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Hierarchical watersheds

Sequences of nested partitions such that each partition is a
watershed of a filtering of the initial relief/map according to regional
attributes, e.g., on geometric, photometric, or learned, information

Good performance on natural images [P18]

Hierarchies of segmentation can be equivalently represented by
saliency maps

Original image Hierarchical watershed H Saliency map of H

[P18] B. Perret, J Cousty, S. Guimaraes, D. Maia. Evaluation of hierarchical watersheds.

IEEE TIP. 2018.
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Combination of hierarchies (of watersheds)

Original Area attribute Dynamics attribute

Combination

One level of each hierarchy with 75 regions

[C17] J. Cousty, L. Najman, Y. Kenmochi, S. Guimarães. Hierarchical segmentations with

graphs: quasi-flat zones, minimum spanning trees, and saliency maps. JMIV. 2017

[M17] D. S. Maia, A. de A. Araujo, J. Cousty, L. Najman, B. Perret, H. Talbot.

Evaluation of combinations of watershed hierarchies. ISMM. 2017
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Combination of hierarchies (of watersheds)

Original Area attribute Dynamics attribute Combination

One level of each hierarchy with 75 regions

Does the combinations of hierarchical watersheds always result in a
hierarchical watershed?
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Based on saliency maps combination [C17, M17]
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Hierarchical segmentation
Hierarchical segmentation technique proposed in [A11]:

Contour-detection with multiscale cue combination (mPb)

Hierarchical segmentation based on the Oriented Watershed
Transform (OWT)

I mPb H

[A11] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour detection and hierarchical

image segmentation. IEEE transactions on pattern analysis and machine intelligence. 2011
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Hierarchical segmentation
Hierarchical segmentation technique proposed in [A11]:

Contour-detection with multiscale cue combination (mPb)

Hierarchical segmentation based on the Oriented Watershed
Transform (OWT)

I mPb H

Is H a hierarchical watershed of mPb?
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Recognition of hierarchical watersheds

Problem

Given a hierarchy H and a weighted graph (G ,w):

Recognize if H is a hierarchical watershed of (G ,w)

Naive approach: factorial time complexity

Contributions

Characterization of hierarchical watersheds

Quasi-linear algorithm to recognize the hierarchical watersheds
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Outlines

1 Hierarchical watersheds

2 Characterization of hierarchical watersheds

3 Algorithm to recognize hierarchical watersheds

4 Conclusion and perspectives

6/19



Graph settings

(G ,w) is an edge-weighted graph

which can be a pixel-adjacency graph
edge weight can represent a gradient of intensity

For simplification, we consider that the edges of G has pairwise
distinct weights for w

, which implies that (G ,w) has a single MST

M = (M0, . . . ,M`) is any sequence of the regional minima of w
ranked by importance according to some given attribute

M1 M2 M3 M4

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

8 9 10
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Hierarchical watersheds

M1 M2 M3 M4

a

b

c

d

e

f

g

h

1 2 3 4

55 77 66

P0{a, b} {c, d} {e, f } {g , h}

P1

P2

P3

Minima of w

M = (M1,M2,M3,M4)
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A hierarchical watershed of (G ,w) forM is a hierarchy of partitions
(P0, . . . ,P`) such that, for any i ∈ {0, . . . , `}:

Pi is the connected component partition of a minimum spanning forest
rooted in the minima ranked after i
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Hierarchical watersheds

Definition

We say that H is a hierarchical watershed of (G ,w) if there is a sequence
M of minima such that H is the hierarchical watershed of (G ,w) for M

Remark: there are hierarchies which are not hierarchical watersheds of
(G ,w), e.g., (P′

0,P
′
1,P

′
2,P

′
3) is not a hierarchical watershed of (G ,w)
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Characterization of hierarchical watersheds

Key notions to present the characterization of hierarchical watersheds
(Theorem 3):

Binary partition hierarchy by altitude ordering (single linkage
clustering with connectivity constraint) [C13]

One-side increasing map

[C13] J. Cousty, L. Najman, B. Perret. Constructive links between some morphological

hierarchies on edge-weighted graphs. ISMM 2013.
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Binary partition hierarchy
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Any non-leaf region R of B can be mapped to an edge uR of G which is then called the
building edge of R (shown in blue)

Minima (in grey) and watershed-cut edges (in red)
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1. binary partition hierarchy
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3. Theorem 3
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One-side increasing map
(intuitive idea)

In order for a hierarchy H to be a hierarchical watershed of a weighted
graph (G ,w), we need:

The finest level of H to be the watershed segmentation of (G ,w);

Exactly one pair of regions to be merged at each level of the
hierarchy; and

Any region to be first merged to their “most similar” neighbors
before being merged to their “least similar” neighbors.
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One-side increasing map

Definition (one-side increasing map)

Given a weighted graph (G ,w), let B be the binary partition hierarchy
of w . We say that a map f from E into R+ is a one-side increasing map
for B if:

1 range(f ) = {0, . . . , n − 1};
2 for any u in E , f (u) > 0 if and only if u is a watershed-cut edge

of w ; and

3 for any u in E , there exists a child R of Ru such that f (u) ≥ ∨{f (v)
such that Rv is included in R}, where ∨{} = 0.
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One-side increasing map
(example)
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Characterization of hierarchical watersheds

Theorem (characterization of hierarchical watersheds)

Let (G ,w) be a weighted graph and let B be the binary partition
hierarchy of w. Let H be a hierarchy and let Φ(H) be the saliency
map of H.
The hierarchy H is a hierarchical watershed of (G ,w) if and only
if Φ(H) is a one-side increasing map for B.
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Then, f is the saliency of a hierarchical watershed of (G ,w), but s is not.
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Algorithm to recognize hierarchical watersheds
We determine if a map f is the saliency map of a hierarchical watershed
of (G ,w) through the following steps:

1 Compute the binary partition hierarchy B of w

2 Compute the set WS(w) of watershed-cut edges of w

3 Compute the number n of minima of w

4 For each edge u of G , compute the value Max [u] which corresponds
to ∨{f (v) | Ru ⊆ Ru}

5 For each edge u of G :

1 If f (u) not in {0, . . . , n − 1}, then return false
2 If u is not in WS(w) and f (u) 6= 0, then return false
3 If u is in WS(w) and if f (u) is not unique, then return false
4 If u is in WS(w) and if Max [u] < Max [v1] and Max [u] < Max [v2],

then return false

6 return true
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Algorithm to recognize hierarchical watersheds

Complexity analysis:

As shown in [N13], the binary partition hierarchy B of (G ,w) can be
computed in quasi-linear time with respect to the number of edges
of G

Then, given the hierarchy B, the minima and the watershed-cut
edges of (G ,w) can be obtained in linear time

The array Max can be also obtained in linear time if computed
from the leaves to the root of B
Finally, the three conditions for f to the a one-side increasing map
of B can be verified in linear time as well

Therefore, the proposed algorithm has a quasi-linear time
complexity

[N13] L. Najman, J. Cousty, B. Perret. Playing with Kruskal: algorithms for

morphological trees in edge-weighted graphs.. ISMM 2013.
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Conclusion and perspectives

Summary

Characterization of hierarchical watersheds through binary partition
hierarchies

Quasi-linear time algorithm to recognize hierarchical watersheds

Perspectives

Answer the question: does the combination of hierarchical
watersheds always result in a hierarchical watershed?

Extension to arbitrary weighted graphs

Waterhseding operator that converts any hierarchy into a
hierarchical watershed (ISMM2019)
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