
SLIC Superpixels?

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
Pascal Fua, and Sabine Süsstrunk

School of Computer and Communication Sciences (IC)
École Polytechnique Fédrale de Lausanne (EPFL)

Abstract. Superpixels are becoming increasingly popular for use in
computer vision applications. However, there are few algorithms that
output a desired number of regular, compact superpixels with a low com-
putational overhead. We introduce a novel algorithm that clusters pixels
in the combined five-dimensional color and image plane space to effi-
ciently generate compact, nearly uniform superpixels. The simplicity of
our approach makes it extremely easy to use – a lone parameter specifies
the number of superpixels – and the efficiency of the algorithm makes it
very practical. Experiments show that our approach produces superpix-
els at a lower computational cost while achieving a segmentation quality
equal to or greater than four state-of-the-art methods, as measured by
boundary recall and under-segmentation error. We also demonstrate the
benefits of our superpixel approach in contrast to existing methods for
two tasks in which superpixels have already been shown to increase per-
formance over pixel-based methods.

1 Introduction

Superpixels provide a convenient primitive from which to compute local im-
age features. They capture redundancy in the image [1] and greatly reduce the
complexity of subsequent image processing tasks. They have proved increasingly
useful for applications such as depth estimation [2], image segmentation [3, 4],
skeletonization [5], body model estimation [6], and object localization [7].

For superpixels to be useful they must be fast, easy to use, and produce high
quality segmentations. Unfortunately, most state-of-the-art superpixel methods
do not meet all these requirements. As we will demonstrate, they often suffer
from a high computational cost, poor quality segmentation, inconsistent size and
shape, or contain multiple difficult-to-tune parameters.

The approach we advocate in this work, while strikingly simple, addresses
these issues and produces high quality, compact, nearly uniform superpixels more
efficiently than state-of-the-art methods [8, 9, 5, 10]. The algorithm we propose,
simple linear iterative clustering (SLIC) performs a local clustering of pixels
in the 5-D space defined by the L, a, b values of the CIELAB color space and
? Please cite this paper as: Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aure-

lien Lucchi, Pascal Fua, and Sabine Süsstrunk, SLIC Superpixels, EPFL Technical
Report 149300, June 2010.

2 Achanta et al.

Fig. 1. Image segmented using our algorithm into superpixels of (approximate) size 64,
256, and 1024 pixels. The superpixels are compact, uniform in size, and adhere well to
region boundaries.

the x, y pixel coordinates. A novel distance measure enforces compactness and
regularity in the superpixel shapes, and seamlessly accomodates grayscale as
well as color images. SLIC is simple to implement and easily applied in practice
– the only parameter specifies the desired number of superpixels. Experiments
on the Berkeley benchmark dataset [11] show that SLIC is significantly more
efficient than competing methods, while producing segmentations of similar or
better quality as measured by standard boundary recall and under-segmentation
error measures.

For many vision tasks, compact and highly uniform superpixels that respect
image boundaries, such as those generated by SLIC in Fig. 1, are desirable. For
instance, graph-based models such as Conditional Random Fields (CRF) can see
dramatic speed increases when switching from pixel-based graphs to superpix-
els [3, 7], but loose or irregular superpixels can degrade the performance. Local
features such as SIFT extracted from the image at superpixel locations become
less meaningful and discriminative if the superpixels are loose or irregular, and
learning statistics over cliques of two or more superpixels can be unreliable.
This effect can be seen when we compare the performance of SLIC superpixels
to competing methods for two vision tasks: object class recognition and medical
image segmentation. In both cases, our approach results in similar or greater
performance at a lower computational cost in comparison to existing methods.

2 Background

In this section, we briefly review existing image segmentation algorithms and
focus on their suitability for producing superpixels. Not all them were designed
for this specific purpose and may lack the ability to control the size, number, and
compactness of the segments, but we include them in our discussion nonetheless.
We broadly classify superpixel algorithms into graph-based and gradient-ascent-
based. Our survey, summarized in Table 1, considers the quality of segmentation,
and the ability of these algorithm to control the size and number of superpixels.

EPFL Technical Report 149300 3

Table 1. Comparison of state of the art superpixel segmentation algorithms. N is the
number of pixels in the image. GS04 and QS09 do not offer explicit control of the
number of superpixels. SL08 complexity given in this table does not take into account
the complexity of the boundary map computation. GS04 is O(NlogN) complex but is
comparable in speed to SLIC for images less than 0.5 million pixels while TP09 is also
O(N) complex but is 10 times slower than SLIC for 481×321 pixel images. In the case
of QS09, d is a small constant (refer to [10] for details). The number of parameters
listed in the table is the minimum required for typical usage.

Graph-based Gradient-ascent-based

Properties GS04 NC05 SL08 WS91 MS02 TP09 QS09 SLIC

Superpixel no. ctrl. No Yes Yes No No Yes No Yes

Compactness ctrl. No Yes Yes No No Yes No Yes

Complexity O(.) NlogN N3/2 N2logN NlogN N2 N dN2 N

Parameters 2 1 3 1 3 1 2 1

2.1 Graph-based algorithms

In graph based algorithms, each pixel is treated as a node in a graph, and
edge weight between two nodes are set proportional to the similarity between
the pixels. Superpixel segments are extracted by effectively minimizing a cost
function defined on the graph.

The Normalized cuts algorithm [9], recursively partitions a given graph using
contour and texture cues, thereby globally minimizing a cost function defined on
the edges at the partition boundaries. It is the basis of the superpixel segmenta-
tion scheme of [1] and [6] (NC05). NC05 has a complexity of O(N

3
2) [12], where

N is the number of pixels. There have been attempts to speed up the algorithm
[13], but it remains computationally expensive for large images. The superpixels
from NC05 have been used in body model estimation [6] and skeletonization [5].

Fezenszwalb and Huttenlocher [8] (GS04) present another graph-based seg-
mentation scheme that has been used to generate superpixels. This algorithm
performs an agglomerative clustering of pixel nodes on a graph, such that each
segment, or superpixel, is the shortest spanning tree of the constituent pixels.
GS04 has been used for depth estimation [2]. It is O(NlogN) complex and is
quite fast in practice as compared to NC05. However, unlike NC05, it does not
offer an explicit control on the number of superpixels or their compactness.

A superpixel lattice is generated by [14] (SL08) by finding optimal vertical
(horizontal) seams/paths that cut the image, within vertical (horizontal) strips
of pixels, using graph cuts on strips of the image. While SL08 allows control of
the size, number, and compactness of the superpixels, the quality and speed of
the output strongly depend on pre-computed boundary maps.

4 Achanta et al.

2.2 Gradient-ascent-based algorithms

Starting from an initial rough clustering, during each iteration gradient ascent
methods refine the clusters from the previous iteration to obtain better segmen-
tation until convergence.

Mean-shift [15] (MS02) is a mode-seeking algorithm that generates image
segments by recursively moving to the kernel smoothed centroid for every data
point in the pixel feature space, effectively performing a gradient ascent [10]. The
generated segments/superpixels can be large or small based on the input kernel
parameters, but there is no direct control over the number, size, or compactness
of the resulting superpixels.

Quick-shift [10] (QS08) is also a mode-seeking segmentation scheme like
Mean-shift, but is faster in practice. It moves each point in the feature space to
the nearest neighbor that increases the Parzen density estimate. The algorithm
is non-iterative and, like Mean-shift, does not allow one to explicitly control the
size or number of superpixels. Superpixels from quick-shift have been used in
applications like object localization [7] and motion segmentation [16].

We include two other segmentation methods in the category of gradient as-
cent algorithms: Watersheds [17] (WS91) and Turbopixels [12] (TP09). General
watershed algorithms perform gradient ascent from local minima in the image
plane in order to obtain watersheds, i.e. lines that separate catchment basins.
Vincent and Soille [17] propose a fast version based on queuing of pixels. Lazy
Snapping [3] applies graph cuts to the graph built on the superpixels output by
this algorithm.

TP09 generates superpixels by progressively dilating a given number of seeds
in the image plane, using computationally efficient level-set based geometric
flow. The geometric flow relies on local image gradients, and aims to distribute
superpixels evenly on image plane. Unlike WS91, superpixels from TP09 are con-
strained to have uniform size, compactness, and adherence to object boundaries.

3 SLIC segmentation algorithm

Our approach generates superpixels by clustering pixels based on their color
similarity and proximity in the image plane. This is done in the five-dimensional
[labxy] space, where [lab] is the pixel color vector in CIELAB color space, which
is widely considered as perceptually uniform for small color distances, and xy is
the pixel position. While the maximum possible distance between two colors in
the CIELAB space (assuming sRGB input images) is limited, the spatial distance
in the xy plane depends on the image size. It is not possible to simply use the
Euclidean distance in this 5D space without normalizing the spatial distances.
In order to cluster pixels in this 5D space, we therefore introduce a new distance
measure that considers superpixel size. Using it, we enforce color similarity as
well as pixel proximity in this 5D space such that the expected cluster sizes and
their spatial extent are approximately equal.

EPFL Technical Report 149300 5

3.1 Distance measure

Our algorithm takes as input a desired number of approximately equally-sized
superpixels K. For an image with N pixels, the approximate size of each super-
pixel is therefore N/K pixels. For roughly equally sized superpixels there would
be a superpixel center at every grid interval S =

√
N/K.

At the onset of our algorithm, we choose K superpixel cluster centers Ck =
[lk, ak, bk, xk, yk]T with k = [1,K] at regular grid intervals S. Since the spatial
extent of any superpixel is approximately S2 (the approximate area of a super-
pixel), we can safely assume that pixels that are associated with this cluster
center lie within a 2S × 2S area around the superpixel center on the xy plane.
This becomes the search area for the pixels nearest to each cluster center.

Euclidean distances in CIELAB color space are perceptually meaningful for
small distances (m in Eq. 1). If spatial pixel distances exceed this perceptual
color distance limit, then they begin to outweigh pixel color similarities (resulting
in superpixels that do not respect region boundaries, only proximity in the image
plane). Therefore, instead of using a simple Euclidean norm in the 5D space, we
use a distance measure Ds defined as follows:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2

Ds = dlab +
m

S
dxy , (1)

where Ds is the sum of the lab distance and the xy plane distance normalized
by the grid interval S. A variable m is introduced in Ds allowing us to control
the compactness of a superpixel. The greater the value of m, the more spatial
proximity is emphasized and the more compact the cluster. This value can be in
the range [1, 20]. We choose m = 10 for all the results in this paper. This roughly
matches the empirical maximum perceptually meaningful CIELAB distance and
offers a good balance between color similarity and spatial proximity.

3.2 Algorithm

The simple linear iterative clustering algorithm is summarized in Algorithm 1.
We begin by sampling K regularly spaced cluster centers and moving them to
seed locations corresponding to the lowest gradient position in a 3× 3 neighbor-
hood. This is done to avoid placing them at an edge and to reduce the chances
of choosing a noisy pixel. Image gradients are computed as:

G(x, y) = ‖I(x+ 1, y)− I(x− 1, y)‖2 + ‖I(x, y + 1)− I(x, y − 1)‖2 (2)

where I(x, y) is the lab vector corresponding to the pixel at position (x, y), and
‖.‖ is the L2 norm. This takes into account both color and intensity information.

Each pixel in the image is associated with the nearest cluster center whose
search area overlaps this pixel. After all the pixels are associated with the near-
est cluster center, a new center is computed as the average labxy vector of all

6 Achanta et al.

the pixels belonging to the cluster. We then iteratively repeat the process of
associating pixels with the nearest cluster center and recomputing the cluster
center until convergence.

At the end of this process, a few stray labels may remain, that is, a few pixels
in the vicinity of a larger segment having the same label but not connected to
it. While it is rare, this may arise despite the spatial proximity measure since
our clustering does not explicitly enforce connectivity. Nevertheless, we enforce
connectivity in the last step of our algorithm by relabeling disjoint segments
with the labels of the largest neighboring cluster. This step is O(N) complex
and takes less than 10% of the total time required for segmenting an image.

Algorithm 1 Efficient superpixel segmentation
1: Initialize cluster centers Ck = [lk, ak, bk, xk, yk]T by sampling pixels at regular grid

steps S.
2: Perturb cluster centers in an n× n neighborhood, to the lowest gradient position.
3: repeat
4: for each cluster center Ck do
5: Assign the best matching pixels from a 2S × 2S square neighborhood around

the cluster center according to the distance measure (Eq. 1).
6: end for
7: Compute new cluster centers and residual error E {L1 distance between previous

centers and recomputed centers}
8: until E ≤ threshold
9: Enforce connectivity.

3.3 Complexity

It is easy to notice that the idea of iteratively evolving local clusters and cluster
centers used in our algorithm is a special case of k-means adapted to the task
of generating superpixels. Interestingly, by virtue of using our distance measure
of Eq. (1), we are able to localize our pixel search to an area (2S × 2S) on the
image plane that is inversely proportional to the number of superpixels K. In
practice, a pixel falls in the local neighborhood of no more than eight cluster
centers. We also note that the convergence error of our algorithm drops sharply
in a few iterations. Our experiments show that it suffices to run the algorithm
for 4 to 10 iterations. We use 10 iterations for all the results in this paper.

The time complexity for the classical k-means algorithm is O(NKI) where N
is the number of data points (pixels in the image), K is the number of clusters (or
seeds), and I is the number of iterations required for convergence. Our method
achieves O(N) complexity (see Fig. 4), since we need to compute distances from
any point to no more than eight cluster centers and the number of iterations is
constant. Thus, SLIC is specific to the problem of superpixel segmentation, and
unlike k-means, avoids several redundant distance calculations.

Speed-up schemes for the k-means algorithm have been proposed using prime
number length sampling [18], random sampling [19], by local cluster swap-

EPFL Technical Report 149300 7

ping [20], and by setting lower and upper bounds [21]. However except for [21],
these methods do no achieve linear complexity for a given K. SLIC, on the other
hand, is linear in the number of pixels irrespective of K. Note that, like [21],
SLIC implicitly sets bounds on distance calculations, but does not need to com-
pute or carry forward these bounds for the subsequent iterations. Unlike most
of these segmentation schemes, which are very general in nature, SLIC is specif-
ically tailored to perform superpixel clustering using the distance measure of
Eq. (1) and is much simpler.

4 Comparison

In this section we compare our superpixel segmentation method with four state-
of-the-art algorithms, namely, GS041 [8], NC052 [6], TP093 [12], QS094 [7] using
publicly available source codes. GS04 and NC05 are graph based methods while
TP09 and QS09 are gradient based approaches. NC05 and TP09 are designed to
output a desired number of superpixels while GS04 and QS09 require parameter
tuning to obtain a desired number of superpixels. This choice of algorithms
should provide a good representation of the state-of-the-art.

Fig. 2 provides a visual comparison of our output against these algorithms.
To provide a qualitative comparison, we use the under-segmentation error and
boundary recall measures, similar to the ones used by Levenshtein et al. [12] for
this purpose, computed using the Berkeley segmentation ground truth [11].

4.1 Algorithm Parameters

As mentioned in the introduction, it is important for superpixel algorithms to
be easy to use. Difficult-to-set parameters can result in lost time or poor perfor-
mance. Table 1 summarizes the number of parameters that must be tuned or set
for each method. SLIC, like NC05 and TP09 requires a single parameter. It is
also important to note that GS04 and QS09 do not allow the user to control the
number of superpixels. We had to perform a search on the parameter space to
be able to control the number of superpixels in order to make a fair comparison
to the other methods.

4.2 Under-segmentation error

Under-segmentation error essentially measures the error an algorithm makes in
segmenting an image with respect to a known ground truth (human segmented
images in this case). This error is computed in terms of the ‘bleeding’ of the
segments output by an algorithm when placed over ground truth segments. This

1 http://people.cs.uchicago.edu/~pff/segment/
2 http://www.cs.sfu.ca/~mori/research/superpixels/
3 http://www.cs.toronto.edu/~babalex/turbopixels_supplementary.tar.gz
4 http://www.vlfeat.org/download.html

8 Achanta et al.

GS04 NC05 TP09 QS09 SLIC

Fig. 2. Visual comparison of the superpixels. The average superpixel size in the two
halves in all images is roughly 100 pixels and 300 pixels each. Each pair of rows show
the whole segmented image and its central part blown-up respectively.

EPFL Technical Report 149300 9

500 1000 1500 2000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of superpixels

U
nd

er
−

se
ge

m
en

ta
tio

n
er

ro
r

GS04
NC05
TP09
QS09
SLIC

500 1000 1500 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of superpixels

B
ou

nd
ar

y
re

ca
ll

GS04
NC05
TP09
QS09
SLIC

(a) (b)

Fig. 3. (a) Plot of the under-segmentation error w.r.t. number of superpixels. (b) Plot
of the boundary recall w.r.t. number of superpixels. The output of NC05 is visually
the most appealing but its boundary recall is quite poor. GS04 has a higher boundary
recall than all algorithms, including ours, but this is partly because of the fact that it
places a lot of segments in the vicinity of object boundaries.

measure thus penalizes superpixels that do not tightly fit a ground truth segment
boundary.

Given ground truth segments g1, g2, ..., gM and a superpixel output s1, s2, ..., sL,
the under-segmentation error for a ground truth segment gi is quantified as:

U =
1
N

 M∑
i=1

 ∑
[sj |sj

⋂
gi>B]

|sj |

−N
 (3)

where |.| gives the size of the segment in pixels, N is the size of the image in
pixels, and B is the minimum number of pixels that need to be overlapping.
The expression sj

⋂
gi is the intersection or overlap error of a superpixel sj with

respect to a ground truth segment gi. B is set to be 5% of |sj | to account for
small errors in ground truth segmentation data. The value of U is computed for
each image of the ground truth and then averaged to obtain the graph in Fig.
3(a).

4.3 Boundary recall

We adopt the standard boundary recall measure which computes what fraction
of ground truth edges fall within one pixel of a least one superpixel boundary. We
use the internal boundaries of each superpixel. The boundary recall of each of
the considered methods is plotted against the number of superpixels in Fig. 3(b).

4.4 Computational and memory efficiency

For images of size 480× 320, SLIC is more than 10 times faster than TP09 and
more than 500 times faster than NC05. What is encouraging is that it is even

10 Achanta et al.

(a) (b)

Fig. 4. (a) Plot of the time taken for 10 iterations of k-means (GKM) versus our
algorithm for different number of superpixels on input images of size 481×321. Our al-
gorithm takes less than 0.5 second for any superpixel sizes. (b) Plot of the segmentation
time taken (in seconds) versus image size in pixels.

faster than GS04 for images greater than half a million pixels (see Fig. 4(b)).
This is because our algorithm always operates at O(N) complexity while GS04
has O(NlogN) complexity. This is of interest because even low end consumer
digital cameras produce images exceeding 3 million pixels. Also, GS04 requires
5×N memory to store edge weights and thresholds, as opposed to SLIC, which
needs 1×N memory (to store the distance of each pixel from its nearest cluster
center).

4.5 Discussion

A good superpixel segmentation algorithm should have low under-segmentation
error as well as high boundary recall. To be useful as a pre-processing algorithm,
such a segmentation should result in equally sized compact superpixels with
control on its number. For the same reason, the algorithm should preferably also
have low computational cost and require few input parameters. Fig. 3(b) shows
that the highest boundary recall is achieved by GS04. This is because it produces
several segments close to object boundaries as seen in Fig. 2(a). However, GS04
also exhibits higher under-segmentation error than our algorithm, as can be seen
in Fig. 3(a). Our algorithm actually shows the lowest under-segmentation error
in Fig. 3(a) as well as high boundary recall in Fig. 3(b) next only to GS04. Note
that GS04, however, is not meant to output a desired number of superpixels of a
given size unless a parameter search is performed, which requires several runs of
the algorithm. Even then the superpixel sizes are unequal, making the algorithm
far less suitable for superpixel-based applications [5–7]. In addition, as seen in
Fig. 4(b) our algorithm is faster than the compared state-of-the-art algorithms
for any image size (including GS04 for a single run) and it outputs the desired
number of equally-sized compact superpixels.

EPFL Technical Report 149300 11

5 Superpixel Applications

Operating on superpixels instead of pixels can speed up existing pixel-based
algorithms, and even improve results in some cases [7]. For instance, certain
graph-based algorithms can see a 2 to 3-fold speed increase using superpixels [3].
Of course, the superpixel generation itself should be fast for this to be practical.

Below, we consider two typical vision tasks that benefit from using super-
pixels: object class recognition and medical image segmentation. In each case,
superpixels have been shown to increase the performance of an existing algorithm
while reducing computational cost. We show that SLIC superpixels outperform
state-of-the-art superpixel methods on these tasks, but with a lower computa-
tional cost.

5.1 Object class recognition

Our first task is to perform object class recognition for 21 object classes from
the STAIR vision library5 based on the work of Gould et al [22]. Color, texture,
geometry, and location features are computed for each superpixel region. Then
boosted classifiers are learned using these features for each region class. Finally,
a Conditional Random Field (CRF) model is learned using the output of the
boosted classifiers as features. In the original work [22], NC05 is used to segment
each image (of size 320 × 240 pixels) into about 200 superpixels. By applying
SLIC superpixels instead of NC05, the classification accuracy increases, as shown
in Table 2, while the computational cost is reduced by a factor of 400.

Table 2. Object class recognition for various superpixel methods.

GS04 NC05 TP09 QS09 SLIC

Pixelwise accuracy 74.6% 75.9% 75.1% 62.0% 76.9%

5.2 Medical image segmentation

Our second task is to assist recent efforts towards a ’bottom up’ understanding
of brain function by segmenting mitochondria from neural electron microscopy
(EM) images. Neuroscientists attempting to reconstruct neural structures at
an extremely fine level of detail must typically perform a painstaking manual
analysis on such data. Modern segmentation algorithms such as [7] can efficiently
automate this process by taking advantage of superpixels. Below, we compare
mitochondrial segmentations using an approach based on [7] for various types of
superpixels including GS04, TP09, QS09, and SLIC. NC05 is omitted because
its computational cost is impractical for such high resolution images.

The first step of the approach is to perform a superpixel over-segmentation
of the image, and define a graph G = (V, E) corresponding to the superpixels.
QS09 is used to generate superpixels in [7]. Each node in V corresponds to a

5 http://ai.stanford.edu/~sgould/svl

12 Achanta et al.

superpixel xi. Edges E connect neighboring superpixels. Then, SIFT descriptors
are extracted at center of each superpixel at various scales and a fixed orientation.

The segmentation is performed using graph-cuts, which partitions the graph
into disjoint partitions by minimizing an objective function of the form

E(c|x,w) =
∑
i

ψ(ci|xi)︸ ︷︷ ︸
unary term

+ w
∑

(i,j)∈E

φ(ci, cj |xi, xj)︸ ︷︷ ︸
pairwise term

, (4)

where ci ∈ {mitochondria, background} and the weight w controls the relative
importance of the so-called unary and pairwise terms. The unary term ψ assigns
to each superpixel its potential to be mitochondria or background based on a
probability P (ci|f(xi)) computed from the output of a support vector machine
(SVM) classifier trained using the SIFT descriptors. The pairwise term φ assigns
to each pair of superpixels a potential to have similar or differing labels based
on the difference of intensities between the two superpixels,

ψ(ci|xi) = 1
1+P (ci|f(xi))

, φ(ci, cj |xi, xj) =

{
exp

(
− ||I(xi)−I(xj)||2

2σ2

)
if ci 6= cj

0 otherwise.

Eq. 4 is minimized using a mincut-maxflow algorithm to produce a final segmen-
tation, assigning a label to each superpixel.

Segmentations obtained for each superpixel method were compared over
a set of 23 annotated EM images of 2048×1536 resolution, containing 1023
mitochondria. We used k = 5 k-folds cross validation for testing and train-
ing. Results are given in Table 3, and example images appear in Fig. 5. The
VOC score = TP

TP+FP+FN is used to evaluate segmentation performance, as it is
more informative than pixelwise accuracy for sparse objects such as mitochon-
dria 6.

Table 3. Mitochondria segmentation results for various superpixel methods.

GS04 TP09 QS09 SLIC

VOC score 65.3% 58.9% 66.6% 67.3%

The advantages of the SLIC superpixel are demonstrated in the examples
appearing in column 5 of Fig. 5. Features extracted over the regular, compact
SLIC superpixels tend to be more discriminative, helping the graph-cut to pro-
duce better segmentations. The good adherence to image boundaries exhibited
by SLIC superpixels result in smoother and more accurate segmentations. We
can also see the drawbacks of other superpixel methods by considering the ex-
amples in columns 2 through 4 of Fig. 5. The irregularity of GS04 superpixels
in column 2 makes the extracted features less discriminative, often causing the
segmentation to fail. TP09, in column 3, performs the worst of the four methods.
Because the intensity gradients in the EM images are not particularly strong,

6 TP=true positives, FP=false positives, FN=false negatives

EPFL Technical Report 149300 13

EM Image GS04 TP09 QS09 SLIC

Fig. 5. Segmentation results on EM imagery. Examples segmentations for GS04, TP09,
QS09, and SLIC are cropped from 2048×1536 micrographs. Regular, compact superpix-
els generated by SLIC exhibit good boundary adherence and produce the best segmen-
tation results. The large superpixels produced by TS09 are a result of the algorithm
merging small superpixels over relatively weak intensity gradients in the EM image,
despite parameters being set for smaller superpixels. See text for further discussion.

TP09 tends to merge smaller superpixels, causing issues in the segmentation.
In column 4, the superpixels of QS09 appear most similar to SLIC, but still re-
sult in numerous segmentation failures where they do not respect mitochondrial
boundaries as well as SLIC.

6 Conclusions

Superpixel segmentation algorithms can be very useful as a preprocessing step for
computer vision applications like object class recognition and medical image seg-
mentation. To be useful, such algorithms should output high quality superpixels

14 Achanta et al.

that are compact and roughly equally sized, for a low computational overhead.
There are few superpixel algorithms that can offer this and scale up for practical
applications that deal with images greater than 0.5 million pixels. We present
a novel O(N) complexity superpixel segmentation algorithm that is simple to
implement and outputs better quality superpixels for a very low computational
and memory cost. It needs only the number of desired superpixels as the input
parameter. It scales up linearly in computational cost and memory usage. We
prove the efficacy of our superpixels in object category recognition and medical
image segmentation, where compared to other state-of-the art algorithms, we
obtain better quality and higher computational efficiency.

7 Acknowledgements

This work is supported by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-MICS), a center sup-
ported by the Swiss National Science Foundation under grant number 5005-
67322.

References

1. Ren, X., Malik, J.: Learning a classification model for segmentation. ICCV (2003)
10–17

2. Hoiem, D., Efros, A., Hebert, M.: Automatic photo pop-up. SIGGRAPH (2005)

3. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. SIGGRAPH (2004)
303–308

4. He, X., Zemel, R., Ray, D.: Learning and incorporating top-down cues in image
segmentation. ECCV (2006) 338–351

5. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Multiscale symmetric part detec-
tion and grouping. ICCV (2009)

6. Mori, G.: Guiding model search using segmentation. ICCV (2005) 1417–1423

7. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization
with superpixel neighborhoods. ICCV (2009)

8. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation.
IJCV (2004) 167–181

9. Shi, J., Malik., J.: Normalized cuts and image segmentation. PAMI (2000) 888–905

10. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. ECCV
(2008)

11. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. ICCV (2001) 416–423

12. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.:
Turbopixels: Fast superpixels using geometric flows. PAMI (2009)

13. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decom-
position. CVPR (2005) 1124–1131

14. Moore, A., Prince, S., Warrell, J., Mohammed, U., Jones, G.: Superpixel Lattices.
CVPR (2008)

EPFL Technical Report 149300 15

15. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space
analysis. PAMI (2002) 603–619

16. Ayvaci, A., Soatto, S.: Motion segmentation with occlusions on the superpixel
graph. Proc. of the Workshop on Dynamical Vision, Kyoto, Japan. (2009)

17. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based
on immersion simulations. PAMI (1991) 583–598

18. Verevka, O., Buchanan, J.: Local k-means algorithm for color image quantization.
Proceedings of Graphics Interface (1995) 128–135

19. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1+e)-approximation algo-
rithm for k-means clustering in any dimensions. IEEE Symposium on Foundations
of Computer Science 0 (2004) 454–462

20. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Symposium
on Computational geometry. (2002) 10–18

21. Elkan, C.: Using the triangle inequality to accelerate k-means. International Con-
ference on Machine Learning. (2003)

22. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation
with relative location prior. IJCV (2008) 300–316

