
which satisfies

fsumðhtiÞ ¼ hðtÞ;
fsumð� � hs; tiÞ ¼ fsumð�Þ þ wðs; tÞ;

ð1Þ

where ðs; tÞ 2 A, � is any path ending at s, hðtÞ is a fixed
handicap cost for any paths starting at pixel t, and wðs; tÞ is a
fixed nonnegative weight assigned to the arc ðs; tÞ.

Another important example is the max-arc path-cost
function fmax, defined by

fmaxðhtiÞ ¼ hðtÞ;
fmaxð� � hs; tiÞ ¼ maxffmaxð�Þ; wðs; tÞg;

ð2Þ

where hðtÞ and wðs; tÞ are fixed but arbitrary handicap and
arc weight functions. Note that fsum and fmax are distinct
models: Since the incremental cost fmaxð� � hs; tiÞ � fmaxð�Þ
depends on the cost of �, one cannot, in general, redefine
fmax as the sum of fixed weights w0ðs; tÞ.

3.2 Seed Pixels

In typical applications of the IFT, we would like to use a
predefined path-cost function f but constrain the search to
paths that start in a given set S � I of seed pixels. We can
model this constraint by defining a new path-cost function
fSð�Þ, which is equal to fð�Þ when orgð�Þ 2 S, and þ1
otherwise. In particular, for the fsum and fmax functions, this
is equivalent to setting hðtÞ ¼ þ1 for pixels t =2 S.

3.3 Optimum Paths

We say that a path � is optimum if fð�Þ � fð�0Þ for any other
path �0 with dstð�0Þ ¼ dstð�Þ, irrespective of its starting
point. In that case, fð�Þ is by definition the cost of pixel
t ¼ dstð�Þ, denoted by f̂fðtÞ. Note that a trivial path is not
necessarily optimum: even for fsum or fmax, the handicaps of
two pixels s and t may be such that a nontrivial path from s
to t is cheaper than the trivial path hti.

3.4 Spanning Forests

A predecessor map is a function P that assigns to each pixel t
in I either some other pixel in I , or a distinctive marker nil
not in I—in which case t is said to be a root of the map. A
spanning forest is a predecessor map which contains no
cycles—in other words, one which takes every pixel to nil in
a finite number of iterations. For any pixel t 2 I , a spanning
forest P defines a path P �ðtÞ recursively as hti if P ðtÞ ¼ nil,
and P �ðsÞ � hs; ti if P ðtÞ ¼ s 6¼ nil. We will denote by P 0ðtÞ
the initial pixel of P �ðtÞ (see Fig. 2a).

3.5 The Image Foresting Transform

The image foresting transform (IFT) takes an image I, a path-
cost function f and an adjacency relation A, and returns an
optimum-path forest—a spanning forest P such that P �ðtÞ is
optimum, for every pixel t. See Figs. 2b and 2c.

Note that, in an optimum-path forest P for a seed-
restricted cost function fS , any pixel t with finite cost
fSðP �ðtÞÞ will belong to a tree whose root is a seed pixel;
however, some seeds may not be roots of the forest because
they may be more cheaply sourced by another root seed.

In general, there may be many paths of minimum cost
leading to a given pixel; only the pixel costs f̂fðtÞ are uniquely
defined. Observe that, if we independently pick an optimum
pathforeachpixel, theunionof thosepathsmaynotbeaforest.
Indeed, certain graphs and cost functionsmaynot even admit
any optimum-path forest. Sufficient conditions for the ex-
istence of the IFT will be given in Section 4.3.

4 ALGORITHM

For suitable path-cost functions, the IFT can be computed
by Algorithm 1 below—which is essentially Dijkstra’s
procedure for computing minimum-cost paths from a
single source in a graph [3], [5], slightly modified to allow
multiple sources and more general cost functions. This
variant was chosen for maximum flexibility and to simplify
the proof of correctness. In practice, Algorithm 1 can be
optimized in a number of ways (see Section 4.5).

Algorithm 1. Input: An image I ¼ ðI ; IÞ; an adjacency
relation A � I � I ; and a path-cost function f . Output: An
optimum-path forest P . Auxiliary Data Structures: Two sets
of pixels F ;Q whose union is I .

1. Set F fg, Q I . For all t 2 I , set P ðtÞ nil.
2. While Q 6¼ fg, do

2.1. Remove from Q a pixel s such that fðP �ðsÞÞ is
minimum, and add it to F .

2.2. For each pixel t such that ðs; tÞ 2 A, do
2.2.1. If fðP �ðsÞ � hs; tiÞ < fðP �ðtÞÞ, set P ðtÞ s.

FALC~AAO ET AL.: THE IMAGE FORESTING TRANSFORM: THEORY, ALGORITHMS, AND APPLICATIONS 21

Fig. 2. (a) Themain elements in a spanning forest. (b) An image graphwith 4-connected adjacency, where the integers are the image values IðtÞ. (c) An
optimum-path forest for the path-cost function fmax, where hðtÞ ¼ wðs; tÞ ¼ IðtÞ, restricted to the three seed pixels represented by bigger dots.

4.1 General Properties

Some basic facts about Algorithm 1 are easily established by
induction on the number of steps. Since every iteration of
the main loop removes from Q exactly one pixel (which is
never returned) and each arc of A is examined exactly once
in Step 2.2, it follows that

Lemma 1. Algorithm 1 terminates in OðnÞ iterations of the outer
loop, and OðmÞ total iterations of the inner loop.

Moreover, each predecessor P ðtÞ is initially nil and
is modified only by the assignment P ðtÞ s in Step 2.2.1
—when t is still in Q but s is in F . Lemma 2 follows

Lemma 2. The predecessor map P computed by Algorithm 1 is
always a spanning forest.

Note that Lemmas 1 and 2 hold for any path-cost function f .
This is more of a curse than a blessing, because it tempts
people into using Algorithm 1 even when its result is not an
optimum-path forest. The optimality depends on f being
sufficiently well-behaved.

4.2 Monotonic-Incremental Cost Functions

When the path-cost function is additive, the correctness of
Algorithm 1 is established by the standard proof of Dijkstra’s
method [28], [5]. Note that the extension to multiple starting
pixels is trivial since it is equivalent to adding extra arcs from
a dummy starting pixel u =2 I to all pixels in I and setting
wðu; tÞ ¼ hðtÞ for each new arc ðu; tÞ. This remains true even
when the arc costs and handicaps are allowed to be þ1.

In fact, as shown by Frieze [30], the original proof of
Dijkstra’s algorithm is easily generalized to monotonic-
incremental (MI) path-cost functions, which satisfy

fðhtiÞ ¼ hðtÞ;
fð� � hs; tiÞ ¼ fð�Þ 	 ðs; tÞ;

ð3Þ

where hðtÞ is an arbitrary handicap cost, and 	 : V � A ! V
is a binary operation that satisfies the conditions

M1. x0
 x) x0 	 ðs; tÞ
 x	 ðs; tÞ,
M2. x	 ðs; tÞ
 x,

for any x; x0 2 V and any ðs; tÞ 2 A. An essential feature of
this model is that 	 depends only on the cost of �, and not
on any other property of �. Both the additive cost fsum (with
nonnegative arc weights) and the max-arc cost fmax are
monotonic-incremental. It turns out that most image
processing problems that we have successfully reduced to
the IFT require MI path-cost functions, and therefore can be
solved by Algorithm 1. In fact, Condition M2 can be
weakened to fð� � �Þ
 fð�Þ for any cycle � [30].

On the other hand, it is easy to find counterexamples of
path-cost functions—not MI, of course—which cause Algo-
rithm 1 to fail. A textbook counterexample is the additive
path-cost fsum when the arc weights wðs; tÞ are allowed to be
negative. The algorithm may also fail for generalizations of
fsum or fmax where the arc weight wðs; tÞ is allowed to
depend on the path already chosen for s. Unfortunately, this
applies to several path-cost functions that would seem
reasonable for image processing. For example, in multi-
seeded region-based segmentation, it may seem reasonable
to use the function fabsð�Þ, defined as the maximum of
jIðtÞ � Iðorgð�ÞÞj for any pixel t along the path �. Fig. 3
shows a situation where Dijkstra’s algorithm will fail (and,
in fact, where the optimum paths do not form a forest). The

same image graph is a counterexample when the path cost
fð�Þ is defined as the variance of the pixel values along �.
Another counterexample is the region-growing criterion
proposed by Bischof and Adams [44], where each candidate
pixel is ranked by the absolute difference between its value
and the mean value of all pixels in each region.

4.3 Smooth Path-Cost Functions

Algorithm1 doeswork for certain cost functionswhich are not
MI, or even monotonic. An example is the 4-connected
adjacency and the function fSeucð�Þ defined as the Euclidean
distance between the endpoints of �, restricted to paths that
start at a given seed set S. Algorithm 1 will correctly find an
optimum-path forest as long as jSj � 2, even though Condi-
tion M2 is violated when jSj ¼ 1, and both M1 and M2 are
violated when jSj ¼ 2. Consider, for instance, three pixels
t ¼ r1 ¼ ð0; 0Þ, s ¼ ð2; 0Þ, r2 ¼ ð3; 0Þ:We have feucðhr1; siÞ >
feucðhr2; siÞ, but feucðhr1; si � hs; tiÞ < feucðhr2; si � hs; tiÞ; and,
also, feucðhs; ti � ht; siÞ < feucðhs; tiÞ. (The algorithm may fail,
however, if jSj
 3; see Section 6.4.)

Examples like this one led us to search for conditions on
the path-cost function f that are more general than M1 and
M2 but still strong enough to ensure the correctness of
Algorithm 1. Specifically, we claim that the algorithm will
work if, for anypixel t 2 I , there is anoptimumpath� ending
at t which either is trivial, or has the form � � hs; ti, where

C1. fð�Þ � fð�Þ,
C2. � is optimum, and
C3. for any optimumpath � 0 ending at s, fð� 0 �hs; tiÞ¼fð�Þ.

These conditions seem to capture the essential features of
the path-cost function that are used in the classical proofs
(cf. Bellman’s optimality principle [45]). Observe that
Conditions C1, C2, and C3 are not required to hold for all
paths ending at t, but only for some path � that is optimum.
We say that a path-cost function f satisfying Conditions C1,
C2, and C3 is smooth.

It can be checked that any MI path-cost function satisfies
Conditions C1, C2, and C3. Also, if f is an MI cost function,
then its restriction fS to an arbitrary seed set S will be MI,
and hence smooth too. (Unfortunately, this is not necessa-
rily true if f is smooth, but not MI.)

For an example of a smooth function that is notMI, let f be
an MI function and define f 0ð�Þ ¼ fð�Þ þ gð�Þ, where gð�Þ is
zero if � is optimum for f , and an arbitrary positive value
otherwise. The function f 0 satisfies Conditions C1, C2, and
C3, even though it may failM1 for arbitrary paths. For amore
realistic example, it can be checked that fSeuc is smooth when
jSj � 2. Two key observations are that the influence zones of
the seed pixels are 4-connected and that any path � with
minimum number of arcs connecting S to t satisfies
Conditions C1, C2, and C3.

22 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

Fig. 3. A 2� 3 image where Algorithm 1 fails to produce an optimum

path forest for fSabs, with S ¼ fr1; r2g. We have f̂fSabsðsÞ ¼ fabsðhr1; siÞ ¼
2 < fabsðhr2; siÞ ¼ 3, but f̂fSabsðtÞ ¼ fabsðhr2; s; tiÞ ¼ 3 < fabsðhr1; s; tiÞ ¼ 4.

4.4 Proof of Correctness

In order to prove the correctness of Algorithm 1 for a
smooth path-cost function f , we require some auxiliary
definitions. Let B � A denote the set of all arcs of A that
have already been considered in Step 2.2. We say that a path
is a ðB; P Þ-path if it is either a trivial path hti with t 2 Q or
has the form P �ðsÞ � hs; ti, where s 2 F , t 2 Q, and ðs; tÞ is an
arc of B. We also say that a path is ðB; P Þ-optimum if it is a
ðB; P Þ-path, and has minimum cost among all ðB; P Þ-paths
with the same final pixel. Note that a ðB; P Þ-optimum path
may not be optimum overall and, therefore, we cannot
assume that it satisfies Conditions C1, C2, and C3.

The proof is based on the following invariants that, we
claim, hold every time the algorithm reaches one of the
Steps 2.1, 2.2, or 2.2.1:

H1. For every pixel s 2 F , the path P �ðsÞ is optimum.
H2. For every pixel s 2 F , and any path � that ends in Q,

we have fðP �ðsÞÞ � fð�Þ.
H3. Foreverypixel t 2 Q, thepathP �ðtÞ is ðB; P Þ-optimum.

The bulk of the proof lies in Lemmas 3 and 4 below,
which are combined in Theorem 1. The proofs of these
lemmas are given in Appendix A.

Lemma 3. Each execution of Step 2.2.1 preserves Invariants H1,
H2, and H3.

Lemma 4. If f is a smooth path-cost function, Step 2.1 preserves
Invariants H1, H2, and H3.

Theorem 1. Algorithm 1 computes an optimum-path forest for
any smooth cost function f .

Proof. Invariants H1, H2, and H3 are trivially valid just
before Step 2. By Lemmas 3 and 4, they remain valid
through the execution of the algorithm, which terminates
by Lemma 1. Upon termination, P is a spanning forest by
Lemma 2 and F ¼ I together with Invariant H1 imply
that all paths P �ðtÞ are optimum. tu

4.5 Efficient Implementation

Algorithm 1 can be optimized in a number of ways, without
affecting its correctness:

Reusing the path costs. One can avoid recomputing
fðP �ðtÞÞ at every iteration of Step 2.2.1 by storing fðP �ðtÞÞ in
a table CðtÞ. Moreover, the cost fðP �ðsÞ � hs; tiÞ can often be
computed in Oð1Þ time from wðs; tÞ and fðP �ðsÞÞ ¼ CðsÞ
(and, if f is not MI, from some other accumulated
information about P �ðsÞ). At the end of the algorithm,
CðtÞ will be the minimum pixel cost f̂fðtÞ.

Avoiding backward arcs. From Invariants H1 and H2, it
follows that Step 2.2.1 may have an effect only if the current
cost fðP �ðtÞÞof t is strictlyhigher than fðP �ðsÞÞ. Therefore,we
can avoid computing the cost fðP �ðsÞ � hs; tiÞ whenever
CðtÞ � CðsÞ.

Handling of infinite costs. In many applications, the cost
fðP �ðtÞÞ is þ1 for most pixels t 2 Q, through most of the
execution of Algorithm 1. In such cases, we can save a large
fraction of the running time by storing inQ only those pixels
t 2 I n F which have fðP �ðtÞÞ < þ1. In particular, if f ¼ fS

for some set S, then Step 1 should initialize Q with S rather
thanI .With thismodification, anypixel t that is not reachable
by any finite-cost path (in particular, any pixel which is not
reachable from S) will remain a single-node tree.

Infinite costs are also usefulwhenweare only interested in
pathswhose costs donot exceeda specified thresholdCmax. In
those cases, we can modify f by mapping any cost greater
than Cmax to þ1. Note that the modified algorithm will
terminate after enumerating all pixels twith finite cost f̂fðtÞ.

Efficient pixel queue structure. Asymptotically, the

bottleneck of Algorithm 1 lies in Step 2.1, the selection of
the minimum-cost pixel s 2 Q. If Q is implemented as a
balanced heap data structure, the total running time will be
Oðmþ n lognÞ.

In most applications, the path costs fð�Þ are either þ1
or integers in some range ½Cmin :: Cmax�. In such cases, we
can implement Q as a vector of C� buckets, each
pointing to a circular doubly linked list of pixels, where

C� ¼ Cmax � Cmin þ 1. The insertion, deletion, and cost
update of a pixel can then be done in Oð1Þ time. Finding
the next minimum-cost pixel in Q may require skipping
over several empty buckets; however, since the cost of
the next pixel never decreases, the total time for Step 2.1 is
OðC�Þ. Algorithm 1 will then run in Oðmþ nþ C�Þ time
and Oðnþ C�Þ storage. Note that each pixel may appear

in the queue at most once; and so we can avoid dynamic
allocation by preallocating two links nextðpÞ and prevðpÞ
for each pixel p, which are then used to connect the
pixels belonging to each bucket [18].

Moreover, in many of those applications, there exists a
fairly small upper bound K to the incremental cost fð� �
hs; tiÞ � fð�Þ of extending an optimum path � by an arc
ðs; tÞ 2 A, and to the maximum difference fðhtiÞ � fðht0iÞ
between the costs of trivial paths (excluding infinite values).
Invariant H3 then implies that, for all t 2 Q, the cost
fðP �ðtÞÞ is either þ1 or an integer in the range ½C :: C þK�,
for some cost C that varies during the algorithm. The bucket
vector can then be replaced by a circular queue of
K þ 1 entries, reducing the storage cost to OðnþKÞ [4], [5].

Furthermore, C� will be bounded by K for fmax and by
nK for general smooth cost functions, in the worst case. (In
practice, an optimum path is unlikely to traverse a
significant fraction of the image pixels, so its cost is usually
bounded by a few times K

ffiffiffi
n
p

.) Therefore, the algorithm
will run in Oðmþ nKÞ time. As noted by Ahuja et al. [5],
there are more complicated data structures that achieve
asymptotic cost Oðmþ n

ffiffiffiffiffiffiffiffiffiffiffiffi
logK
p

Þ. However, for practical
values of n,K, and the constants hidden in the O notation, it
is not always the case that the bucket-based queue will be
more efficient than a balanced heap [10].

Propagating the root labels. Although not needed by the
algorithm itself, many applications (and some path-cost
functions) need to know the root pixel P 0ðtÞ associated with
each pixel t—or, more generally, some attribute �ðP 0ðtÞÞ
that was assigned to it. For example, in segmentation
applications, one would assign the same label to all seed
pixels that belong to the same target object, and treat the
corresponding trees as a single region.

The root labels �ðP 0ðtÞÞ can be computed in linear time
from the predecessor map P , for all t 2 I , as a post-
processing step; but it is more convenient to compute them
during Algorithm 1, as a root label map LðtÞ.

Optimized Algorithm. All these improvements are
implemented in Algorithm 2 below:

FALC~AAO ET AL.: THE IMAGE FORESTING TRANSFORM: THEORY, ALGORITHMS, AND APPLICATIONS 23

Algorithm 2. Input: An image I ¼ ðI ; IÞ; an adjacency
relation A � I � I ; a labeling function � defined on I ; and
a smooth path-cost function f . Output: An optimum-path
forest P , and the corresponding cost map C and root label
map L. Auxiliary Data Structures: A priority queue Q.
1. For all t 2 I , set P ðtÞ nil, LðtÞ �ðtÞ, and

CðtÞ fðhtiÞ. If CðtÞ < þ1, insert t in Q.
2. While Q is not empty, do
2.1. Remove from Q a pixel s such that CðsÞ is minimum.
2.2. For each t such that ðs; tÞ 2 A and CðtÞ > CðsÞ, do
2.2.1. Compute C0 ¼ fðP �ðsÞ � hs; tiÞ.
2.2.2. If C0 < CðtÞ, then
2.2.2.1. If CðtÞ 6¼ þ1, remove t from Q.
2.2.2.2. Set P ðtÞ s, CðtÞ C0, LðtÞ LðsÞ, and

insert t in Q.

5 TIE-BREAKING

As observed in Section 3.5, the optimum-path forest is not

always unique. Since path costs are usually discrete,multiple

solutions are actually quite common in practice.
Algorithms 1 and 2 already resolve some of those

ambiguities. For instance, when a pixel t is reached by two

optimum paths of equal cost, the algorithms will set P �ðtÞ to
the path that is found first. The only remaining ambiguity is

the choice of the minimum-cost pixel s in Q, in case of ties.

Usually, the most convenient choice is to pick the pixel that

entered inQ first, i.e., ties are broken by using the first-in first-

out (FIFO) policy.
In some cases, however, a last-in first-out (LIFO) policy

may be more adequate. See Algorithm 3 below. For

consistency, in this case, the algorithm should also choose

always the last optimum path found in case of ties.

Algorithm 3. Input: An image I ¼ ðI ; IÞ; an adjacency
relation A � I � I ; a labeling function � defined on I ; and
a smooth path-cost function f . Output: An optimum-path
forest P , and the corresponding cost map C and root label
map L. Auxiliary Data Structures: A priority queue Q, with
LIFO tie-breaking.
1. For all t 2 I , set P ðtÞ nil, LðtÞ �ðtÞ,

CðtÞ fðhtiÞ, and insert t in Q.
2. While Q is not empty, do
2.1. Remove from Q a pixel s such that CðsÞ is minimum.
2.2. For each pixel t such that ðs; tÞ 2 A and t 2 Q, do
2.2.1. Compute C0 ¼ fðP �ðsÞ � hs; tiÞ.
2.2.2. If C0 � CðtÞ, remove t from Q, set P ðtÞ s,

CðtÞ C0, LðtÞ LðsÞ, and insert t in Q.

The main difference between Algorithms 2 and 3, besides
the queue policy, lies in Step 2.2.2—where P ðtÞ and LðtÞ
must be updated, and t must be removed and reinserted in
Q, even when C0 is equal to CðtÞ.

With theFIFOpolicy, anyconnected setofpixels that could
be reached from two ormore roots, at the same cost, will tend
togetpartitionedamongtherespectivetrees (seeFig.4a).With
theLIFOpolicy, incontrast, thosepixelswill allgetassignedto
a single tree (see Fig. 4b). While the LIFO policy may be an
advantage insomeapplications (seeSection6.1), inmost cases
the shorter paths and more uniform trees produced by the
FIFO policy are a better match to the users’ expectations.

It must be noted, however, that the FIFO policy by itself
does not ensure an unbiased partition. In the extreme case
where any path from any given seed has the same cost, one
might expect that theboundarybetweenadjacent treeswould
follow the bisector of their roots, in the graph-theoreticmetric
(Fig. 4a). In fact, one of the trees usually encroaches into the
other, so the boundary may deviate quite sharply from the
bisector (see Fig. 4c). Thus, when the partition of ambiguous
pixels is important, one must incorporate an appropriate tie-
breaking criterion explicitly into the path-cost function.

6 APPLICATIONS

In this section, we illustrate a few selected applications of
the IFT. Even though the examples given here use gray-
scale images, many of these operators can be trivially
applied to multispectral (color) images, by changing the
path-cost function to use all bands.

6.1 Regional Minima

A regional minimum is a maximal connected set X � I , such
that IðsÞ � IðtÞ for any s 2 X and any arc ðs; tÞ 2 A [23]. We
can compute the regional minima with the cost function

finiðhtiÞ ¼ IðtÞ; for all t 2 I ;

finið� � hs; tiÞ ¼
finið�Þ; if IðsÞ � IðtÞ;
þ1; otherwise:

� ð4Þ

The function fini is MI, and therefore smooth. Note that any
optimum path starts at a regional minimum and never goes
downhill. Since the regional minima are contained in the
set S of pixels s such that IðsÞ � IðtÞ for all ðs; tÞ 2 A, we
can use fSini instead of fini.

With FIFO tie-breaking, a pixel will be a root of the IFT if
and only if it belongs to a regional minimum and each
regional minimum is a connected component of the set of all
roots. With LIFO tie-breaking, in contrast, we will get exactly

24 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

Fig. 4. Three examples of tie-breaking for the same function of Fig. 2, restricted to the two seed pixels represented by bigger dots. (a) FIFO policy

and 4-connected adjacency. (b) LIFO policy and 4-connected adjacency. (c) FIFO policy and 8-connected adjacency.

one root r in each regional minimum. In this case, the full
extent of each regional minimum is obtained by truncating
the tree rooted at r to those pixels twith IðtÞ ¼ IðrÞ.

6.2 The Watershed Transform and Morphological
Reconstruction

Consider the image I ¼ fI ; Ig as a 3D surface, where IðtÞ is
the altitude of pixel t and the objects of interest are delimited
by ridges which are higher than any other hills inside or
outside the objects. This situation arises, for example, when I
is a gradient-like image. In this case, we can separate the
objects by choosing one or more seed pixels in each object
(and background), with a distinct label for each object, and
using the cost function fpeak, defined as the maximum pixel
intensity along the path. This is a special case of fmax, where
hðtÞ ¼ wðs; tÞ ¼ IðtÞ. The labelmapLðtÞwill give the result of
the segmentation.

This formulation captures the essential features of the
watershed transform (WT) and several of its variants [20], [21],
[6], [12]. There is yet no consensual definition for theWT [41].
It is informally described as a flooding process on the image
surface, with a source of water at each seed; a barrier
(watershed line) is erected wherever two bodies of water
coming from distinct sources meet. However, the position of
the watershed lines is not precisely defined in many
situations, such as on plateaus andwhen two or more bodies
of water overflow into an adjacent basin at the same time. In
the IFT approach, this ambiguity is decided by the tie-
breaking policy. The FIFO policy usually leads to a roughly
fair partition of plateaus and flooded basins among compet-
ing sources (see Figs. 4a and 4c).

By restricting fpeak to a seed set S � I , the IFT computes
a watershed-from-markers transform (WMT) (see Figs. 5a, 5b,
and 5c). If we use arbitrary handicaps hðtÞ > IðtÞ for all
t 2 S, we get the WMT without marker imposition [21]—
that is, some seeds may not become roots of the forest [12].
Marker imposition is achieved by assigning hðtÞ < IðtÞ for
all t 2 S [6]; this solution is more efficient than the standard
one based on homotopy change [21].

The threshold decomposition of an image I is the set XðIÞ of
all connected components of pixel subsets of the form
ft 2 I : IðtÞ
 vg, for all v 2 V [23], [12]. Morphological
reconstruction operators are robust filters whose only effect is
to eliminate ormerge connected components fromXðIÞ. Ifwe
use fpeak with hðtÞ > IðtÞ for all t 2 I , then CðtÞ will be the
superior morphological reconstruction of I, which only merges
components selected by the regional minima of the marker
function hðtÞ; and LðtÞ will be the catchment basins of the
watershedtransformof thereconstructed imageCðtÞ [12].The
inferior reconstruction is the dual operation, which only
eliminates components from XðIÞ. (See Figs. 5d, 5e, and 5f.)

The local superior reconstruction is a variant introduced by
Falcão et al. [12] which fills up one or more basins, selected
by a seed set S, up to levels specified by given handicaps
hðtÞ > IðtÞ for t 2 S. The parameters S and hðtÞ can be given
by the user or selected automatically, as proposed by
Vincent [22]. The required cost function flrec is:

flrecðhtiÞ ¼ hðtÞ; if t 2 S; and þ1 otherwise;

flrecð� � hs; tiÞ ¼
flrecð�Þ; if flrecð�Þ > IðtÞ;
þ1; otherwise:

� ð5Þ

Morphological reconstruction is the building block of many
other image operations, such as h-minima, h-maxima, the
leveling operator, area opening and closing, alternate sequential
filters by reconstruction, hole closing, and dome removal [12],
[22], [23], [24].

As in other implementations of the WT [20], [21], the
queue structure can be simplified because, for fpeak and flrec,
the cost of a pixel never needs to be updated once it has
been inserted in Q [6]. Note that some generalizations of
watershed may not have this property.

6.3 Boundary Tracking

In the boundary tracking approach to image segmentation, the
goal is to find an optimum curve that is constrained to pass
through a given sequence hT 1; T 2; . . . ; T ki of k landmarks
(pixel sets) on the object’s boundary, in that order, starting in

FALC~AAO ET AL.: THE IMAGE FORESTING TRANSFORM: THEORY, ALGORITHMS, AND APPLICATIONS 25

Fig. 5. Examples of segmentation using IFT-based watershed transform and morphological reconstruction. (a) A magnetic resonance (MR) image of
a brain. (b) The gradient of image I 0 obtained from (a) by I 0ðtÞ ¼ 255 exp½ðIðtÞ � 140Þ2=ð2� 302Þ�, with a seed selected inside the left caudate nucleus
(1), and another outside it (2). (c) The segmentation derived from the label map LðtÞ of the IFT-watershed. (d) An MR image of a wrist with one seed
pixel selected inside the bone. (e) The cost map CðtÞ resulting from inferior morphological reconstruction of (d) with the given seed, followed by
superior reconstruction with the image border pixels as seeds. (f) The bone is segmented by thresholding of (e).

T 1 and ending in T k . (For instance, each set T i could be a
short stroke drawn by the user across the presumed object
boundary.) In particular, if T 1 ¼ T k is a single pixel, then the
result will be an optimum closed path that satisfies those
restrictions (see Fig. 6).

If the cost function f is MI, then the optimum path that
satisfies those constraints consists of k� 1 segments
�1; �2; . . . ; �k�1, where each �i is an f-optimum path connect-
ing T i to T iþ1. Therefore, we can solve this problem by
k� 1 executions of the IFT. Each execution i uses fT i as the
cost function; except that, for i > 1, the handicap hðtÞ is set to
the cost CiðtÞ, computed in the previous execution, if t 2 T i,
orþ1 otherwise. Each stage can be terminated as soon as the
last pixel of the target set T iþ1 is removed from the queueQ.
The optimum path can be obtained from the predecessor
maps Pk�1; Pk�2; . . . ; P1.

The function f should favor paths that go through
boundary-like regions—for example, regions of high gradi-
ent, for objects with sharp high-contrast edges. The fsum cost
function is usually preferable to fmax because it favors
shortest-distance jumps across regions where the boundary
is not well defined.

We can also devise path costs that favor a specific
orientation (clockwise or counterclockwise) for the bound-
ary. Such a feature is useful to avoid nearby boundaries with
similar contrast but opposite orientation [17]. For example, if
the object is darker than the background, we can use
wðs; tÞ ¼ K �maxfGðs; tÞ � �ðs; tÞ; 0g, where Gðs; tÞ is a gra-
dient-like vector estimated at the midpoint of arc ðs; tÞ; �ðs; tÞ
is the arc ðs; tÞ rotated 90 degrees counterclockwise; andK is
an upper bound for jGðs; tÞ � �ðs; tÞj.

Boundary tracking is usually formulated in terms of
heuristic graph search [32], [33], [46] or dynamic program-
ming [31], [46]. The IFT approach covers both formulations
and several interesting interactive extensions—such as live-
wire [17], [35], [18], [19] and live-lane [17].

6.4 Euclidean Distance Transform and Related
Operators

The Euclidean distance transform (EDT) of a given seed set S
assigns to each image pixel t a value CðtÞ which is the
minimum Euclidean distance from t to S. (Actually, in order
to avoid irrational numbers, the square of the distance is
stored instead.)

TheEDT is related to the concept of discreteVoronoi diagram
(DVD), which is a partition of the image pixels into discrete

Voronoi regions. For anynonemptysubsetX ofS,wedefine the
discreteVoronoi regionofX as the setRðXÞofall imagepixels
t such that t is equidistant fromall the seeds inX and is strictly
closer to those seeds than to anyother seed.Wealsodefine the
extended discrete Voronoi regionR�ðXÞ ¼

S
fRðYÞ : Y � Xg. In

particular, for any seed r 2 S, RðfrgÞ consists of all image
pixelswhose centers lie in the interior of the exact (geometric)
Voronoi polygon of S [34]; whereas R�ðfrgÞ consists of the
pixels inside or on the boundary of that polygon.

The obvious implementation of the EDT (or DVD) runs in
time proportional to njSj. This large cost motivated a search
for faster propagation-style algorithms. Ragnemalm [39]
proposed an algorithm for an approximate EDT, similar to
Algorithm 2 with 8-connected adjacency and the Euclidean
path-cost function fSeucð�Þ defined in Section 4.3. When
jSj
 3, this algorithmmaynot output the exact EDT, because
the regions of the discrete Voronoi diagram may not be 8-
connected, as observed byDanielsson [47]. (Indeed, the path-
cost function fSeuc is not smooth in this case.) On the other
hand, Cuisenaire andMacq [40] observed that the exact EDT
can be computed by Algorithm 2 if the adjacency radius is
large enough. Lemma 6 captures this idea:

Lemma 6. For any image diameter D, there is a radius �

ffiffiffi
2
p

such that any pixel t =2 S can be reached by a path � ¼
� � hs; ti that satisfies: (E1) r ¼ orgð�Þ is one of the seeds
closest to t in the Euclidean distance, (E2) all pixels along �
belong to RðfrgÞ, (E3) all arcs in � are directed strictly away
from r, (E4) � is 8-connected, and (E5) dðs; tÞ � �.

The lemma is proven by taking �
 ��ðDÞ, the maximum
Hausdorff distance between R�ðfrgÞ and the 8-connected
component of RðfrgÞ that contains r, for any r 2 S.
According to Cuisenaire and Macq [40], ��ðDÞ � D (e.g.,
�� ¼ 16 for a 768� 768 image).

Lemma 7. If A is the Euclidean adjacency with radius
�
 ��ðDÞ, then fSeuc is smooth.

Proof. For each pixel t, if t 2 S then the path � ¼ hti is
optimum for fSeuc and satisfies the smoothness condition
trivially. If t =2 S, let � ¼ � � hs; ti be a path from some
seed r to t that satisfies the Conditions E1, E2, E3, E4,
and E5 of Lemma 6. Because of Conditions E4 and E5,
the path � is A-connected. Because of Condition E1, � is
optimum for fSeuc. Because of Condition E2, s lies in
RðfrgÞ and, therefore, � also is optimum for fSeuc, thus
satisfying C2. Because of Condition E3, dðr; sÞ � dðr; tÞ
and, therefore, fSeucð�Þ � fSeucð�Þ, satisfying C1. Finally,
let � 0 be any optimum path leading to s; since
s 2 RðfrgÞ, we must have orgð� 0Þ ¼ r and, therefore,
fSeucð� 0 � hs; tiÞ ¼ dðr; tÞ ¼ fSeucð�Þ, which is C3. tu
Cuisenaire andMacq also pointed out that one can correct

Ragnemalm’s approximate EDT by a postprocessing stage
whichconsidersall arcswhoseEuclidean length is less thanor
equal to ��ðDÞ and whose origin lies in a certain subset of the
leaf pixels of the computed influence zones. Note, however,
that propagation methods will hardly compete with other
approaches based on the exact geometric Voronoi diagram,
which can compute the exact EDT in linear time [48]. The
algorithm by Cuisenaire and Macq will require �ðnjAjÞ ¼
�ðnð��ð ffiffiffi

n
p ÞÞ2Þ timeintheworstcase,sincetheimagediameter

D is at least �ð ffiffiffi
n
p Þ, and it is possible that �ðnÞ pixels will

become seeds of the second stage. The asymptotic growth of

26 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

Fig. 6. Boundary tracking of the left caudate nucleus in an MR image of a

brain, with single-pixel landmarks ð1; 2; 1Þ. The cost function is fsum with

the directional arc weights wðs; tÞ described in Section 6.3, where Gðs; tÞ
is the gradient of image I 0 used in Fig. 5.

��ðDÞ is not known, but from the table in [40] it seems to be at
least�ð

ffiffiffiffi
D
p
Þ, which would imply total cost�ðn3=2Þ.

On the other hand, propagation algorithms seem manda-
tory in applications where it is more important to have
8-connected influence zones than exact distance values [14],
[15], [16]. Examples include the computation of one-pixel-
wide and connected multiscale skeletons (see Fig. 7) and the
skeleton by influence zones (SKIZ) [14]. The former are used
by Torres et al. to compute the salience points of a given
contour [16].

In such applications, one could run Algorithm 2 with cost
function fSeuc and � ¼

ffiffiffi
2
p

(8-connected adjacency). Because of
Lemma2, the resultwill always be somepartition of the image
into 8-connected influence zones, even though the forestmay
not be optimum. However, because of Condition E4 of
Lemma 6, it can be shown that the influence zone of each
seed r 2 S will contain the subset of RðfrgÞ which is
8-connected to r. So, in this sense, this “quasi-IFT” is an
approximation of theEDT/DVD,whichmaybegood enough
for many applications.

Another alternative is to compute a chamfer distance
transform (CDT), where the Euclidean distance is replaced
by a piecewise-linear approximation. One can obtain an exact
CDT by applyingAlgorithm 2with the fsum cost function and
arc weights wðs; tÞ that depend only on the vector t� s [36].
Formost applications, it suffices touse 8-connectedadjacency
with weights 5 for axial arcs and 7 for diagonal arcs [49]. One
drawback of the CDT is that the resulting skeletons are more
affected by rotations than the quasi-EDT above.

7 CONCLUSIONS AND CURRENT RESEARCH

Wegave aprecise definition of the image foresting transform,
aproofof correctnessof its basic algorithm(for a fairlygeneral
class of cost functions), and an efficient implementation
(Algorithm 2). We pointed out the importance of the
tie-breaking policy, especially for the watershed transform,

and introduced the LIFO variant (Algorithm 3), which led to

an efficient way of locating regional minima. We also

presented cost functions for watershed transforms, morpho-

logical reconstructions, boundary tracking, and EDT-related

operators.
The IFT provides a common and well-founded frame-

work for the design of image processing operators, which

leads to correct, efficient, and flexible implementations.

Algorithms 2 and 3 together with the examples of this paper

are available through the Internet [50].
We are currently exploiting Algorithm 2 and variants to

improve the efficiency of watershed transforms [25]. We are

also developing novel IFT-based algorithms for automatic

image segmentation [51], and paradigms for 3D segmenta-

tion of medical images at interactive speeds, such as the

differential IFT [26], [52]. Finally, we are investigating parallel

and hardware implementations of the IFT and its possible

application to 3D multiscale skeletonization.

APPENDIX A

PROOFS OF THE LEMMAS

By induction on the length of �, Conditions C1, C2, and C3

can be extended to arbitrary prefixes of optimum paths.

Namely, if f is a smooth path-cost function, then for any

t 2 I there is an optimum path � to t, such that, for any �

and � with � ¼ � � � we have

C1* . fð�Þ � fð�Þ,
C2* . � is optimum,
C3* . for any optimum path � 0 with same terminus as � ,

fð� 0 � �Þ ¼ fð�Þ.

Lemma 3. Each execution of Step 2.2.1 of Algorithm 1 preserves

Invariants H1, H2, and H3.

FALC~AAO ET AL.: THE IMAGE FORESTING TRANSFORM: THEORY, ALGORITHMS, AND APPLICATIONS 27

Fig. 7. (a) A binary image. (b) The label map LðtÞ resulting from the quasi-IFT with fSeuc, where the seeds are the boundary pixels with labels �ðtÞ that
increase sequentially along the contour. (c) A multiscale skeleton computed from (b) by local differencing. (d), (e), and (f) Skeletons computed by

thresholding (c) at three different spatial scales.

Proof. In this proof, for any variable or preposition V , we

will denote by /V the value of V before a generic

execution of Step 2.2.1 and by .V its value after it. Thus,

the effect of Step 2.2.1 is to change the predecessor map

from /P into .P ; and we must show that, as a

consequence, /ðH1 ^H2 ^H3Þ implies .ðH1 ^H2 ^H3Þ.
By definition, Step 2.2.1 adds the arc ðs; tÞ to B (i.e.,

.B ¼ /B [fðs; tÞg). That stepmay change thepredecessor
map P for pixel t, but will have no effect on P ðrÞ, for any
pixel r 6¼ t. Since Step 2.2.1 has no effect on Q or F , or on
P �ðs0Þ for any s0 2 F , Invariants H1 and H2 are trivially
preserved.

Now, observe that, for any r and at any point in the
algorithm, P ðrÞ is either nil or a pixel of F ; so P �ðrÞ is
always in F [frg. Since t is in Q, it follows that
.P �ðrÞ ¼ /P �ðrÞ for any r 6¼ t. Moreover, Step 2.2.1 only
changes P ðtÞ if fð.P �ðtÞÞ < fð/P �ðtÞÞ. We conclude that
fð.P �ðt0ÞÞ � fð/P �ðt0ÞÞ, for any t0 2 Q.

Now, suppose that H3 is violated by Step 2.2.1, that is,
there exists some pixel t0 2 Q and some ð.B; .P Þ-path �
ending at t0 with fð�Þ < fð.P �ðt0ÞÞ. By the reasoning
above,we shouldhave also fð�Þ < fð/P �ðt0ÞÞ.On the other
hand, given /H3, the path � cannot be a ð/B; / P Þ-path.
However, since .P �ðt0Þ ¼ /P �ðt0Þ for all t0 6¼ t, it follows
that � must use the arc ðs; tÞ, which is the only difference
between /B and .B. Then, �must be the same pathP �ðsÞ �
hs; ti considered in Step 2.2.1. However, that step
guarantees that fð�Þ
 fð.P �ðt0ÞÞ, a contradiction. We
conclude that Invariant H3 is preserved, too. tu

Lemma 4. If f is a smooth path-cost function, Step 2.1 preserves

Invariants H1, H2, and H3.

Proof. In this proof, we will denote by /V the value of V

before a generic execution of Step 2.1 and by .V its value

after it. Again, we must show that /ðH1 ^H2 ^H3Þ
implies .ðH1 ^H2 ^H3Þ.

The effect of Step 2.1 is only to set .F ¼ /F [fsg,
.Q ¼ /Q n fsg. The step has no effect on the set B, the
forest P , or the paths P �. Therefore, to show that Invariant
H1 ispreserved,wemust showonly thatP �ðsÞ is optimum.

Let � be an optimum path that ends at s. Since f is a
smooth path-cost function, we can assume,without loss of
generality, that � satisfies Conditions C1*, C2*, and C3*.

Let’s consider first the case when orgð�Þ ¼ r is in /Q.
In that case, by the choice of s, we must have
fðP �ðsÞÞ � fðP �ðrÞÞ. Moreover, hri is a ð/B; P Þ-path; by
Invariant / ðH3Þ, it follows that fðP �ðrÞÞ � fðhriÞ. On the
other hand, by Condition C2*, the path hri is optimum;
by Condition C1*, we must have fðhriÞ � fð�Þ. It follows
that fðP �ðsÞÞ � fð�Þ, meaning that P �ðsÞ is optimum.

Let’s now consider the case where orgð�Þ 2 /F . Let �
be the longest prefix of � that is entirely contained in /F ;
let ðr0; s0Þ be the following arc, and � the remainder of �,
from s0 to s. By Invariant H1, the path � 0 ¼ P �ðr0Þ is
optimum; by Condition C3*, the path � 0 � hr0; s0i � � is also
optimum. Also, by Condition C1*, we must have

fð� 0 � hr0; s0iÞ � fð�Þ: ð6Þ

Now, since r0 2 /F and s0 2 /Q, the arc ðr0; s0Þmust have

been added to /B in some previous execution of Step 2.2

(right after r0 was removed from Q). It follows that � 0 �
hr0; s0i is a ð/B; P Þ-path and by Invariant /ðH3Þ,

fðP �ðs0ÞÞ � fð� 0 � hr0; s0iÞ: ð7Þ

Furthermore, by choice of s, we have fðP �ðsÞÞ � fðP �ðs0ÞÞ.
Combining this fact with (6) and (7), we conclude
that fðP �ðsÞÞ � fð�Þ, meaning that fðP �ðsÞÞ is indeed
optimum. tu

ACKNOWLEDGMENTS

The authors would like to thank the MIPG, University of
Pennsylvania, and the Department of Neurology, University
of Campinas for the medical images used in the examples.
ThisworkwaspartiallysupportbyCNPq(Procs. 302966/02-1
and 301016/92-5).

REFERENCES

[1] E.F. Moore, “The Shortest Path through a Maze,” Proc. Int’l Symp.
Theory of Switching, pp. 285-292, Apr. 1959.

[2] R. Bellman, “On a Routing Problem,” Quarterly of Applied Math.,
vol. 16, pp. 87-90, 1958.

[3] E.W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[4] R.B. Dial, “Shortest-Path Forest with Topological Ordering,”
Comm. ACM, vol. 12, no. 11, pp. 632-633, Nov. 1969.

[5] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory,
Algorithms and Applications. Prentice-Hall, 1993.

[6] R.A. Lotufo and A.X. Falcão, “The Ordered Queue and the
Optimality of the Watershed Approaches,” Math. Morphology and
Its Applications to Image and Signal Processing, vol. 18, pp. 341-350,
June 2000.

[7] R.A. Lotufo, A.X. Falcão, and F. Zampirolli, “IFT-Watershed from
Gray-Scale Marker,” Proc. 15th Brazilian Symp. Computer Graphics
and Image Processing, pp. 146-152, Oct. 2002.

[8] J.K. Udupa and S. Samarasekera, “Fuzzy Connectedness and
Object Definition: Theory, Algorithms, and Applications in Image
Segmentation,” Graphical Models and Image Processing, vol. 58,
pp. 246-261, 1996.

[9] P.K. Saha and J.K. Udupa, “Relative Fuzzy Connectedness Among
Multiple Objects: Theory, Algorithms, and Applications in Image
Segmentation,” Computer Vision and Image Understanding, vol. 82,
pp. 42-56, 2001.

[10] L.G. Nyúl, A.X. Falcão, and J.K. Udupa, “Fuzzy-Connected 3D
Image Segmentation at Interactive Speeds,” Graphical Models,
vol. 64, no. 5, pp. 259-281, 2003.

[11] B.S. Cunha, “Projeto de Operadores de Processamento e Análise
de Imagens Baseados na Transformada Imagem-Floresta,” Mas-
ter’s thesis, Universidade Estadual de Campinas, Instituto de
Computação, Ago 2001.

[12] A.X. Falcão, B.S. daCunha, and R.A. Lotufo, “Design of Connected
Operators Using the Image Foresting Transform,” Proc. SPIE
Medical Imaging, vol. 4322, pp. 468-479, Feb. 2001.

[13] R.A. Lotufo, A.X. Falcão, and F.A. Zampirolli, “Fast Euclidean
Distance Transform Using a Graph-Search Algorithm,” Proc. XIII
Brazilian Symp. Computer Graphics and Image Processing, pp. 269-
275, Oct. 2000.

[14] A.X. Falcão, L.F. Costa, and B.S. da Cunha, “Multiscale Skeletons
by Image Foresting Transform and Its Applications to Neuromor-
phometry,” Pattern Recognition, vol. 35, no. 7, pp. 1571-1582, Apr.
2002.

[15] R.S. Torres, A.X. Falcão, and L.F. Costa, “Shape Description by
Image Foresting Transform,” Proc. 14th Int’l Conf. Digital Signal
Processing, pp. 1089-1092, July 2002.

[16] R.S. Torres, A.X. Falcão, and L.F. Costa, “A Graph-Based
Approach for Multiscale Shape Analysis,” Technical Report IC-
03-03, Inst. of Computing, Univ. Campinas, Jan. 2003.

[17] A.X. Falcão, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch,
and R.A. Lotufo, “User-Steered Image Segmentation Paradigms:
Live-Wire and Live-Lane,” Graphical Models and Image Processing,
vol. 60, no. 4, pp. 233-260, July 1998.

[18] A.X. Falcão, J.K. Udupa, and F.K. Miyazawa, “An Ultra-Fast User-
Steered Image Segmentation Paradigm: Live-Wire-on-the-Fly,”
IEEE Trans. Medical Imaging, vol. 19, no. 1, pp. 55-62, Jan. 2000.

28 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 1, JANUARY 2004

[19] A.X. Falcão and J.K. Udupa, “A 3D Generalization of User-Steered
Live Wire Segmentation,” Medical Imaging Analysis, vol. 4, no. 4,
pp. 389-402, Dec. 2000.

[20] L. Vincent and P. Soille, “Watersheds in Digital Spaces: An
Efficient Algorithm Based on Immersion Simulations,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 6,
pp. 583-598, June 1991.

[21] S. Beucher and F. Meyer, “The Morphological Approach to
Segmentation: The Watershed Transformation,” Mathematical
Morphology in Image Processing, chapter 12, pp. 433-481, Marcel
Dekker, 1993.

[22] L. Vincent, “Morphological Area Opening and Closings for
Greyscale Images,” Proc. Shape in Picture ’92-NATO Workshop,
Sept. 1992.

[23] L. Vincent, “Morphological Grayscale Reconstruction in Image
Analysis,” IEEE Trans. Image Processing, vol. 2, no. 2, pp. 176-201,
Apr. 1993.

[24] F. Meyer, “The Levelings,” Proc. Fourth Int’l Symp. Math.
Morphology, pp. 190-207, 1998.

[25] R.A. Lotufo, A.X. Falcão, and F. Zampirolli, “IFT-Watershed from
Gray-Scale Marker,” Technical Report IC-02-12, Inst. of Comput-
ing, Univ. of Campinas, Dec. 2002.

[26] A.X. Falcão and F.P.G. Bergo, “The Iterative Image Foresting
Transform and Its Application to User-Steered 3D Segmentation,”
Proc. SPIE Medical Imaging, vol. 5032, pp. 1464-1475, Feb. 2003.

[27] N. Deo and C. Pang, “Shortest-Path Algorithms: Taxonomy and
Annotation,” Networks, vol. 14, pp. 275-323, 1984.

[28] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
MIT, 1990.

[29] M. Mohri, “Semiring Frameworks and Algorithms for Shortest-
Distance Problems,” J. Automata, Languages, and Combinatorics,
vol. 7, no. 3, pp. 321-350, 2002.

[30] A. Frieze, “Minimum Paths in Directed Graphs,” Operational
Research Quarterly, vol. 28, no. 2, i, pp. 339-346, 1977.

[31] U. Montanari, “On the Optimal Detection of Curves in Noisy
Pictures,” Comm. ACM, vol. 14, no. 5, pp. 335-345, 1971.

[32] A. Martelli, “Edge Detection Using Heuristic Search Methods,”
Computer Graphics and Image Processing, vol. 1, pp. 169-182, 1972.

[33] A. Martelli, “An Application of Heuristic Search Methods to Edge
andContourDetection,”Comm. ACM, vol. 19, no. 2, pp. 73-83, 1976.

[34] F.P. Preparata and M.I. Shamos, Computational Geometry: An
Introduction. Springer 1985.

[35] E.N. Mortensen and W.A. Barrett, “Interactive Segmentation with
Intelligent Scissors,” Graphical Models and Image Processing, vol. 60,
pp. 349-384, 1998.

[36] B.J.H. Verwer, P.W. Verbeek, and S.T. Dekker, “An Efficient
Uniform Cost Algorithm Applied to Distance Transforms,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 4,
pp. 425-429, Apr. 1989.

[37] M.Y. Sharaiha and N. Christofides, “A Graph-Theoretic Approach
to Distance Transformations,” Pattern Recognition Letters, vol. 15,
pp. 1035-1041, Oct. 1994.

[38] F. Meyer, “Topographic Distance and Watershed Lines,” Signal
Processing, vol. 38, pp. 113-125, 1994.

[39] I. Ragnemalm, “Neighborhoods for Distance Transformations
Using Ordered Propagation,” CVGIP: Image Understanding, vol. 56,
no. 3, pp. 399-409, 1992.

[40] O. Cuisenaire and B. Macq, “Fast Euclidean Distance Transforma-
tion by Propagation Using Multiple Neighborhoods,” Computer
Vision and ImageUnderstanding,vol. 76, no. 1, pp. 163-172,Nov. 1999.

[41] J.B.T.M. Roerdink and A. Meijster, “The Watershed Transform:
Definitions, Algorithms and Parallelization Strategies,” Fundamen-
ta Informaticae, vol. 41, pp. 187-228, 2000.

[42] J.A. Sethian, “Curvature and the Evolution of Fronts,” Comm.
Math. Physics, vol. 101, pp. 487-499, 1985.

[43] J.A. Sethian, “A Fast Marching Level Set Method for Mono-
tonically Advancing Fronts,” Proc. Nat’l Academy of Science, vol. 93,
no. 4, pp. 1591-1595, 1996.

[44] L. Bischof and R. Adams, “Seeded Region Growing,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647,
June 1994.

[45] R. Bellman, Dynamic Programming. Princeton Univ., 1957.
[46] M. Sonka, R. Boyle, and V. Hlavac, Image Processing, Analysis, and

Machine Vision. ITP, 1999.
[47] P.E. Danielsson, “Euclidean Distance Mapping,” Computer Gra-

phics and Image Processing, vol. 14, pp. 227-248, 1980.

[48] C.R.Maurer Jr., R. Qi, and V. Raghavan, “A Linear TimeAlgorithm
for Computing Exact Euclidean Distance Transforms of Binary
Images in Arbitrary Dimensions,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 25, no. 2, pp. 265-270, Feb. 2003.

[49] G. Borgefors, “Distance Transformations in Digital Images,”
Computer Vision, Graphics, and Image Processing, vol. 34, pp. 344-
371, 1986.

[50] A. Falcão, J. Stolfi, and R. Lotufo, “The IFT Project,” http://
www.ic.unicamp.br/~afalcao/ift.html, 2003.

[51] G. Castellano, R.A. Lotufo, A.X. Falcão, and F. Cendes, “Char-
acterization of the Human Cortex in MR Images through the
Image Foresting Transform,” Proc. IEEE Int’l Conf. Image Processing
(ICIP), Sept. 2003.

[52] F.P.G. Bergo and A.X. Falcão, “Interactive 3D Segmentation of
Brain MR-Images with the Image Foresting Transform,” Technical
Report IC-03-16, Inst. of Computing, Univ. of Campinas, July 2003.

Alexandre X. Falcão received the BSc degree
in electrical engineering from the University of
Pernambuco, PE, Brazil, in 1988. In 1993, he
received the Msc degree in electrical engineer-
ing from the University of Campinas, SP, Brazil.
He received the doctorate degree in electrical
engineering from the University of Campinas in
1996. He has worked in computer graphics and
image processing since 1991. From 1994 to
1996, he worked at the University of Pennsylva-

nia on interactive image segmentation for his doctorate. In 1997, he
developed video quality evaluation methods for Globo TV, RJ, Brazil. He
has been a professor at the Institute of Computing, University of
Campinas since 1998. His research interests include image segmenta-
tion and analysis, volume visualization, content-based image retrieval,
mathematical morphology, digital TV, and medical imaging applications.

Jorge Stolfi received the BE degree in electrical
engineering in 1973, the MSc degree in compu-
ter sciences in 1979 from the University of São
Paulo, and the PhD degree in computer science
from Stanford University in 1989. He is presently
a full professor at the Institute of Computing,
University of Campinas, SP, Brazil. He has also
worked as research engineer at the Digital
Systems Research Center from 1989 to 1992.
His research interests include image processing,

computer graphics, computational geometry, numerical analysis, natural
language processing, and their applications.

Roberto de Alencar Lotufo received the
Electronic Engineering Diploma from Instituto
Tecnológico de Aeronáutica, Brazil, in 1978, the
MSc degree from the University of Campinas,
UNICAMP, Brazil, in 1981, and the PhD degree
in Electrical Engineering from the University of
Bristol, United Kingdom, in 1990. He is a
professor in the Department of Computer En-
gineering and Industrial Automation at the
University of Campinas (UNICAMP), Brazil,

where he has worked for since 1981. His principal interests are in the
areas of image processing and analysis, mathematical morphology,
image segmentation, and medical imaging. He is one of the main
architects of two morphological toolboxes: MMach for Khoros, and SDC
Morphology Toolbox for MATLAB. Professor Lotufo has published more
than 50 refereed conference and journal papers.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

FALC~AAO ET AL.: THE IMAGE FORESTING TRANSFORM: THEORY, ALGORITHMS, AND APPLICATIONS 29

	footer1:

