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Hierarchical watersheds

Sequences of nested partitions such that each partition is a watershed
of a filtering of the initial relief/map according to regional attributes,
e.g., on geometric, photometric, or learned information

Hierarchies of segmentation can be equivalently represented by sali-
ency maps

Original image Hierarchical watershed H Saliency map of H
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Hierarchical watersheds

Hierarchical watersheds are linked to a broader family of combinatorial
optimization problems: minumum spanning trees, random walkers and
graph cuts [C09]

They satisfy interesting mathematical properties (e.g. they preserve
a minimum spanning tree of the original graph)

They are useful in object detection and perform well on natural images
[P18]

[C09] C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watersheds: A new image

segmentation framework extending graph cuts, random walker and optimal spanning forest.

[P18] B. Perret, J Cousty, S. Guimaraes, D. Maia. Evaluation of hierarchical watersheds.
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Watersheding hierarchies

Problem

Given a hierarchy H and a weighted graph (G ,w)

find a hierarchical waterhsed H′ of (G ,w) which “approximates”H

Contributions

Introduction of the watersheding operator

which transforms any hierarchy into a hierarchical watershed, and

whose fixed points are the hierarchical watersheds
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Watersheding: applications

Refinement of coarse hierarchies

e.g., high quality hierarchical segmentation method (COB) [K18]

Original SED COB Watersheding

[K18] K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool. Convolutional ori-

ented boundaries: From image segmentation to high-level tasks. PAMI. 2018.
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Outlines

1 Hierarchical watersheds

2 Watersheding transform

3 Conclusion and perspectives
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Graph settings

(G ,w) is an edge-weighted graph

which can be a pixel-adjacency graph
edge weights can represent a gradient of intensity

For simplification, we consider that the edges of G have pairwise
distinct weights for w

, which implies that (G ,w) has a single minimum
spanning tree (MST)

S = (M0, . . . ,M`) is any sequence of the minima of w ranked by
importance according to some regional attribute like extinction values

A B C D

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

8 9 10

6/18



Graph settings

(G ,w) is an edge-weighted graph

which can be a pixel-adjacency graph
edge weights can represent a gradient of intensity

For simplification, we consider that the edges of G have pairwise
distinct weights for w

, which implies that (G ,w) has a single minimum
spanning tree (MST)

S = (M0, . . . ,M`) is any sequence of the minima of w ranked by
importance according to some regional attribute like extinction values

A B C D

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

8 9 10

6/18



Graph settings

(G ,w) is an edge-weighted graph

which can be a pixel-adjacency graph
edge weights can represent a gradient of intensity

For simplification, we consider that the edges of G have pairwise
distinct weights for w, which implies that (G ,w) has a single minimum
spanning tree (MST)

S = (M0, . . . ,M`) is any sequence of the minima of w ranked by
importance according to some regional attribute like extinction values

A B C D

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

6/18



Graph settings

(G ,w) is an edge-weighted graph

which can be a pixel-adjacency graph
edge weights can represent a gradient of intensity

For simplification, we consider that the edges of G have pairwise
distinct weights for w, which implies that (G ,w) has a single minimum
spanning tree (MST)

S = (M0, . . . ,M`) is any sequence of the minima of w ranked by
importance according to some regional attribute like extinction values

A B C D

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

6/18



Hierarchical watersheds
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A hierarchical watershed of (G ,w) for S is a hierarchy of partitions
(P0, . . . ,P`) such that, for any i ∈ {0, . . . , `}:

Pi is the connected component partition of a minimum spanning forest
rooted in the minima ranked after i
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Hierarchical watersheds

Definition

We say that H is a hierarchical watershed of (G ,w) if there is a sequence
S of minima such that H is the hierarchical watershed of (G ,w) for S
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Hierarchical watersheds

Definition

We say that H is a hierarchical watershed of (G ,w) if there is a sequence
S of minima such that H is the hierarchical watershed of (G ,w) for S

Remark 1: there are hierarchies which are not hierarchical watersheds of
(G ,w), e.g., (P′

0,P
′
1,P

′
2,P

′
3) is not a hierarchical watershed of (G ,w)
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Hierarchical watersheds

Definition

We say that H is a hierarchical watershed of (G ,w) if there is a sequence
S of minima such that H is the hierarchical watershed of (G ,w) for S

Remark 2: a hierarchy H can be the hierarchical watershed of (G ,w) for
several sequences of minima of w. An algorithm to count the number
of sequences of minima associated to a hierarchical watershed is provided
in our companion paper “On the probabilities of hierarchical watersheds”
(poster section)
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Outlines

1 Hierarchical watersheds

2 Watersheding transform

3 Conclusion and perspectives
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Watersheding: general idea

Intuitive idea: invert the algorithm to compute hierarchical watersheds
introduced in [C13, N13]

Watersheding algorithm

Input: weighted graph (G ,w) and saliency map s of a hierarchy
Output: a saliency map ω(s), which is the watersheding of s

1 compute the binary partition hierarchy (by altitude ordering) of w

2 compute the approximated extinction value (map) ξs for s

3 compute the estimated sequence of minima Ss for s

4 return the saliency map of the hierarchical watershed of (G ,w) for Ss

[C13] J. Cousty, L. Najman, B. Perret. Constructive links between some morphological

hierarchies on edge-weighted graphs. ISMM 2013.

[N13] L. Najman, J. Cousty, B. Perret. Playing with Kruskal: algorithms for

morphological trees in edge-weighted graphs. ISMM 2013.
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Watersheding transform:
1. binary partition hierarchy
2. approximated extinction map
3. estimated sequence of minima
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Approximated extinction map
(intuitive idea)

Definition (Extinction map for a sequence of minima)

Given a sequence S = (M1, . . . ,Mn) of minima of w , the extinction map for S
is a map ε such that, for each region R of B:

ε(R) is zero if there is no minimum of w included in R

otherwise, ε(R) is the maximum i such that Mi ⊆ R

As established in [C13], the saliency map of a hierarchical watershed for S can
be efficiently computed from the extinction map for S by one pass on B.

Definition (Estimated extinction map problem)

Given the saliency map s of a hierarchy H, find a map εs , called an approximated
extinction map of s such that, if H is a hierarchical watershed of (G ,w), then
this map is an extinction map which induces the hierarchical watershed H.

[C13] J. Cousty, L. Najman, B. Perret. ISMM 2013.
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Approximated extinction map
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Watersheding operator

Definition (watersheding)

Let f be a map from the set of edges E into R and let S be the estimated
sequence of minima of f and let ε be the extinction map for S. The watersheding
of f is the map ω(f ) from E into R such that, for any edge u:

ω(f )(u) = min{ε(R) | R is a child of Ru},

where Ru is the region of B whose building edge is u.
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Watersheding operator: properties

Property (Idempotence)

Let f be a map from E into R. The watersheding ω(ω(f )) of ω(f ) is equal
to the watersheding ω(f ) of f .

Property (Invariance domain)

LetH be a hierarchy and let f be the saliency map ofH. The watersheding
of f is equal to f if and only if H is a hierarchical watershed of (G ,w).

Property (Solution to the problem of recognizing hierarchical watersheds
(M19))

Let H be a hierarchy and let f be the saliency map of H. The hierarchy H
is a hierarchical watershed of (G ,w) if and only if the watersheding of f
is equal to f .

[M19] D. Maia, J.Cousty, L. Najman, B. Perret. Recognizing hierarchical watersheds. 2019.
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Conclusion and perspectives

Summary

Introduction of an idempotent operator which converts any
hierarchy into a hierarchical watersheds

Perspectives

Extension to arbitrary weighted graphs

Open question: does the watersheding optimize any objective func-
tion?
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