On the probabilities of hierarchical watersheds

Deise Santana Maia, Jean Cousty, Laurent Najman and Benjamin Perret

Introduction

- Hierarchical watersheds $[1,2]$ are obtained by iteratively merging the regions of a watershed segmentation. This merging procedure is guided by a total ordering on the regional minima of an image (gradient), which can be represented as a graph. The probability of a hierarchical watershed is associated to the number of orderings of minima of a graph that could be used to obtain this hierarchy.
- Contributions: the introduction of the notion of probability of a hierarchical watershed, an efficient algorithm (see article) to obtain the probability of any hierarchical watershed, a characterization and an algorithm to obtain the most probable hierarchical watersheds of a weighted graph.

Hierarchical watersheds and Saliency maps

$\Phi\left(\mathcal{H}_{1}\right)$
\mathcal{H}_{2}

$\Phi\left(\mathcal{H}_{2}\right)$

$\Phi\left(\mathcal{H}_{3}\right)$

\mathcal{H}_{4}
$\Phi\left(\mathcal{H}_{4}\right)$

A weighted graph (G, w) with four minima (in red) and three watershed-cut edges (in blue), the four hierarchical watersheds of (G, w) and their saliency maps. Each hierarchical watershed can be obtained from more than one sequence of minima of \mathcal{w}. For example, \mathcal{H}_{1} can be obtained from the following sequences: $(A, B, C, D),(A, B, D, C),(B, A, C, D)$ and (B, A, D, C)

Binary partition hierarchy and Probability of hierarchical watersheds

- ($\mathrm{G}, \boldsymbol{w}$): tree with pairwise distinct edge weights containing n minima
- \mathcal{H} and $\Phi(\mathcal{H})$: hierarchical watershed of (G, w) and saliency map of \mathcal{H}
- $S_{w}(\mathcal{H})$: set of sequences of minima of w such that, for any sequence \mathcal{S} in $S_{w}(\mathcal{H}), \mathcal{H}$ is the hierarchical watershed of (G, w) for \mathcal{S}
- \mathcal{M}_{w} : set of all possible sequences of minima of \mathcal{w}
- The probability of \mathcal{H} knowing \mathcal{w}, denoted by $p(\mathcal{H} \mid w)$, is the ratio $\frac{\left|S_{w}(\mathcal{H})\right|}{\left|\mathcal{M}_{w}\right|}$, and can be obtained through the binary partition hierarchy (by altitude ordering) \mathcal{B} of (G,w)
- \mathcal{B} : constructed by merging the singletons of G considering an increasing order of weights in \mathcal{w}. For each edge $u=\{x, y\}$, we denote by R_{u} the region obtained after merging the regions that contain x and y
- m : the number of edges u in E such that $\Phi(\mathcal{H})(u)>$ $\max \left\{\Phi(\mathcal{H})(v), v \in E \mid R_{v} \subset R_{u}\right\}$.
- Theorem 1: The probability of \mathcal{H} knowing w is $p(\mathcal{H} \mid w)=\frac{2^{m}}{\left|\mathcal{M}_{w}\right|}$

The binary partition hierarchy \mathcal{B} of (G, w)

Most probable hierarchical watersheds

- ℓ : number of watershed-cut edges of w
- k : number of watershed-cut edges u such that there is no watershedcut edge v such that $R_{v} \subset R_{u}$
- Corollary 2: The tight upper and lower upper bounds on the probability of \mathcal{H} knowing w are respectively $\frac{2^{\ell}}{\left|\mathcal{M}_{w}\right|}$ and $\frac{2^{k}}{\left|\mathcal{M}_{w}\right|}$
- \mathcal{H} is a most probable hierarchical watershed of (G,w) if, for any hierarchical watershed \mathcal{H}^{\prime} for $(G, w), p(\mathcal{H} \mid w) \geq p\left(\mathcal{H}^{\prime} \mid w\right)$
- Theorem 3: The three following statements are equivalent: (1) \mathcal{H} is a most probable hierarchical watershed of (G, w); (2) the edge weights in $\Phi(\mathcal{H})$ are increasing on \mathcal{B}; and (3) each non-leaf region of \mathcal{H} is a region of \mathcal{B}

An image I, a gradient Grad of I and the saliency maps of two of the most probable hierarchical watersheds of Grad.
[1] J. Cousty, L. Najman, and B. Perret. Constructive links between some morphological hierarchies on edge-weighted graphs. In ISMM, pages 86-97. Springer, 2013.
[2] L. Najman, J. Cousty, and B. Perret. Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In ISMM, pages 135-146. Springer, 2013.

