

Evaluation of morphological hierarchies for supervised segmentation

B. Perret, J. Cousty, J.C. Rivera Ura, and S.J.F. Guimarães

Introduction

Motivation

- Several hierarchies of partitions
 - Quasi-flat zones (alpha-tree), watersheds, constrained connectivity...
- How do they compare to each other:
 - Noticeable differences in applications?
 - Best hierarchy(ies)?
- How to compare/evaluate hierarchies?
 - No hierarchical ground truth
 - Comparison to segmentation Arbelaez et al. PAMI 11

Introduction

Proposed evaluation framework

One object image datasets

- Grabcut and Weizmann datasets: 150 color images
- One clearly identifiable object in each image

Supervised segmentation

- Background and foreground markers
- Generated automatically from the ground truths
- Simple strategy to extract a segmentation from a hierarchy and two markers

Framework

Hierarchies

- Quasi-flat zones Nagao et al. 79, Meyer and Maragos 99
 - Minimum spanning tree, Single linkage clustering, Alpha-tree
 - Maximal dissimilarity between two adjacent pixels
- Constraint connectivity Soille PAMI 08
 - Chaining issue in the quasi-flat zones
 - Maximal dissimilarity between any two pixels of a component
- Watershed Beucher 94, Najman and Schmitt 96
 - Watersheds of an image flooded with an increasing sequence of closings
 - Closing attributes: altitude, dynamics, area, volume
- Observation scale Guimarães et al. 12
 - Based on Felzenswalb et al. segmentation algorithm
 - Combination between scale and contrast information.

(b) Quasi-flat zones

(c) Constrained connectivity

(d) Watershed Altitude

(e) Watershed Area

(f) Watershed Volume

(g) Watershed Dynamics

(h) Observation scale

Framework

Segmentation extraction

- Two markers
 - B: Background
 - F: Foreground
- Object :
 - the largest regions that intersect F but do not touch B

Top-down propagation

Framework

Automatic marker generation

- Automatically extracted from the ground truths
- 5 markers:
 - High/Medium/Low Quality (HQ/MQ/LQ): small/medium/large erosion
 - Skeleton (Sk)
 - Frame (Fr)
- 6 combinations

Results

Overall comparison

- Quality measure
 - F-measure
- 900 measures/hierarchy
- Parameters
 - Dissimilarity measure: Lab gradient
 - Adjacency: 4 neighbourhood

Box and whisker plot

Constraint connectivity
Observation scale
Quasi-flat zones
Watershed altitude
Watershed Area
Watershed Dynamics
Watershed Volume

2 groups

- CC, OS, QFZ, WS Altitude, WS Dynamics
- WS Area and WS Volume on top

28/05/2015 7

Results

Per marker combination

• First row

- Roughly symmetric markers
- WS Area seems a bit more robust than WS Wol

Second row

- Asymmetric markers
- WS Area and Vol and much less robust
- All the other methods are quite insensitive to the variation of the background

Results

Influence of parameters

4 or 8 neighborhood?

Slight systematic improvement with 8 neighborhood

• Dissimilarity measures: gray, RGB, Lab?

Confirmation of expected results: Lab > RGB > Gray

Conclusion

And the winners are

- Watershed by area and volume
- Watershed by dynamics s.t. strongly asymmetric markers

General tips

- Prefer 8 neighborhood (k-nearest neighbors ?)
- Noticeable systematic gain with Lab over RGB

Generalization?

- Always hard to tell
- We measure
 - > If an object is present in a hierarchy
 - > If it can be retrieved easily

Conclusion

- Future plans
 - Evaluate more hierarchical representations
 - Incorporate other evaluation frameworks and quality measures
- Marker datasets
 - http://perso.esiee.fr/~perretb/markerdb/
- Online demonstration of the interactive segmentation
 - http://perso.esiee.fr/~perretb/ISeg/

