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Hierarchical watersheds

m Sequences of nested partitions such that each partition is a
watershed of a filtering of the initial relief/map according to regional
attributes, e.g., on geometric, photometric, or learned, information

m Good performance on natural images [P18]
m Hierarchies of segmentation can be equivalently represented by
saliency maps

Original image Hierarchical watershed H Saliency map of H
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[P18] B. Perret, J Cousty, S. Guimaraes, D. Maia. Evaluation of hierarchical watersheds.
IEEE TIP. 2018.
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Combination of hierarchies (of watersheds)

m Based on saliency maps combination [C17, M17]
m with, e.g., infimum, supremum, or linear combination

[C17] J. Cousty, L. Najman, Y. Kenmochi, S. Guimar3es. Hierarchical segmentations with
graphs: quasi-flat zones, minimum spanning trees, and saliency maps. JMIV. 2017

[M17] D. S. Maia, A. de A. Araujo, J. Cousty, L. Najman, B. Perret, H. Talbot.
Evaluation of combinations of watershed hierarchies. ISMM. 2017
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Combination of hierarchies (of watersheds)

m Based on saliency maps combination [C17, M17]
m with, e.g., mflmum supremum or linear combination
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Combination of hierarchies (of watersheds)

m Based on saliency maps combination [C17, M17]

|
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Combination of hierarchies (of watersheds)

m Based on saliency maps combination [C17, M17]

m with, e.g., mflmum supremum or linear combination

Original Area attribute Dynamics attribute Combination

One level of each hierarchy with 75 regions

Does the combinations of hierarchical watersheds always result in a
hierarchical watershed?
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Hierarchical segmentation
Hierarchical segmentation technique proposed in [Al1]:

[A11] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour detection and hierarchical
image segmentation. |IEEE transactions on pattern analysis and machine intelligence. 2011
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Hierarchical segmentation
Hierarchical segmentation technique proposed in [Al1]:

m Contour-detection with multiscale cue combination (mPb)

I mPb
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Hierarchical segmentation
Hierarchical segmentation technique proposed in [Al1]:

m Contour-detection with multiscale cue combination (mPb)

m Hierarchical segmentation based on the Oriented Watershed
Transform (OWT)

I mPb H
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Hierarchical segmentation
Hierarchical segmentation technique proposed in [Al1]:

m Contour-detection with multiscale cue combination (mPb)

m Hierarchical segmentation based on the Oriented Watershed
Transform (OWT)

| mPb H
Is H a hierarchical watershed of mPb?
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Recognition of hierarchical watersheds

Given a hierarchy H and a weighted graph (G, w):
m Recognize if H is a hierarchical watershed of (G, w)

m Naive approach: factorial time complexity
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Recognition of hierarchical watersheds

Given a hierarchy H and a weighted graph (G, w):
m Recognize if H is a hierarchical watershed of (G, w)

m Naive approach: factorial time complexity

Contributions

m Characterization of hierarchical watersheds

m Quasi-linear algorithm to recognize the hierarchical watersheds
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Outlines

Hierarchical watersheds
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Graph settings

m (G, w) is an edge-weighted graph
m which can be a pixel-adjacency graph
m edge weight can represent a gradient of intensity
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Graph settings

m (G, w) is an edge-weighted graph
m which can be a pixel-adjacency graph
m edge weight can represent a gradient of intensity

m For simplification, we consider that the edges of G has pairwise
distinct weights for w, which implies that (G, w) has a single MST
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Graph settings

m (G, w) is an edge-weighted graph
m which can be a pixel-adjacency graph
m edge weight can represent a gradient of intensity
m For simplification, we consider that the edges of G has pairwise
distinct weights for w, which implies that (G, w) has a single MST

m M= (My,..., M) is any sequence of the regional minima of w
ranked by importance according to some given attribute
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Hierarchical watersheds

m A hierarchical watershed of (G, w) for M is a hierarchy of partitions
(Po,...,Py) such that, for any i € {0,...,¢}:
m P; is the connected component partition of a minimum spanning forest
rooted in the minima ranked after i
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Hierarchical watersheds

m A hierarchical watershed of (G, w) for M is a hierarchy of partitions
(Po,...,Py) such that, for any i € {0,...,¢}:
m P; is the connected component partition of a minimum spanning forest
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Hierarchical watersheds
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Hierarchical watersheds
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Hierarchical watersheds

m A hierarchical watershed of (G, w) for M is a hierarchy of partitions
(Po,...,Py) such that, for any i € {0,...,¢}:
m P; is the connected component partition of a minimum spanning forest
rooted in the minima ranked after i
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Hierarchical watersheds

m A hierarchical watershed of (G, w) for M is a hierarchy of partitions
(Po,...,Py) such that, for any i € {0,...,¢}:
m P; is the connected component partition of a minimum spanning forest
rooted in the minima ranked after i
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(Po, P1, P2, P3):
hierarchical watershed of (G, w) by M = (My, Mz, M3, My)
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Hierarchical watersheds

We say that H is a hierarchical watershed of (G, w) if there is a sequence
M of minima such that H is the hierarchical watershed of (G, w) for M
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Hierarchical watersheds

Definition
We say that H is a hierarchical watershed of (G, w) if there is a sequence
M of minima such that H is the hierarchical watershed of (G, w) for M

Remark: there are hierarchies which are not hierarchical watersheds of
(G,w), eg., (Pg, P1,P%,P%) is not a hierarchical watershed of (G, w)
P;

P>
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Outlines

Characterization of hierarchical watersheds
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Characterization of hierarchical watersheds

Key notions to present the characterization of hierarchical watersheds
(Theorem 3):

m Binary partition hierarchy by altitude ordering (single linkage
clustering with connectivity constraint) [C13]

m One-side increasing map

[C13] J. Cousty, L. Najman, B. Perret. Constructive links between some morphological
hierarchies on edge-weighted graphs. ISMM 2013.
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Binary partition hierarchy Characterization of HW:

=> 1. binary partition hierarchy

2. one-side increasing map
3. Theorem 3
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Binary partition hierarchy Characterization of HW:

=> 1. binary partition hierarchy
2. one-side increasing map
3. Theorem 3
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Binary partition hierarchy Characterization of HW:

=> 1. binary partition hierarchy
2. one-side increasing map
3. Theorem 3
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Any non-leaf region R of B can be mapped to an edge ug of G which is then called the
building edge of R (shown in blue)
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=> 1. binary partition hierarchy
2. one-side increasing map
3. Theorem 3
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=> 1. binary partition hierarchy
2. one-side increasing map
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Binary partition hierarchy Characterization of HW:

=> 1. binary partition hierarchy
2. one-side increasing map
3. Theorem 3
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Binary partition hierarchy Characterization of HW:

=> 1. binary partition hierarchy
2. one-side increasing map
3. Theorem 3
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Binary partition hierarchy Characterization of HW:

=> 1. binary partition hierarchy
2. one-side increasing map
3. Theorem 3
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Any non-leaf region R of I3 can be mapped to an edge ug of G which is then called the
building edge of R (shown in blue)
Minima (in grey) and watershed-cut edges (in red)
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One—SIde Increasl ng ma p Characterization of HW:
R L. B 1. binar¥ palrtition Ihierarchy
( | ntu |t|Ve |dea ) —> 2. one-side increasing map

3. Theorem 3

In order for a hierarchy  to be a hierarchical watershed of a weighted
graph (G, w), we need:
m The finest level of H to be the watershed segmentation of (G, w);

m Exactly one pair of regions to be merged at each level of the
hierarchy; and

m Any region to be first merged to their “most similar” neighbors
before being merged to their “least similar”" neighbors.
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One-side increasin g map Characterization of HW:
1. binary partition hierarchy
—> 2. one-side increasing map
3. Theorem 3

Definition (one-side increasing map)

Given a weighted graph (G, w), let B be the binary partition hierarchy
of w. We say that a map f from E into R is a one-side increasing map

for B if:
range(f) ={0,...,n—1};
for any v in E, f(u) > 0 if and only if u is a watershed-cut edge

of w; and
for any u in E, there exists a child R of R, such that f(u) > V{f(v)
such that R, is included in R}, where V{} = 0.
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map

3. Theorem 3
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Minima (in grey) and watershed-cut edges (in red)
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map
(exa m ple) 3. Theorem 3
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One-side increasing map
(example)

Characterization of HW:

1. binary partition hierarchy
—> 2. one-side increasing map

3. Theorem 3

l/ﬁiﬁ“

®

2

i

@@ @@ @

Band f

DGCI 2019




O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map
(exa m ple) 3. Theorem 3
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range(f) ={0,...,3} v
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map
(exa m ple) 3. Theorem 3
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f(u) > 0 if and only if u is a watershed-cut edge of w?
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map
(exa m ple) 3. Theorem 3
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map
(exa m ple) 3. Theorem 3
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

—> 2. one-side increasing map
(exa m ple) 3. Theorem 3
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Therefore, f is a one-side increasing map for BB
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

(counter-example) = 0 e e e
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One-side increasing map
(counter-example)

Characterization of HW:

1. binary partition hierarchy
—> 2. one-side increasing map

3. Theorem 3
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One-side increasing map
(counter-example)

Characterization of HW:

1. binary partition hierarchy
—> 2. one-side increasing map

3. Theorem 3
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

(counter-example) = 2 et oy
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o

s(u) > 0 if and only if u is a watershed-cut edge of w?
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

(cou nter—example) 37 2 eneide inaszsing|map
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for any u in E, there exists a child R of R, such that s(u) > V{s(v) such
that R, is included in R}?
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

(counter-example) => 2 oneside increasing map

1<2and1<3
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s B and s

for any u in E, there exists a child R of R, such that s(u) > V{s(v) such
that R, is included in R}X
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O ne—SIde | ncreas' ng ma p Characterization of HW:

1. binary partition hierarchy

(counter-example) = 2 e RNy

1<2and1<3
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s B and s

Therefore, s is not a one-side increasing map for B
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Characterization of hierarchical watersheds

Theorem (characterization of hierarchical watersheds)

m Let (G, w) be a weighted graph and let B be the binary partition
hierarchy of w. Let H be a hierarchy and let ®(H) be the saliency
map of H.

m The hierarchy H is a hierarchical watershed of (G, w) if and only
if ®(H) is a one-side increasing map for B.
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Characterization of hierarchical watersheds

Theorem (characterization of hierarchical watersheds)

m Let (G, w) be a weighted graph and let B be the binary partition
hierarchy of w. Let H be a hierarchy and let ®(H) be the saliency
map of H.

m The hierarchy H is a hierarchical watershed of (G, w) if and only
if ®(H) is a one-side increasing map for B.

O O O O O A A
(G,w) f s

Then, f is the saliency of a hierarchical watershed of (G, w), but s is not.
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Outlines

Algorithm to recognize hierarchical watersheds
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Algorithm to recognize hierarchical watersheds

We determine if a map f is the saliency map of a hierarchical watershed
of (G, w) through the following steps:

Compute the binary partition hierarchy B of w

Compute the set WS(w) of watershed-cut edges of w

Compute the number n of minima of w

[ For each edge u of G, compute the value Max[u] which corresponds
to V{f(v) | Ru C R,}

For each edge u of G:

If f(u) not in {0,...,n— 1}, then return false

If uis not in WS(w) and f(u) # 0, then return false

If uisin WS(w) and if f(u) is not unique, then return false

If uisin WS(w) and if Max[u] < Max[v1] and Max[u] < Max[vz],
then return false

@ return true
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Algorithm to recognize hierarchical watersheds

Complexity analysis:

m As shown in [N13], the binary partition hierarchy B of (G, w) can be
computed in quasi-linear time with respect to the number of edges
of G

m Then, given the hierarchy B, the minima and the watershed-cut
edges of (G, w) can be obtained in linear time

m The array Max can be also obtained in linear time if computed
from the leaves to the root of B

m Finally, the three conditions for f to the a one-side increasing map
of BB can be verified in linear time as well

m Therefore, the proposed algorithm has a quasi-linear time
complexity

[N13] L. Najman, J. Cousty, B. Perret. Playing with Kruskal: algorithms for
morphological trees in edge-weighted graphs.. ISMM 2013.
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Outlines

Conclusion and perspectives
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Conclusion and perspectives

m Characterization of hierarchical watersheds through binary partition
hierarchies

m Quasi-linear time algorithm to recognize hierarchical watersheds

m Answer the question: does the combination of hierarchical
watersheds always result in a hierarchical watershed?

m Extension to arbitrary weighted graphs

m Waterhseding operator that converts any hierarchy into a
hierarchical watershed (ISMM2019)
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