

Evaluation of combinations of hierarchies

Deise SANTANA MAIA

Arnaldo de ALBUQUERQUE ARAUJO, Jean COUSTY, Laurent NAJMAN, Benjamin PERRET, Hugues TALBOT

International Symposium of Mathematical Morphology (ISMM), Fontainebleau, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HIERARCHY OF SEGMENTATIONS

<ロ > < 部 > < 書 > < 書 > < 書 > < き > の < (~ 2/32

HIERARCHY OF SEGMENTATIONS

SALIENCY MAP: AN EQUIVALENT REPRESENTATION OF HIERARCHY

 $QFZ = \Phi^{-1}$

4 ロ ト 4 伊 ト 4 王 ト 4 王 ト 三 つへで 4/32

MOTIVATION TO COMBINE HIERARCHIES

Original image, saliency maps of hierarchies and segmentations containing 50 regions extracted from each hierarchy. The hierarchy on the right is a combination of the hierarchies on the left and middle column.

かく(~ 5/32

MAIN CONTRIBUTIONS

• Definition of five combinations of hierarchies

- Practical evaluation of these combinations:
 - on Berkeley dataset (500 images)
 - versus manual segmentations

• In half of the cases, the combined hierarchy scores better than any of its individual hierarchies

 Best result: combination achieved a score of 0.569 against 0.513 and 0.527 for individual hierarchies

OUTLINES

- Method for combining hierarchies
- Types of combinations
- ► Experiments
- Conclusion and perspectives

METHOD FOR COMBINING HIERARCHIES

► How to combine hierarchies?

TYPES OF COMBINATIONS

- ► Infimum (人)
- ► Supremum (Y)
- Linear combination (\boxplus_{Θ})
- Average (A)
- Concatenation (\uplus_{Θ})

CONCATENATION

Concatenation (intuitive illustration)

Combination of two hierarchical segmentations \mathcal{H}_1 and \mathcal{H}_2 at level λ_2 , resulting in \mathcal{H}_3 .

EXPERIMENTS

- Experimental setup
- Visual inspection
- Assessment methodology
- ► Evaluation
- Comparison with other techniques

EXPERIMENTAL SETUP

- ▶ Watershed-cut hierarchies (CN, 2011) from the attributes
 - ► Area
 - Dynamics
 - Volume
 - Topological Height
 - Number of Descendants
 - Diagonal of Bounding Box
 - Number of Minima

[CN, 2011] J. Cousty, L. Najman. Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. ISMM. 2011

EXPERIMENTAL SETUP

Image dataset

► Berkeley Segmentation Dataset and Benchmark 500 (BSDS500) [AMFM, 2011]

Methods for computing image gradient

- Euclidean distance on Lab space
- ► Structured Edge detector (SE) [DZ, 2013]

Original color image from BSDS500 and its gradient using SE

[AMFM, 2011] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. IEEE TPAMI. 2011. [DZ, 2013] P. Dollar and C. Zitnick. Structured forests for fast edge detection. In: Proceedings of the IEEE ICCV. 2013.

VISUAL INSPECTION OF SALIENCY MAPS

VISUAL INSPECTION OF SEGMENTATIONS Infimum (λ)

< dp>< dp>< dp>< dp>< dp>< dp><</p>

VISUAL INSPECTION OF SEGMENTATIONS SUPREMUM ($\boldsymbol{\gamma}$)

212 regions

297 regions

218 regions

イロト イロト イヨト イヨト

VISUAL INSPECTION OF SEGMENTATIONS AVERAGE (A)

< E ト E の Q (や 17/32

VISUAL INSPECTION OF SEGMENTATIONS CONCATENATION (\uplus_{Θ})

Original

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 18 / 32

Assessment methodology of hierarchies of segmentations

- The assessment is made by comparing cuts of a hierarchy to user-marked segmentation ground-truth
- Cuts can be horizontal and non-horizontal and can contain different number of regions
- ► The selected cuts are optimal for a given ground-truth similarity measure

Assessment methodology of hierarchies of segmentations

Bidirectional Consistency Error (BCE)

[PCGM, 2017] B. Perret, J. Cousty, S.J.F. Guimaraes and D.S. Maia. Evaluation of hierarchies of watersheds for natural image analysis. Submited. https://hal.archivesouvertes. fr/hal-01430865/document

20/32

EVALUATION: PARAMETER-FREE COMBINATIONS AND CONCATENATION

- Combinations using *infimum*, *supremum* and *average*:
 - Average improved the results in 10/21 combinations, versus 11/21 and 10/21 for supremum and infimum
 - ► The highest score (0.568) obtained from combinations using average

- Combination using *concatenation*:
 - ► 50%(5/10) of combinations presented higher scores than the individual hierarchies

EVALUATION: SUPERVISED LINEAR COMBINATIONS

 Supervised search of parameters to combine pairs of hierarchies (training set of BSDS500)

• The results were improved in 52%(11/21) of combinations

- ► Highest score (0.569):
 - ► Area / Topological height: 51%/49%
 - ► Dynamics / Number of Descendants: 38%/62%
 - ► Topological height / Number of descendants: 42%/58%

EVALUATION: SUPERVISED LINEAR COMBINATIONS

COMPARISON WITH OTHER TECHNIQUES

- ► Multiscale combinatorial grouping MCG [PABMM, 2015]
- ► Ultrametric Contour Map UCM [AMFM, 2011]

[PABMM, 2017] J. Pont-Tuset, P. Arbelez, J.T. Barron, F. Marques and J. Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE PAMI. 2015.

[AMFM, 2011] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour detection and hierarchical image segmentation. IEEE PAMI. 2011.

COMPARISON WITH OTHER TECHNIQUES

- Multiscale combinatorial grouping MCG [PABMM, 2015]
- ► Ultrametric Contour Map UCM [AMFM, 2011]

[PABMM, 2017] J. Pont-Tuset, P. Arbelez, J.T. Barron, F. Marques and J. Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE PAMI. 2015.

[AMFM, 2011] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour detection and hierarchical image segmentation. IEEE PAMI. 2011.

CONCLUSION AND PERSPECTIVES

 Our results show the potential of combination of hierarchies through the evaluation of combinations of watershed-cut hierarchies

 Half of the combinations presents better results compared to the ones of the individual hierarchies

• Next, we want to learn how to combine hierarchies

COMBINATIONS THAT ARE NOT WATERSHED-CUT HIERARCHIES

Saliency maps of average and suppremum of H_1 and H_2 . They are not watershed-cut hierarchies of *G* because A and D can never be the first merging.

COMBINING N-WEIGHT FUNCTIONS

Infimum

$$\forall e \in E, \, \land (\Phi(\mathcal{H}_1), \dots, \Phi(\mathcal{H}_n))(e) = \min\{[\Phi(\mathcal{H}_1)](e), \dots, [\Phi(\mathcal{H}_n)](e)\}$$
(1)

Supremum

$$\forall e \in E, \, \Upsilon(\Phi(\mathcal{H}_1), \dots, \Phi(\mathcal{H}_n))(e) = max\{[\Phi(\mathcal{H}_1)](e), \dots, [\Phi(\mathcal{H}_n)](e)\}$$
(2)

Linear combination

$$\forall e \in E, \oplus_{\Theta}(\Phi(\mathcal{H}_1), \dots, \Phi(\mathcal{H}_n))(e) = \sum_{i \in \{1, \dots, n\}} \alpha_i [\Phi(\mathcal{H}_i)](e), \ \alpha_i \in \mathbb{R}$$
(3)

Average

$$\forall e \in E, A(\Phi(\mathcal{H}_1), \dots, \Phi(\mathcal{H}_n))(e) = \frac{1}{n} \sum_{i \in \{1, \dots, n\}} \Phi(\mathcal{H}_i)(e), \ \alpha_i \in \mathbb{R}$$
(4)

COMBINING N-WEIGHT FUNCTIONS

Concatenation

Given a sequence (w_1, \ldots, w_n) of n weight maps and a series $(\lambda_1, \ldots, \lambda_{n-1})$ of n-1 threshold values in \mathbb{R} such that $\lambda_1 < \lambda_2 < \cdots < \lambda_{n-1}$, we define the *concatenation* of (w_1, \ldots, w_n) parametrized by $(\lambda_1, \ldots, \lambda_{n-1})$, thanks to the combining n-weight function \uplus_{Θ} , by:

$$\forall e \in E, \uplus_{\Theta}(w_1, \dots, w_n)(e) = max\{T(w_1(e), 0, \lambda_1), \dots, T(w_n(e), \lambda_{n-1}, \infty)\}$$
(5)

where, given a, b, and $c \in \mathbb{R}$, we have T(a, b, c) equals to 0 if a is lower than b and equals to min(a, c) otherwise.

Consequently, given a sequence of hierarchies $(\mathcal{H}_1, \ldots, \mathcal{H}_n)$ and threshold values $\Theta = (\lambda_1, \ldots, \lambda_{n-1})$, the concatenation of $(\mathcal{H}_1, \ldots, \mathcal{H}_n)$ with parameter Θ is $\mathcal{H}_{\mathfrak{B}_{\Theta}}(\mathcal{H}_1, \ldots, \mathcal{H}_n)$.

EVALUATION OF PARAMETER-FREE COMBINATIONS (λ, Υ, A)

$\mathcal{H}_1\mathcal{H}_2$	Area	DBB	Dyn	Height	Desc	Min	Vol
Area	-	Ŷ	Α	A	Ŷ	Α	人
	0.513	0.515	0.566	0.567	0.515	0.529	0.529
DBB		-	Α	A	Ŷ	Α	Ŷ
		0.514	0.566	0.568	0.516	0.526	0.529
Dyn			-	人	A	Α	Ŷ
			0.510	0.522	0.567	0.563	0.551
Height				-	A	Α	Α
				0.527	0.568	0.563	0.554
Desc					-	Α	人
					0.514	0.530	0.529
Min						-	Ŷ
						0.531	0.540
Vol							-
							0.541

Combining n-weight functions and highest AUC-FOHC scores obtained from $c(\Phi(\mathcal{H}_1), \Phi(\mathcal{H}_2))$. For each pair of hierarchies, we have the global combination function which provided the highest AUC-FOHC score and the score obtained from this combination.

EVALUATION OF UNSUPERVISED CONCATENATION OF HIERARCHIES

	Area	DBB	Dyn	Height	Desc	Min	Vol
AUC-FOC	0.603	0.592	0.541	0.560	0.604	0.609	0.617
AUC-FHC	0.423	0.435	0.480	0.493	0.425	0.453	0.465
AUC-FOHC	0.513	0.514	0.510	0.527	0.514	0.531	0.541

AUC-FOC, AUC-FHC and AUC-FOHC scores of individual hierarchies computed over the test set of BSDS500.

\mathcal{H}_2	Dynamics					Height				
\mathcal{H}_1	Area	DBB	Desc	Min	Vol	Area	DBB	Desc	Min	Vol
AUC-FOC	0.579	0.561	0.586	0.589	0.591	0.579	0.574	0.580	0.582	0.585
AUC-FHC	0.472	0.462	0.462	0.483	0.498	0.472	0.475	0.473	0.485	0.500
AUC-FHCO	0.525	0.511	0.526	0.536	0.545	0.525	0.524	0.527	0.534	0.542

EVALUATION OF SUPERVISED LINEAR COMBINATIONS

$\mathcal{H}_1\mathcal{H}_2$	Area	DBB	Dyn	Height	Desc	Min	Vol
Area	-	$\alpha = 92$	$\alpha = 60$	$\alpha = 51$	$\alpha = 0$	$\alpha = 11$	$\alpha = 0$
	0.513	0.512	0.568	0.569	0.514	0.531	0.541
DBB		-	$\alpha = 43$	$\alpha = 35$	$\alpha = 19$	$\alpha = 7$	$\alpha = 2$
		0.514	0.566	0.566	0.512	0.531	0.541
Dyn			-	$\alpha = 3$	$\alpha = 38$	$\alpha = 51$	$\alpha = 24$
			0.510	0.527	0.569	0.564	0.558
Height				-	$\alpha = 42$	$\alpha = 51$	$\alpha = 36$
				0.527	0.569	0.560	0.560
Desc					-	$\alpha = 25$	$\alpha = 0$
					0.514	0.530	0.541
Min						-	$\alpha = 12$
						0.531	0.542
Vol							-
							0.541

Parameters α and AUC-FOHC scores of each linear combination $\boxplus_{(\alpha)}(\Phi(\mathcal{H}_1), \Phi(\mathcal{H}_2))$. The AUC-FOHC scores in bold are the highest scores achieved with linear combination of hierarchies.