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Think globally, act locally 1.

À la mémoire de mes grands-parents Juliette & Marcel Talbot

1Attributed to town planner and social activist Patrick Geddes, 1915
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Prelude

The work presented in this thesis extends from 1987 to 2013, a unusually long period for
an “habilitation” thesis. Significantly, they took place in three different countries: Australia,
France and the USA. A lot of people contributed to this work. It is unfortunate that I will
most likely forget to thank all of those who would deserve a mention. Tens of pages would
not be sufficient. I hope I can be forgiven.

I will nonetheless attempt to go through a list, in chronological order, which will allow me
to also outline a personal and scientific path.

First of all there are moments in life that change if not whole lives, at least careers. One
of these moments happened when I was hailed one day in November 1987 by my friend Denis
Leconte, a.k.a “Nop”, then intern at the AAI company, operating at the Ecole Centrale de
Paris in the electronics lab, to see if I was interested in an internship too. It would involve a
project: implementing some image analysis operators from a weird theory called Mathematical
Morphology. I said yes, of course. Denis, one year my senior, had already been a mentor at
ECP in various technical matters, and I trusted him completely. Denis later emigrated to
the USA, worked at JPL, married, had kids there and recently got a technical Oscar for his
imaging work in Hollywood.

Another interesting employee of AAI, beginning her thesis was Isabelle Bloch. She gave me
the first explanation of what were erosions, dilations, distance transforms, skeletization and so
on; she gave me many articles to read and provided all the help I needed. This collaboration
with AAI lasted two years, and we never really lost touch with one another following this.

A little bit later, in 1989, three persons from Saint-Gobain: Jean-Pierre Poitevin, Cather-
ine Langlais and Daniel Hanton read my CV, found the line concerning image analysis and
mathematical morphology and on this basis offered me a “Volontariat du Service National
Actif” (VSNA) at MIT to work on the segmentation and measurement of man-made vitreous
fibres, as well as a CIFRE convention to start a PhD, in lieu of a more standard military
service.

Of course this sentence is a huge shortcut. A host laboratory was needed, for this none
other than the Centre de Morphology Mathématique, at the Ecole des Mines de Paris, then
headed by Jean Serra, agreed to take me on. At the time an engineering diploma was not
sufficient to start a Doctorat, so Jean-Claude Simon agreed to take me in his DEA, the
IARFAG of then Université Paris-VI, even as courses were about to start.

In Cambridge, MA, Linn W. Hobbs, professor in the materials science department at MIT,
agreed to accept me in his lab. I was the sole computer scientist among all these physicists,
but I was wholly welcome (probably because I could maintain the VAX computer, but still...).
I spent a very productive and enjoyable time at MIT between January 1991, the start of the
first gulf war, and October 1992. I used a NeXT workstation purchased by Saint-Gobain,
studying the samples imaged in the experimental electron microscopes of the department, all



8

the while making many friends, including Lu-Chang and Shreeram among them.
Back from the USA, thanks to Dominique Jeulin, I finished my PhD dissertation under

the best conditions, since Jean Serra was in Barcelona on a sabbatical. At the end of 1993
I defended my thesis in the presence, among others, of all three of my directors. This pe-
riod had been extremely enjoyable with the start of long lasting friendships with Marc Van
Droogenbroeck, Pierre Soille, Corinne Vachier, Luc Vincent and almost daily interactions with
other mentors at the CMM including Serge Beucher, Michel Bilodeau, Jean-Claude Klein and
Fernand Meyer. This was also a period where I was very lucky to meet people who were
very influential for me, including Georges Matheron, Michel Schmitt, Petros Maragos, Gaile
Gordon who was doing her thesis with David Mumford and who married Luc Vincent. I also
remember fondly Fred Blundell, a mathematician who asked me once to explain to him math-
ematical morphology, and Carl Feynman, son of Richard, who was working at the short-lived
but influential Thinking Machine Inc.

After my doctorate, I worked for a year at Saint Gobain, implementing and optimizing the
results of my thesis. However I was now destined to forever be a willing victim to the siren
calls of scientific research. French Premier Balladur cut national research funding in 1994,
which together with high unemployment rates, prompted an exile to Australia.

I was again welcomed with open arms Down Under, again by exceptional people: Murray
Cameron, who later became the Chief of the Mathematical and Information Science division of
CSIRO, and Mark Berman, a man of impeccable scientific and human credentials, and absolute
integrity. There I had extremely productive interactions with my direct colleagues: Richard
Beare, Leanne Bischof, Michael Buckley, Ronald Jones, Changming Sun, later Paul Jackway
and Sébastien Ourselin. In these ten years in Australia, I had quite varied experiences, from
the early enthusiasm of the melanoma project with the Polartechnics company and Scott
Menzies of the Sydney Melanoma Unit at Royal Prince Alfred Hospital, to the technical and
financial success of the Axon automated microscope almost all the way to the end. In Australia
I was honored to work a little with visitors James Sethian, Christian Ronse and Alexandre
Tuzikov. A very special mention must be given to Henk Heijmans, whose cerebral vascular
accident will never leave my memory. I experienced the amazing dedication and bigger than
life persona of Mervyn Thomas, as well as the less enjoyable aspects of working under the
constant financial pressure of industrial research. I witnessed both the best and the worst
practices of management. The latter lead to my family’s eventual decision to come back to
France, family that had been extended with the arrival of a little Australian girl four years
earlier.

In 2004, taking advantage of a sabbatical year, I was welcomed in an excellent team, which
was and is still being lead by Gilles Bertrand, and that include now very close colleagues:
Mohamed Akil, Tarik Al Ani, Christine Auger, Alex Hamam, Lilian Buzer, Michel Couprie,
Christophe Dietrich, Thierry Grandpierre, Yukiko Kenmochi, Eric Llorens, Laurent Najman,
Laurent Perroton, François Rocariès and Jérôme Sueur. Over the years the team has expanded,
and now includes former student Jean Cousty, as well as Eva Dokladalova, Nabil Mustapha,
Frank Schmidt and indefatigable and more active than ever Jean Serra, not to mention our
latest colleague Benjamin Perret. Of course I must also mention Dror Aiger. In spite of his
short tenure with us we managed to write together five articles. Thanks to these stimulating
surroundings I have had the fantastic luck to be able to interact and collaborate with great
scientists and people like Dominique Bernard, Caroline Chaux, Emilie Chouzenoux, Théo
Géraud, Emmanuelle Gouillart, Amir Nakib, Nikos Paragios, Jean-Christophe Pesquet, Nelly
Pustelnik as well as visitors Yuri Boykov, Leo Grady and Olga Veksler, to name but a few.



I should have finished this thesis much much much earlier, since perhaps the material
was not lacking, but there was always seemingly better things to do: extend the family some
more, work on articles and books, help students, and just do research with the fantastic people
around me.

I would like to finish by thanking some very important people: the PhD student I have
helped supervise: Ben Appleton, Fiona Evans, Harold Phelippeau, Olena Tankyevych, Camille
Couprie, László Marak, Nicolas Combaret, Ania Jezierska, Ngo Phuc, Imen Melki, Eloïse
Grossiord, Odyssée Merveille and Ali Kanj. They probably didn’t know what to expect when
they started, I hope they will have received at least some measure of what they gave to me. I
would also like to thank the PhD students with whom I have worked with great pleasure even
though I was not their official co-supervisor: Jean Cousty, Yohann Thibaut, John Chaussard,
Emilie Charrier, Roland Levillain, David Menotti, Vincent Bismuth and Elodie Puybareau,
as well as those not directly inside our research team, but with whom I have had a lot of
interaction: Erwan Plougonven, Silvia Valero and François Cokelaer.

Let me thank one more time the readers of this thesis, and again each of the members of
the jury, especially the rapporteurs.

Last, but of course not least, I would like to thank my daughters Zoé and Sophie and finally
my most excellent wife Annick, amie, compagne et puis épouse, témoin et soutien indéfectible
de tous ces évènements. Sans toi je n’aurais rien pu faire.
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General introduction

The work presented in this habilitation thesis deals with several topics, related to aspects of
image analysis and image processing I have contributed to. There are essentially two parts
to this document: the first part deals with the filtering and segmentation of thin objects in
2D and 3D images ; the second part concerns optimal discrete and continuous method for
segmentation based on the notion of flow. There is a link between these two topics, which will
be provided in the course of the thesis.

Thin objects

Thin objects are prevalent in images. For example, one can think of the following:

• Fibrous objects in materials, e.g. composite with glass or carbon fibres;

• fracture lines and surfaces;

• thin anatomical structures: blood vessels, muscle fibres, neurites;

• some oriented textures in clothes or hair.

The list of potential examples is nearly infinite. There does not exist an unambiguous
definition of what constitutes a thin object, but for the purpose of explanations, we will say
that an object is thin if it semantically coherent and at least one of its dimensions is much
smaller than the others. Contrariwise, we will say that an object is “isotropic” if it is non-thin,
i.e. all of its dimensions are comparable.

In the general literature on image processing and analysis, thin objects are not usually
mentioned as deserving special treatment. However, because they possess this dimension that
is much smaller than the others, they are indeed often harder to acquire, process, segment
and analyse than more “isotropic” objects. For image filtering, for instance, one often uses
masks or windows of some fixed dimension like 3× 3 or 5× 5 pixels. Usually, one makes the
assumption that these masks entirely fits into most of the objects of interest. This may not
be true for a thin object. In segmentation, many popular methods assume that one can start
from some starting point in an object, and propagate information around this starting point
until the contours of the object are found. For thin objects, one may not be able to perform
this propagation, and moreover, one may not even be able to define their contours!

Thin objects are not isotropic, they are usually elongated in one or more direction and/or
dimension and so locally oriented. Discovering, measuring and using this information is im-
portant in a number of applications. This makes is possible for instance to characterize some
textures. Measuring anisotropy and orientation has several applications in materials science.
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A single object in image analysis are often assumed to be connected. On images, due
to noise and discretization issues, thin objects might be locally disconnected. Whereas a
human observer might still recognize semantically a hair, a fibre or a vessel, at the local pixel
level, the information is often lost in the noise. How then is it possible to connect high-level
information to low-level vision operators? This is a prevalent problem in computer vision and
image analysis, but is it particularly difficult to solve for thin objects.

In the first part of thesis, we will explore ways to deal with thin objects, particularly using
the tools of mathematical morphology, but also optimization-based approaches. A thin object
in 2D or 3D can be detected using minimal paths approaches. This leads us to the second
part of this thesis.

Flow methods in image analysis

Optimization-based approaches for finding thin objects have also been used in other contexts.
Indeed, the contour of an isotropic, non-thin object is also a thin object. For instance, mini-
mal path and minimal surfaces computations can be performed in the dual. One well-known
discrete method in this context is the graph maxflow-mincut theorem of Ford and Fulker-
son. This has led us to consider the problem of object segmentation from an optimization
perspective, and to develop new tools in this context.

Image segmentation, i.e. the act (or art) of delineating objects in images is an essential
step of many applications. As research progressed over the years, segmentation methods have
simultaneously moved from simple pixel-based techniques, to statistical characterization, to
regions-based methods. At the end of the 1980s, segmentation was finally seen as a variational
problem with associated energy minimization schemes. This viewpoint enabled the use of
iterative contour and surface evolution techniques of increased sophistication. Around the
year 2000, techniques for finding the global optimum of some of these formulations became
finally available.

In this part of the thesis, we will describe some of these techniques we have contributed
to. We will also describe image processing techniques for denoising or reconstruction that are
related to this effort.

Objective and outline of the thesis

The objective of this thesis is not to describe the solution to the problems described above, it
is more modestly to propose a context for these study, and to illustrate the following points:

• What is the problem we are trying to solve ;

• What are the main tools that exist or were developed ;

• What was our contribution to these tools.

This is done via a main text, followed by some selected publications. In the course of
writing this thesis, I have sought to present topics in a didactic manner in the main body of
the text. I have in places spent more space in the main text to the work of others instead of
my own, as an introduction to reading and understanding the articles that follow. It is my
hope that it will be useful.



Part I

Thin objects: problems, review,
filtering and segmentation





Introduction

In this part, we will introduce the general problem of thin object filtering and segmentation.
We will start from illustrative example in 2D, 2D+t and 3D. In a second chapter, we will pro-
pose a literature review of the topic. We will then propose filtering and segmentation method
for these object, together with qualitative and quantitative assessment of their performance.
In a last chapter for this part, we will introduce extensions, future work and a link to the next
part.
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Chapter 1

Thin objects in imaging

In this introductory chapter, we present the general framework of this study, in particular,
using illustrative examples, we present various problems associated with thin objects.

1.1 Examples of problems that include thin objects

Thin objects are in fact common in imaging problems, but do not appear so significantly when
studying image analysis, or in the bulk of publications related to that topic.

In this section, we show some examples of images that include thin objects, and the
problems associated with them. We start with some concepts and definitions.

1.1.1 Definitions and recognition

Segmentation is act (or the art) of delineating objects of interests in images. This definition
is more semantic than mathematical because at its heart so is segmentation itself. In fact
segmentation is essentially a cognitive concept because an object generally cannot be defined
precisely. Where is the contour of a cloud? of a tree? of a complex organ like the lung? In
the medical imaging context, even experts often do not agree on the placement of contours of
interest.

The classical approach to segmentation, sometimes called top-down (Beucher, 1990) implies
to segment an image first, in order to simplify its content. According to this view, segmentation
is therefore a kind of filtering operator. Object recognition comes only after, perhaps after
grouping or splitting already segmented regions. In contrast, the so-called morphological vision
of segmentation, sometimes called bottom-up and championed by Meyer and Beucher (1990)
supposes we know in advance the characteristics of the objects we would like to segment.
Although this may sound like a catch-22 situation, this is not really the case. In the case
of image analysis (say for the diagnosis of skin lesions or the counting of red blood cell in a
smear), we do largely know in advance what we are going to observe. In computer vision,
given sufficient exemplars, the characteristics of objects of interest (say people in a crowd) can
perhaps be learned.

In the bottom-up framework, filtering comes before segmentation, and can be quite ag-
gressive. Parts we do know are not of interest to us can be removed. Parts we know are
wholly inside or outside the object of interest can be kept separately and used as “markers” or
“seeds”. These will be used as starting point for the contour placement step of segmentation.
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(a) (b) (c)

Figure 1.1: A typical computer vision problem: outlining a kangaroo in the bush. In (b) an
individual segmentation. In (c) a superposition of several manual segmentations. Contours
that are drawn several times appear brighter. Many operators draw the contour of the kangaroo
but the level of detail varies widely.

The top-down philosophy is a better fit to computer vision than to image analysis, and
vice-versa for the bottom-up approach. For instance, it is difficult in computer vision to
segment a scene in the classical sense, i.e. an image with unspecified content, in semantically
distinct elements (a person, a background, foliage, etc). Indeed there is generally not enough
reference or specification to perform the task reliably. As an illustration, on figure 1.1, we
show as scene from the Berkeley Segmentation Database (Martin et al., 2001) containing a
kangaroo. This scene was manually segmented by several humans, and the contours they
drew were superimposed on top of each other. More “popular” contours appear brighter than
those that are drawn a small number of times. We notice that various operators have not
segmented the scene in the same way: some have drawn details like the eyes, others just the
rough outline of the kangaroo. These differences may come from psychological, cultural or
individual differences. This underscores the difficulty of specifying the segmentation problem
precisely. In a concise manner, we could say that the problem of segmentation is not specified
well enough to be solvable mathematically.

In contrast, many image analysis problems are better specified. The goal of an image
analysis problem is to get precise measurements, reliable object counts, or indicators of the
presence or absence of some feature, from visual data. While the means to attain that goal are
not specified, at least the goal itself is. For instance, as illustrated on Fig. 1.2, we have an MRI
slice of a human heart, from which we want to detour the left ventricle, which is most often
implied in infarcts. From this contours we are able to measure the area of he left ventricle,
and if we integrate this measure over several slices of the same heart and in times, we can
estimate the volume of blood the heart pumps out every cycle. This particular measurement
is useful in medical practice (Najman et al., 2008).

The difference between a computer vision and an image analysis problem is subtle. In
particular, both fields of application often use the same tools. It is only in the usage of these
tools that things differ. It is worth remembering that in all image analysis problem, the
finality is not the segmentation or the recognition, but the final measurements or assessments
one wants to make out of image data. The definition of the objects of interests themselves are
important, and a more precise definition will lead to better results in applications.
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Figure 1.2: A typical image analysis problem: a segmentation of the left ventricle of the heart.

Figure 1.3: An image including several thin objects: some man-made mineral fibre observed
in scanning electron microscopy.

1.1.2 Definition of thin objects

In the remainder of this first part, we will restrict ourselves to the problem of analysis of
thin objects. Defining a thin object should be simple, for instance we can take as operating
definition that a thin object is one that has at least one dimension smaller than the other. In
other words, a thin object can be well-approximated by a submanifold of Rn, where n is 2 or
3 typically, of lower dimension than n. For instance a thin fibre in 3D can be approximated
by a curve, of dimension 1. We show on a simple example that even though this definition is
intuitive and simple, it is not sufficient.

In Fig. 1.3, one can observe several thin white objects on a dark background. One can
distinguish four relatively large fibres, of which two have visible extremities, and two not. One
can also observe, with more difficulty, two extra very thin fibres, one which is quite short and
straight, while the other is longer and curved.

Although they look quite different, the two types of objects (i.e: “large” fibres (they are
about 10 µm in diameter, so this is a relative term) and “thin” fibres) do roughly correspond
to the definition given above. In reality, this definition is not sufficient to allow for a unified
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(a) (b)

Figure 1.4: Details of figure 1.3 : two fibres that are less visible..

Figure 1.5: A thresholding of figure 1.3

segmentation procedure for both kinds of fibres. “Large” fibres are relatively easy to filter and
segment: one can readily imagine that a simple thresholding will yield at least the overlap of
the large fibres. However, this is not the case for the thin fibres.

In the given example, one is straight and isolated (Fig. 1.4(a)), while the other is curved and
partially covered by a large fibre. These fibres are not straightforward to filter or segment. As
shown on Fig. 1.5, even careful thresholding does not allow both fibres to be included without
noise coming from the background. Additionally, some of this noise looks like thin objects, e.g.
horizontal thin lines that are artifacts from the acquisition instrument, and the thin curved
fibre is not present in the threshold in its entirety.

The temporary conclusion from this illustrating example is that the definition of a thin
object depends on the application. To be able to make progress, we will require a standard
allowing the identification of interesting objects with respect to noise. It is unlikely that a
universal definition or tool will be available. In addition, we begin to appreciate the concept
that thin objects are difficult to deal with when their smallest dimension approach the limit
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(a) (b) (c)

Figure 1.6: Scale and local orientation. (a) shows some text, where thin objects are made of
the strokes composing letters ; (b) shows the same text blurred by a Gaussian kernel of standard
deviation σ = 5. Here thin objects are the words themselves. (c) shows again the same text,
blurred with σ = 10. Thin objects have all but disappeared.

of resolution of the imaging modality.

1.1.3 Orientation and scale

Another common complicating factor related to resolution is that of scale . Commonly, defining
a single orientation at every point of an image is impossible. This is often due to three main
effects: (i) in 2D it is possible that several objects cross each other1, (ii) in any dimension,
a branching may occur (as in a vessel) and (iii) local orientation may depend on the scale
objects are considered. This latter effect is illustrated on Fig. 1.6.

Without involving any blur, it is clear that scale and orientation are linked. Consider for
instance a blood vessel imaged in MRI. For a larger artery like one of the carotids, at a large
scale it is possible to discern the outer layer of the vessel, which locally is a surface-like thin
object. However at a smaller scale, the vessel itself is a line-like thin object, as illustrated on
Fig. 1.7. Deciding the nature and orientation of thin objects is therefore a difficult problem
in itself.

1.2 Application fields

In spite of the lack of a usable generic definition, it is probably useful to illustrate the field
of application of the operators we will later describe through the use of examples. These
cannot hope to be exhaustive, but at least can be representative of a sufficiently large class of
problems.

1.2.1 Some 2D problems

In the example above, the problem was to segment all the fibres in order to measure their
length and diameter. We show some other related examples, in order to illustrate some of the
various difficulties encountered in dealing with thin objects.

1In 2D this is a common occlusion problem due to projection, in 3D it can only happen if the material
under study allow interpenetration, which is possible but not common.
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(a)

(b)

Figure 1.7: Discrete cylinders and their scale-dependent local orientation. Orientations near
the boundary of the cylinders are normal to the surface, while the orientations near the axis
of symmetry of the cylinders are oriented along the axis.

(a) (b)

Figure 1.8: Images of neurites. (a) Note the thinness and tortuosity of the dendrites.(b) image
of overlapping neurites in fluorescence microscopy

1.2.1.1 Neurites

Neurites are a generic term to describe projections from cell bodies of neurons, i.e. axons and
dendrites. Dendrites and axons in 2D microscopy tend to be quite tortuous (see Fig. 1.8(a).
The assumption of local smoothness is not verified in this example.

The individual neurites can be generally assumed each to possess a tree structure, although
this is not strict. In addition, neurites seldom appear in isolation, leading to overlapping
structures, as in Fig. 1.8(b). In fluorescence modalities, disconnections are also common.

In spite of this, we might still hope to filter and segment the neurite structure under study,
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Figure 1.9: Segmentation and identification of neurites in HCA-image.

Figure 1.10: A 3D view of an in-vivo moth neurite.

as on Fig. 1.9 using the package HCA-image, which we helped develop at CSIRO, Australia.
Of course, neurites in-vivo are really 3D structures (see Fig. 1.10). The structure of the

dendrites tree becomes quite complex. This illustrates the fact that the real structure of the
neurites is resolution-dependent. As the imaging resolution increases, so does the complexity
of the network. We will see that this is often the case in natural structures. This remark
implies that we cannot simply solve the problem of natural thin structures by increasing the
resolution until the objects under study are no longer thin. Not only will we inevitably bump
into natural imaging limits (for instance because of the frequency of light), but also will we
also uncover another layer of complexity. Instead of making our life easier, increasing the
resolution makes it harder.

1.2.1.2 Retina blood vessels

Images of the retina are useful for the diagnosis of many diseases. These include of course
eye-related conditions, such as macular degeneration, but also others that have circulatory
implications such as diabetes. One reason for this is that the eye fundus shows the capilatory
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Figure 1.11: A image of the eye fundus showing the blood vessels.

network very well.
Such images exhibit a very thin tree-like vascular structure over an uneven background.

The eye fundus follows the general shape of the eye, which is roughly spherical. The fundus
is relatively thin but has some 3D features.

Segmeting this network of blood vessels is an important problem, particularly when looking
for micro-aneurisms, which are blockages in this network. They are a marker for diabetes and
various cardio-vascular diseases. Similarly to the previous neurite problem, the complexity of
the blood vessel network in the eye fundus increases with the quality of the acquisition. We
are faced with the task of delineating an object that shows increasing detail all the way to the
resolution limit of the acquisition.

1.2.1.3 X-ray images of stent guide

A stent is a cylindrical, hollow, meshed object that is deployed in a blood vessel to enlarge
its lumen. The use of stents, while delicate, is much more benign than conventional surgery.
It has revolutionized the treatment of artery blockage particularly around the heart. Stent
guides are wire-like objects introduced in the larger blood vessels, that are used to push an
undeployed stent to the place where it is needed via the arterial network.

In these kinds of images, the noise levels can be quite high, because X-ray doses must
be minimized during this interventional procedure and so photon count is low. As shown
on Fig. 1.12, the guide is hardly visible throughout its entire length. As well, many simarly
looking objects are visible in the image, such as rib edges. These images are indeed particularly
challenging.

1.2.1.4 Oriented textures

While images shown before come from specialized domains, thin objects are also part of
everyday life. In so-called natural images, they often appear as part of textures. It has been
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Figure 1.12: An image of a stent guide in X-ray fluorescence imaging.

Figure 1.13: Classical test colour image of Barbara, with oriented textures.

long recognized that textures require specific procedures for denoising. The classical image of
“Barbara” (see Fig. 1.13) with her striped outfit, but also the rattan chair behind her is often
used in advanced denoising examples.

This image is not particularly noisy, but when used as a filtering benchmark, example noise
is simulated. The objective is to recover the image without removing the texture information.

1.2.1.5 Oriented elements in photography

A problem related to texture is the digital demosaicing problem. In most digital cameras, each
pixel records only one colour channel out of three. Consequently interpolation must be used
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(a)

]
(b) (c)

Figure 1.14: Most modern digital cameras use a colour filter array (CFA) like the one in
(a), using a single sensor but causing only one colour channel to be captured at each pixel.
Interpolation of nearby pixels must be performed to recover the other two channels. However
using simple interpolation schemes causes artefacts on thin objects as in (b), (c).

to recover the full colour image. However simple isotropic interpolation tends to yield strong
colour artifacts when the resolution of features on the image comes close to the sampling
frequency. In this case it is very useful to interpolate pixel data in a directional way.

On Fig. 1.14, we show one example of colour filter array (), in this instance the Bayer
CFA, which is the most common type. The lighthouse image is part of the Kodak 1990’s era
PhotoCD demo collection and is often used to showcase interpolation artefacts because the
vertical elements of the fence in the picture. To achieve better demosaicing results, one must
make use of the local orientation, and to perform the colour reconstruction along the local
orientation instead of across it.

1.2.2 2D+t problems

Thin objects can also be defined in time. A compact, moving object can be viewed as a thin
object problem in 2D+T.
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(a) (b) (c) (d) (e)

Figure 1.15: Some frames of the “table tennis” CIF test video sequence, originally meant for
video coding.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.16: Some frames from the Zhang Yimou feature film “House of Flying Daggers”
(http: // www. imdb. com/ title/ tt0385004/ ). Some scratches and artifacts are obvious and
appear in a single frame (see (b)). Others, like on the forehead of the heroine, only appear
when viewing consecutive frames.

1.2.3 Tracking small compact objects in time

In Fig 1.15, the trajectory of the ping-pong ball forms a thin object in 2D+t, which is a useful
representation for tracking. However, one difficulty is the fact that most often, the temporal
resolution of the film is much less than the spatial, and so object discontinuities are likely.

1.2.4 Injected X-ray angiography

A different object is one which is already thin in 2D and moving in time, as in in fact the
case for Fig. 1.12. Indeed, in this problem the stent is moving in time with the beating of the
heart. In this case the object of interest is thin in 2D+t, it creates a surface.

A similar example is that of a scratch on the surface of a damaged film reel. An example is
shown in Fig. 1.16, which shows some frames of the unique edited master copy on film, which
was damaged in the film digitizer . While some examples of artefacts are essentially 2D and
are easy to spot. Others only appear when taking into account the time domain. They are
typical thin objects in the 2D+t domain, which means they cannot be easily corrected only
using frame by frame processing.

http://www.imdb.com/title/tt0385004/
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(a) (b)

(c) (d)

Figure 1.17: Reinforcement fibres in a substrate. Slices through the material (a) and (b) and
associated segmentation (c) and (d).

1.2.5 3D problems

There exists a still greater variety of thin objects in 3D. Essentially thin objects can be of
codimension one or two. We start with codimension two examples, i.e. objects that are thin
in two dimensions.

1.2.5.1 Fibres in 3D

Fibres and fibrous objects are common in materials science, for instance reinforcement fibres
in compound materials.

In Fig. 1.17, we show a high resolution X-ray micro-CT view of a fibre-reinforced compound
material. Even though this image has enough resolution to show the inside of the fibres to some
extent, it is still useful to view it as a thin object. Because these fibres are significantly longer
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Figure 1.18: A projection view of the heart coronaries in CT injected numerical angiogram in
(a). In (b), a current state-of-the-art segmentation of the main arteries.

than they are wide, many segmentation methods based on perimeter/surface minimization
may fail on these objects.

1.2.5.2 Vessels in medical imaging

A more difficult problem similar to that in section 1.2.1.2, but in 3D this time is the challenge
of 3D angiography, i.e. the filtering and segmentation of vessels in various organs under various
imaging modalities. Heart coronaries angiography (coronography) is useful in the lead up to
interventions to prevent or heal infarction, or during screening for this condition.

In Fig. 1.18, we show a 2D projection view of the coronaries, and simultaneously a current,
state-of-the-art segmentation of the main coronary arteries. We can see that the discrepancy
in the level of detail is substantial.

Brain vessel imaging is also common in many lead up to brain surgery, e.g. in the case
of aneurisms, brain tumours or arterio-venous malformations. In the case of the brain, even
small aneurysms may have serious consequences, however, as shown on Fig. 1.19, the brain
blood vessel system is particularly complex.

We face the same problem as before in 2D. Vessel system are very complex and will
challenge any system all the way to the highest resolution that they support. Consequently,
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Figure 1.19: A so-called “corrosion cast” of the blood vessels in the brain. The level of details
required to image this structure in 3D in vivo is beyond the capabilities of current imaging
devices.

filtering and segmentation task will continue to difficult and relevant.
Many other biological structures are made of thin objects, such as the airway structure in

the lungs.

1.2.5.3 Cracks in concrete

Codimension 1 problems in 3D also clearly exist. They correspond to problems concerning
surface-like objects, i.e. that are thin in one dimension only.

An example is given on Fig. 1.20, which shows a network of cracks developing in a test slab
of concrete. Cracking is obtained by fast drying. Such cracks are sometimes smooth as they
follow the contours of inclusions (here glass spheres) and sometimes very irregular, showing
tunnels and disconnections. Segmentation of such structures is particularly challenging as a
result.

1.2.5.4 Seismic data, fracture lines

Many other codimension 1 thin structures exist in nature, for instance the layered structures
of seismic data, as shown on Fig. 1.21.

1.2.6 3D+t problems

3D+t problems are often at the frontier of what is feasible today in terms of sheer data size.
This is sometimes compounded in the case of thin objects detection, since a high resolution
is most often needed to ensure good results.

1.2.6.1 Cracks in concrete over time

To illustrate this issue, in fact the crack problem of section 1.2.5.3 is really a 3D+t problem.
Samples were taken at drying times t = 0, t = 24h andt = 48h, and current procedures for
crack detection (Bernard et al., 2012) do use the 3 different times. However these images
samples are quite large. Each independent image, or frame, has a full resolution size of
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Figure 1.20: Cracks developing in concrete through fast drying: (a) Initial image at t=0 ; (b)
cracks at t=24h ; (c) 3D rendering of the crack network. Data courtesy CNRS-ICMCB.

Figure 1.21: Seismic data rendering, courtesy Petrobras



28 Thin objects in imaging

Table 1.1: Some characteristics of thin objects

Example Problem Difficulties
2D fibres Measuring lengths and di-

ameters
Variability in dimensions, very thin
objects

2D Neurites Length and branching num-
bers

Non locally straight, overlapping
structures, disconnections. True
structure is resolution-dependent, ob-
jects remain thin whatever the reso-
lution..

Retina blood vessels Segmentation Uneven background, high branching
number, high resolution problem.

Stent guide Noise reduction, tracking High noise, moving object, uneven
background, similar objects in the
background

Oriented textures Filtering, identification Wide variability of appearance and
noise levels.

CFA demosaicing Reconstruction, filtering Resolution limited, sensitivity to
noise.

Tracking small objects Coding, tracking, stereo Time-domain disconnections
X-ray fluorescence an-
giography

Denoising, tracking High noise levels

Film scratches Inpainting Time-domain disconnections
3D fibres Filtering, segmentation Large relative surface breaks most

segmentation models
3D vessels Filtering, segmentation Dense thin structure, very high rela-

tive surface, complexity
Concrete cracks Detection Very high resolution needed, large

data size, noise levels.
Seismic data Detection, segmentation Disconnections, scene complexity
3D cracks over time Detection, segmentation Noise levels, resolution, even higher

data size

20483 × 16 bits, i.e each frame is a 16GB dataset. Processing the full resolution image is
required as some of the cracks have sub-voxel size even at that resolution.

1.3 Summary

We summarized the examples we studied on table 1.1.
Based on this table, thin objects are prone to extra problems when compared with more

“compact objects”:

• Increased sensitivity to noise levels;

• disconnections more likely;

• wide variability of configurations;



1.3 Summary 29

• resolution and scale-related problems;

• traditional filtering and segmentation models do not fit.

It should be relatively clear now that thin objects require specific filtering and segmentation
procedures. In the next chapter we will briefly survey existing methods and introduce some
of our contributions.
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Chapter 2

Thin object filtering and segmentation

In this chapter we survey classical methods for thin object analysis and we propose some
contributions. Evidently the need for segmentation, noise reduction in the presence of thin
objects, CFA demosaicing and so on has a long history. In very rough terms, most approaches
have essentially consisted in estimating the local orientation of the image content, and to design
operators that use this information in some way. From some the examples in the previous
chapter, it should be also clear that “local” orientation is something that is scale-dependent.

2.1 Linear filtering

Linear filters that take into account orientation or texture fall in a small number of categories:
(i) those that explicitly first estimate a local orientation field as a tensor, potentially in a
multi-resolution approach; (ii) those that first decompose images in a multi-resolution fashion,
possibly including orientation; and (iii) filters that use non-local information.

2.1.1 Local derivative-based oriented filters

There are two widely used, derivative-based filters that can be used to estimate orientation:
the Hessian and the so-called structure tensor. Both are derived from the standard gradient
operator. It is useful to study the gradient operator first to see why more complicated tensor
field are in fact useful in the case of thin objects.

2.1.1.1 The gradient operator

The gradient operator is the standard 1-form (or covector):

∇(I) =


∂I
∂x1
...
∂I
∂xn

 (2.1)

The gradient defines a vector field and so can be associated with an orientation. Since
the gradient is a linear operator, it is susceptible to linear scale-space theory and can thus be
used in a multi-scale fashion. However, the gradient operator can only be used to determine
the orientation of the edges of features, not of the features themselves. In addition, using a
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2D 3D Local profile
λ1 λ2 λ1 λ2 λ3

Large+ Large+ Large+ Large+ large+ dark blob
Large- Large- Large- Large- Large- light blog
Small Large+ Small Large+ Large+ dark string
Small Big- Small Large- Large- light string

Small Small Large+ dark plane
Small Small Large- light plane

Table 2.1: Possible eigenvalue responses and their signs after the eigenanalysis corresponding
to different shapes and color intensities.

multiscale gradient tend to average out the orientation information, with less-than-desirable
results. This is illustrated later in the text in Fig. 2.2. These properties make it desirable to
define other operators, in order to achieve more useful orientation scale-spaces.

2.1.1.2 The Hessian operator

The Hessian operator is simply the matrix of all second derivatives. For a n-dimensional image
I(x1, x2, . . . , xn), assuming continuity, the Hessian H is a square, symmetric matrix given by:

H(I) =


∂2I
∂x2

1

∂2I
∂x1∂x2

. . . ∂2I
∂x1∂xn

∂2I
∂x2∂x1

∂2I
∂x2

2
. . . ∂2I

∂x2∂xn
...

...
. . .

...
∂2I

∂xn∂x1

∂2I
∂xn∂x2

. . . ∂2I
∂x2
n

 (2.2)

The interpretation of the Hessian is relatively simple. If at some point x the derivatives of
I are all zero, and if the Hessian is positive definite at x, then I(x) is a local minimum of I.
Conversely, if it is negative definite at x, then I(x) is a local maximum. If at x, H has both
positive and negative eigenvalues, then x is a saddle point. At points where the derivatives of
I do not vanish, H(I) is still useful, mostly by studying its eigenvalues.

On Fig. 2.1, we show a figure from Danielsson and Lin (2001), where g is the “derotated”
version of I, i.e. I in a referential where the principal eigenvectors form the basis. It is possible,
by using comparisons between eigenvalues, to distinguish locally between various elementary
shapes. Of particular interest to us are what Danielsson and Yin call the “string” and plane
detectors.

We denote the three eigenvalues of H λ1, λ2, λ3, ordered such that |λ1| ≤ |λ2| ≤ |λ3|,
as well as e1, e1, e3 their corresponding eigenvectors. the eigenvalues represent the principal
curvatures and the eigenvectors their direction. We see that if at some point one eigenvalue
is small whereas the other two are large with the same sign, then locally the image looks like
a ridge, i.e. a string or line-like feature.

In general, eigenvalues and their signs can be used to distinguish features, following the
qualitative classification shown in Table 2.1.
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Figure 2.1: Eigenvalue-based analysis of the 3D Hessian, see Danielsson and Lin (2001) for
details.

2.1.1.3 Multi-resolution - Scale-space - Vesselness functions

One problem with using derivative-based information is to cope with noise, another is to com-
bine information at different scales. As shown in chapter 1, section 1.1.3, orientation and shape
classification is scale-dependent; and it is well-known that noise becomes an increasingly im-
portant issue with the order of derivation. It is possible to offer a solution to both problems by
considering a Gaussian multi-resolution pyramid, following linear scale-space theory (Witkin,
1983; Lindeberg, 1994). However, it is not always easy to combine information from different
scales into one measure.

One approach, for example for finding string-like objects, possibly with junctions and bi-
furcations, as in vascular networks, is to use a vesselness function. Several have been proposed,
but the most common are the Frangi and the Sato vesselness.

The Frangi vesselness For a 3D image I(x), x ∈ R3 observed at a scale σ, The Frangi et
al vesselness function (1998) is given as follows:

ν(x, σ) =

{
0 if λ2 > 0 or λ3 > 0,

(1− e
−R2

A
2α2 ) · e−

R2
B

2β2 · (1− e
−S2

2c2 ) otherwise,
(2.3)
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with

RA = |λ2|
|λ3| ,

RB = |λ1|√
|λ2λ3|

,

S = ‖Hσ‖ =
√∑

j λ
2
j ,

(2.4)

in which RA differentiates between plane- and line-like objects, RB differentiates vs. blob-like
ones, and S accounts for the intensity difference between objects and background. Parameters
α, β and c influence the sensitivity of the filter to the corresponding measures.

For 2D images, the Frangi et al. vesselness is of course simpler, and can be expressed as:

ν(x, σ) =

{
0 if λ2 > 0,

e−
R2
B

2β2 · (1− e
−S2

2c2 ) otherwise,
(2.5)

and

RB = |λ1|
|λ2| ,

S = ‖Hσ‖ =
√∑

j λ
2
j ,

(2.6)

The Sato vesselness Similarly, Sato et al. in 1998 proposed the following measure:

S(x) =

 σ2 |λ3|
(
λ2
λ3

)ξ(
1 + λ1

|λ2|

)τ
, λ3 ≤ λ2 ≤ λ1 < 0

σ2 |λ3|
(
λ2
λ3

)ξ(
1− ρ λ2

|λ2|

)τ
, λ3 ≤ λ2 ≤ 0 ≤ λ1 ≤ ‖λ2‖

ρ

(2.7)

where ξ ≥ 0 influences cross-section asymmetry, τ ≥ 0 controls the sensitivity to blob-like
structures, 0 < ρ ≤ 1 controls sensitivity to the tubular object curvature, and σ2 normalizes
responses across scales.

Both the Frangi and the Sato vesselness yield a number between 0 and 1, which can be
viewed as a probability of a pixel to belong to a “vessel”, i.e. a tubular object, possibly with
bifurcations. The vesselness function can be computed at various scales (i.e. various values of
σ), and the strongest response selected.

Several other vesselness functions, based on the eigen-analysis of the Hessian, have been
proposed. One may cite the work of Manniesing et al. (2006), who developed a continuous
version of Frangi’s vesselness, suitable for oriented diffusion.

2.1.1.4 Structure tensor

The structure tensor J is the matrix of second-order moments of the gradient of an image I.
It is defined as follows:

J (I) =



(
∂Gσ(I)
∂x1

)2
∂Gσ(I)
∂x1

∂Gσ(I)
∂x2

. . . ∂Gσ(I)
∂x1

∂Gσ(I)
∂xn

∂Gσ(I)
∂x2

∂Gσ(I)
∂x1

(
∂Gσ(I)
∂x2

)2
. . . ∂Gσ(I)

∂x2

∂Gσ(I)
∂xn

...
...

. . .
...

∂Gσ(I)
∂xn

∂Gσ(I)
∂x1

∂Gσ(I)
∂xn

∂Gσ(I)
∂x2

. . .
(
∂Gσ(I)
∂xn

)2


, (2.8)
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where Gσ(I) = G(σ) ? I, with G(σ) the centered Gaussian with variance σ2 and ? the convo-
lution operator. Alternatively, the structure tensor can be written as an outer product,

J (I) = ∇(Gσ(I)).∇(Gσ(I))ᵀ, (2.9)

with ∇ the standard gradient operator written as a n× 1 (single-column) covector.
The structure tensor (ST) summarizes the predominant directions of the gradient in a

neighborhood. As such, it can be used in much the same way as the Hessian, although its
interpretation is different. Since the determinant of the ST is a quadratic form, and due to
its structure, the ST is symmetric positive semi-definite. All the eigenvalues of the ST are
non-negative, and can be ordered as before, e.g. in the 3D case 0 ≤ λ1 ≤ λ2λ3.

In this instance, λ3 is the largest eigenvalue and e3 provides the principal direction of the
gradient of I. If λ3 >> λ1 ≈ λ2, then this means that locally the iso-level of I are surface-like
perpendicular to e3. If λ3 ≈ λ2 >> λ1, then the isosurfaces tend to be tube-like parallel to e1.
If all three eigenvalues are similar, this means that locally the gradient isosurfaces are sphere
(blob)-like. By themselves, the eigenvalues do not allow to distinguish whether the structures
are bright or dark. Similar to the Hessian case, multiscale can be handled through varying σ.

2.1.2 Filter banks

In the previous section, we introduced operators that allowed users to measure orientation
and provide filters that were able to take into account this information. However orientation
is not explicitly measured or taken into account in these operators. We were able to exploit
it as a by-product via eigen-analysis.

There exist in the literature operators designed for oriented filtering. There are essentially
two categories of operators: those that extend the separability property of the gradient-based
operators to achieve a continuous estimation of the orientations, and those that discretize and
sample orientation.

2.1.2.1 Steerable filters

Steerable filters (Freeman and Adelson, 1991) are convolution kernels that are designed to be
orientation-selective. They can be expressed via a linear combination of a small set of rotated
versions of themselves. The name comes from “beam steering”, which is use in radio technology
such as RADAR. A simple example is the gradient, which yields the structure tensor as above,
or the second derivatives, which yield the Hessian. However extension of this idea can yield
filters similar to the Gabor filters, which we will introduce shortly.

To see that the derivative is steerable, following the example of Freeman and Adelson, let
G(x, y) ≡ exp−(x2 + y2) be the 2D Gaussian. The first derivatives are as follows:

G0
1 =

∂G

∂x
(x, y) = −2xG(x, y) (2.10)

G
π
2
1 =

∂G

∂y
(x, y) = −2yG(x, y) (2.11)

Then for any θ,

Gθ1 = cos θG0
1 + sin θG

π
2
1 (2.12)
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(a) (b)

(c) (d)

Figure 2.2: An image of fingerprints (a). In (b), local orientation as measured by a slightly
smoothed gradient with σ = 1: orientation information is present but is noisy. In (c), local
orientation as measured by a strongly smoothed gradient with σ = 5: orientation information
is all but deleted. In (d), orientation measured by the structure tensor with σ = 1: it is much
more usable. Note that the orientation of both dark and white features are not differentiated.
Image courtesy J. Weickert (1998).
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Any linear filter based on Gθ1, e.g. a convolution, can be computed for any θ by pro-
jecting onto the basis {G0

1, G
π
2
1 }. Of course not every convolution kernel is steerable in this

way, but some interesting ones are, for instance wedge filters (Simoncelli and Farid, 1996),
ridge filters (Jacob and Unser, 2004), scale-space pyramids (Karasaridis and Simoncelli, 1996),
orientation-scale filter banks (Perona, 1995), as well as some wavelet bases (Koren et al., 1995).
The steerable property should be quite desirable for 3D filtering, however progress in this area
has been slow (Derpanis and Gryn, 2005), because designing such filters beyond the obvious
ones (based on derivatives) is harder than in 2D (Unser and Van De Ville, 2009). Some 3D
steerable filters do exhibit better performances than the simple ones however (González et al.,
2009). In general the steerable property is quite desirable for computing performance, since
only the computation of the projections onto the basis is required, but often leads to reduced
filtering performance compared with filter banks, which we study next.

2.1.2.2 Directional filter banks

Filter banks are a very general concept where the output from various filters are combined
in some way. Usually linear filters are involved (convolutions, FIR, IIR, etc), and they are
combined in a pyramid or additively. Maximum, minimum or median response is often used
as well, as is the combination in a feature vector, typically for texture identification / segmen-
tation.

One very flexible class of oriented, convolution-based filters are the Gabor wavelets (1965).
In 1D, a Gabor wavelet ϕ(t) is a Gaussian modulated by a sinusoidal:

ϕ(t) = exp(−σ2t2) exp(j2πf0t) (2.13)

Φ(f) =

√
π

σ2
exp(−π

2

σ2
(f − f0)2), (2.14)

where σ is a scale factor, f0 the modulated centered frequency of ϕ(t), and Φ(f) is its Fourier
transform. The Fourier version is very simple, since it is simply a non-centered Gaussian. In
2D, an individual wavelet can be expressed as:

ϕ(~z) =
1

2π

‖~z‖2‖~k‖2
2σ2

exp~z~k, (2.15)

where ~k = 2πf exp(jθ). This wavelet depends on 5 parameters, which can be expressed as
scale, offset (2 parameters), orientation and aspect ratio. Practitioners typically endeavour
to cover the whole frequency domain with a family of such wavelets, with as few scales and
offsets as possible. The Gabor wavelets do not form a finite basis, so perfect coverage cannot
be achieved.

Many applications have been derived from Gabor analysis, however in the case where
mostly orientation is sought, the Gabor wavelets may not be the best choice. Alternatives
include Directional Filter Banks (DFB) wedge filters (Bamberger and Smith, 1992) with power-
of-two resolution. These can be implemented with specific, efficient up- and down-sampling
schemes using band-pass filter and a quincunx up/down sampling kernel . While the original
wedge filters were designed primarily for image compression, more recent work (Truc et al.,
2009) provided interesting improvements for image analysis. Quadrature derivative filters can
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(a)

(b)

Figure 2.3: Example from Henriksen (2007): Gabor wavelets in the real domain, and the filter
bank responses on a sample image with strong orientation and scale information.

Figure 2.4: Filter bank from Malik et al. (2001):.

also be used (Malik et al., 2001). They essentially consist of perpendicular, rotated, Gaussian-
convoluted derivative filters (i.e. DoG) with non-homogeneous variance (see Fig. 2.4. They
are easy to compute and constitute a valuable alternative to Gabor filters.

We notice that most of these filter banks include a scale selection as well as orientation
information. As we pointed out in the previous chapter in section 1.1.3, orientation and scale
are linked. Another problem, which is related, is the that of deciding orientation at points
were several objects are crossing, possibly of different scales. In the next section, we review
some attempts to link orientation and space.
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2.1.3 Orientation-space

Particularly in 2D image, but also sometime in 3D, objects overlap or cross each other due
to projection effects or self-intersection. Also complex thin objects like vessel systems exhibit
ambiguous areas like branches. Orientation-space was proposed by Chen and Hsu (1989) and
in a short note by van Vliet and Verbeek (1995). The idea is fairly straightforward: given any
method of providing local orientation ϕ (e.g. Gabor filters or otherwise) for a 2D image at
(x, y), discretize and record this information in binary form in the 3D volume (x, y, ϕ), then
label connected components, taking into account the fact that ϕ is periodic (see Fig. 2.5).

Illustrations and applications can be found in van Ginkel et al. (2001), including segmen-
tation of overlapping objects, texture and fingerprint identifications. Orientation space was
rediscovered independently by Chen et al. (1998, 2000) in 1998 and used in 2D cardio X-Ray
imaging. It was also used by Van Ginkel et al. (1999) for curvature estimation. In Perona
(1998), as similar concept was used to defined orientation scale-space for the diffusion filtering
of orientation information, however orientation scale-space was not defined as a (4D) space,
and indeed no particular representation was proposed, only an abstract space.

2.1.4 Wavelets

Scale-space as a linear theory stems from continuous isotropic diffusion, which is equivalent
to Gaussian smoothing with a continuous parameter. It has been studied extensively, but is
not the only way to consider multi-resolution approaches. In signal processing initially, the
idea of wavelets with discrete resolution steps has been very fruitful (Mallat, 1999). Separable
versions of the wavelet transforms have been adapted to imaging almost right away and used
in a large variety of applications, from denoising to image coding. However, with regard to
orientation analysis, classical separable wavelets are not very useful, because only a small
number of orientations are used. Wavelet representations can be very sparse for many signals
and some images, but not so much in the case of oriented textures, thin objects and contours.
Several approaches have been proposed to deal with this situation.

2.1.4.1 Contourlets

One major objective of oriented wavelets is to be able to represent contours efficiently, unlike
most wavelet bases. Contourlets, proposed by Do (2001); Do and Vetterli (2005), combine
a classical Laplacian pyramid (Burt and Adelson, 1983) and a directional filter bank (DFB)
similar to the one of Bamberger and Smith (1992) described in section 2.1.2.2. The basic
scheme is illustrated in Fig. 2.6

For contourlets, the following holds:

• With both perfect reconstruction low-pass and directional filter banks, then the con-
tourlet transform achieves perfect reconstruction. It constitutes thus a frame;

• If both LP and DFB are orthogonal, then the frame is tight with bounds equal to 1;

• The redundancy factor of the frame is less than 4/3;

• Using finite impulse response (FIR) filters, the complexity of the decomposition is O(N),
for images with N pixels.
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(a) (b)

x

y

ϕ

(c)

Figure 2.5: Two overlapping circles in orientation-space: in (a) two overlapping circles; in (b)
the response of the orientation filter ; in (c) the labelled content of orientation-space, where
the two circles appear as separate entities.
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[2,2]

Image
Bandpass
directional
sub-bands

...

Figure 2.6: Contourlet filter bank: a multi-scale Laplacian pyramid decomposes the input image
in octave bands, then a directional filter bank is applied to each bandpass channel.

(a) (b)

Figure 2.7: Example of contourlet decomposition on the “zone plates” test image.

An example of contourlet decomposition of an image with strongly oriented elements is
given in Fig. 2.7. Notice that coefficient response is not necessarily oriented with the contours
of the initial image. Nonetheless, for image compression and denoising, contourlets have been
shown conclusively to perform better than separable wavelet bases in several applications (Vil-
legas et al., 2008; Shan et al., 2009; Hiremath et al., 2011).

2.1.4.2 Ridgelets

Another attempt to define oriented wavelet are the fairly straightforward ridgelets (Candes,
1998; Candès and Donoho, 1999). The continuous ridgelet transform is defined in the following
way: Let ψ : R −→ R be a smooth univariate function satisfying the following wavelet
admissibility condition:

Cψ =

∫
R

|Ψ(ω)|2
|ω|2 dω < +∞, (2.16)
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Figure 2.8: A conceptual implementation of the Ridgelet transform: images are sampled along
centered rays in Fourier space. Radon slices are then transformed by the 1D wavelet.

where Ψ(ω) is the Fourier transform of ψ. Note that this implies Ψ(0) =
∫
ψ(x)dx = 0. We

also assume this wavelet to be normalized:∫
R

|Ψ(ω)|
ω2

dω = 1. (2.17)

Then, for each scale a > 0, each position b ∈ R and orientation θ ∈ [0, 2π), we define the
ridgelet ψa,b,θ of x = (x1, x2) ∈ R2 as:

ψa,b,θ(x) =
1√
a
ψ((x1 cos θ + x2 sin θ − b)/a). (2.18)

A ridgelet is constant along the line x1 cos θ + x2 sin θ = C with C constant. In the direction
perpendicular to this line, it is a wavelet function. Ridgelet coefficients are defined by

Rf (a, b, θ) ≡ 〈f, ψa,b,θ〉 =

∫
R2

f(x)ψa,b,θ(x)dx. (2.19)

The exact reconstruction is given by:

f(x) =

∫ 2π

0

∫
R

∫ +∞

0

1

4πa3
Rf (a, b, θ)ψa,b,θ(x)dadbdθ (2.20)

Ridgelets can be viewed as wavelet analysis in the Radon domain. The Radon transform in
polar coordinates (ρ, θ) ∈ R× [0, 2π) is given by

Rf(θ, ρ) =

∫
R2

f(x1, x2)δ(x1 cos θ + x2 cos θ − ρ)dx1dx2, (2.21)

with δ the Dirac distribution.
The ridgelet transform is then the application of a 1D wavelet transform to the slices of

the Radon transform, when θ is held constant and ρ varies. Therefore, a strategy to compute
a ridgelet transform is first to compute a Radon transform on f and then a wavelet transform
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Figure 2.9: A conceptual implementation of the first-generation curvelet transform. The orig-
inal image is decomposed into sub-bands by a 2D separable wavelet transform. Each sub-band
is spatially partitioned, and each block analyzed by the ridgelet transform.

on the slices (see Fig. 2.8). However, since images are not continuous, a discretization strategy
must be proposed. Several practical transforms are described and compared in Fadili et al.
(2007).

The influence of ridgelets has been more theoretical than practical (indeed the entire
thesis of Candès shows no experiments at all), since the underlying model assumes straight
boundaries across the whole image. However some experiments with denoising shows that
they perform adequately (Chen and Kégl, 2007), especially with a complex wavelet in the 1D
transform (Chen and Kégl, 2007), or when the model corresponds to the image (Zhang et al.,
2008).

2.1.4.3 Curvelets

Since the assumption of straight boundaries over the whole image is too strong, an interesting
development is to use the ridgelet transform not on the whole image, but locally, on image
sub-blocks. A natural idea is to use the multi-resolution bandpass decomposition of a sepa-
rable wavelet transform to compute the sub-blocks. This led to the first generation curvelet
transform (Donoho and Duncan, 2000; Starck et al., 2002), illustrated on Fig. 2.9.

However these curvelets are complex both to describe and compute, and highly redundant.
This led Candès and Donoho in 2003 to propose a different construction, termed second-
generation curvelets. These G2 curvelets are functions with vanishing moments in a given
direction α like wavelets, but an elongated support in the direction α + π

2 , using different
scaling factor along their width and length. Their frequency support is a wedge in Fourier
space, constructed by the product of a radial window with an angular window. More precisely,
a continuous curvelet atom, with scale s > 0, orientation θ ∈ [0, 2π), and position y ∈ [0, 1]2

is defined by:

ψs,y,θ(x) = ψs(R
−1
θ (x− y)), (2.22)

with ψs(x) ≈ 2−3j/4ψ(x1/
√
s, x2/s), which is close to a parabolic stretch of a curvelet function

ψ, with vanishing moments in the vertical direction. Rθ is the rotation operator of angle θ.
At the given scale s, this curvelet atom is a thin object oriented in the direction θ, with
an envelope is a ridge of length 1/

√
s and width s. It satisfies therefore a scaling property
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Figure 2.10: A second-generation curvelet ψs,y,θ(x). On the right, the frequency support of
Ψs,y,θ(ω) (from (Jacques et al., 2011))

of width = length2. The continuous curvelet transform defines the set of inner products
〈f, ψs,y,θ(.)〉 for all (s,y, θ). A non-trivial design of ψ allows conservation of energy and a
reconstruction formula (Candes and Donoho, 2003).

The continuous definition can be sampled to defined a wavelet frame, in such a way that
curvelet parameters are sampled using an increasing number of orientations at finer scales,
covering the whole frequency domain. The discrete curvelet transform also replaces radial
windows by square ones and rotations with shears.

Curvelets have been shown to exhibit good properties with respect to denoising and com-
pression of natural images.

2.1.4.4 Bandelets

These approaches depend on the notion of contour, which is not very well defined. Contrary
to the previous approaches, bandelets (or bandlets) attempt to reduce the redundancy of
orthogonal wavelet coefficients. They work through an operation called “bandeletization”,
which involves a segmentation of the wavelet domain. Similarly to curvelets, there has been
at least two generations of bandelets and the literature can be confusing. This short summary
takes as basis Mallat (2009, chap. 12). Further work related to bandelets can be found
in Le Pennec and Mallat (2005); Mallat and Peyré (2007); Peyré and Mallat (2008). Some
Matlab code used to be publicly available but is unfortunately no longer so at the time of
writing.

The idea of bandelets is take advantage of the image geometric information, in particular
of regularity alongside edges. This is implemented by a directional wavelet transform applied
directly over orthogonal wavelet coefficients. This is called a “bandeletization” of wavelet
coefficients. The directional wavelets are defined through a geometric approximation model.
At each scale, and for each direction (typically three directions for orthogonal wavelets),
the array of wavelet coefficients is divided into squares of varying size, following a quadtree
structure encoding the non-regular regions (i.e. the regions with significant coefficients). In
regular regions, coefficients are small and no further processing is required. In regions where a
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Figure 2.11: Geometric flow and derived directional wavelets (from Mallat (2009, p.635). in
(a) the geometric flow, in (b) the warping procedure, in (c) wavelet encoding and (d) inverse
warping.

clear direction cannot be found, these coefficients are not processed either, on the assumption
that those are relatively rare. Near edges and oriented structures, a geometric flow is defined.
This flow is a vector field which is locally parallel to itself either vertically or horizontally,
providing the direction where the orthogonal wavelet coefficients are the most regular (the lines
of the flow itself need not be aligned either horizontally or vertically). Wavelets coefficients
are then warped in the direction perpendicular to the main flow lines, so that the flow lines
themselves become either horizontal or vertical. Directional wavelets are then constructed from
these warped coefficients, which are no longer located on grid points. Alpert wavelets (1993),
suitable for non-uniform sampling grid, are used to represent the coefficients along the flow
lines. The inverse warp provides the directional wavelets. The procedure is illustrated in
Fig. 2.11.

Bandelets inherit a lot of regularity from the families of wavelets they use. Constructing
an bandelet basis is for instance feasible. The idea of bandelets is quite original and seems
promising, however a freely available reference implementation is lacking, and so evaluation is
in fact difficult.

2.1.4.5 Other Xlets

Other wavelets with geometric or orientation information have been proposed, for instance
various families of steerable wavelets (Simoncelli et al., 1992), the dual-tree complex wavelet
transform (Kingsbury, 2001; Selesnick et al., 2005), and others. They combine orthogonal
wavelet transforms with ideas presented earlier in this section (respectively steerable filters and
Gabor wavelets) and have many interesting properties, however their discussion is somewhat
redundant with what has already been presented.

Many more details, properties and illustrations regarding oriented wavelets can be found
in the following documents: Fadili et al. (2007), Mallat (2009, chap. 5), Jacques et al. (2011).

2.1.5 Non-local filtering and patches

Most of the ideas presented so far, applicable to the filtering of thin objects, consist essentially
of detecting directions in which objects vary as little as possible, in order to exploit this
information in filter designs, e.g. by integrating in this direction only. Another idea is to
compare regions which are broadly self-similar, and integrate over these regions. This is the
idea behind non-local means (Buades et al., 2005).
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Figure 2.12: The principle behind non-local means: the denoised pixel at position i (in red) is
a weighted average of the voxels j according to the similarity between patches around Ni and
Nj, where Nj is restricted to the search volume Vi (figure Coupé et al. (2008a)).

Let Ω be the domain of a noisy image I0, Let I be the denoised image, expressed in this
fashion:

I(x) =
1∫

Ωw(x,y)dy

∫
Ω
w(x,y)I0dy, (2.23)

where x is the local position, y all the non-local positions in the image, and w is expressed by

w(x,y) = exp

(
−
∫

Ω

1

h2
Gσ(z)|I0(x + z)− I0(y + z)|2dz

)
, (2.24)

where Gσ is a Gaussian function of standard deviation σ and h is a tuning parameter. The
term 1∫

Ω w(x,y)
is a normalization factor. The obtained value in the denoised image at location

x is simply a weighted average of all the other points y in the image. The weight is calculated
as a Gaussian-weighted sum of squared difference between the regions around x (fixed for a
given x) and y (moving). In practical terms, this means that points in the entire image will
be averaged together (i.e. denoised) if their neighborhoods are similar.

In practice this algorithm is too costly, indeed if n is the number of pixels in the image,
then performing the averaging around each pixel requires n2 differences, hence its complexity
is in the order of O(n3), which is unworkable, not to mention useless, as soon as n is greater
than 128 × 128, say. To make the algorithm tractable, we define a neighboring window N
(or patches) related to σ and a search window V . We compute the sum of square differences
between patches only in the search window around each pixel, as illustrated in Fig. 2.12. To
further reduce the cost, only a small subset of similar windows linked to each pixel may be
kept, prompting a so-called patch-based approach.

Since computing sum of squared differences is a window-summable operation, and since
the computing of patch differences is highly parallelizable, this has led to some interesting
implementations, for instance by Darbon et al. (2008), as well as GPUs (Liu et al., 2008;
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Huang et al., 2009). A non-local denoising demo has even been part of the NVidia distribution
of CUDA for several years (Kharlamov and Podlozhnyuk, 2007; Nickolls et al., 2008).

The non-local means approach delivers very good denoising results on natural images,
and has inspired many authors to include non-local approaches in their research. Non-local
patches have been proposed in various contexts, for instance used in variational regularization
terms (Gilboa and Osher, 2008; Bresson and Chan, 2008; Bresson, 2009; Peyré et al., 2011).
Many patch similarity measures have been proposed, some using learning approaches (Mairal
et al., 2009; Mairal, 2010). Links to wavelet analysis have also been proposed by Dabov
et al. (2006, 2007). This combined approach of wavelet and patch-based regularization is the
basis of the BM3D algorithm (Danielyan et al., 2012; Marc Lebrun, 2012) which is currently
widely considered to be the state of the art in image denoising, along with several similar
methods (Kervrann et al., 2007; Coupé et al., 2008a). Note, however, that this has not been
confirmed in the particular case of thin objects.

In the context of thin objects filtering, NLM have been used in the context of 3D
MRI (Coupé et al., 2008b). We will show other examples of applications of NLM-type methods
in section 2.3.

2.2 Non-linear, morphological operators

Up to now we have broadly reviewed linear approaches. We focus this section on non-linear
filters, particularly those based on mathematical morphology.

2.2.1 Operations with line segments as structuring elements

When seeking to filter thin objects, a common assumption is to consider that they are locally
oriented and therefore, at some scale, they can be assimilated locally to a short line segment.
A simple idea to filter such objects in the framework of mathematical morphology is to use a
filter bank, in this case by making use of the well-known properties of openings and closings,
namely that a supremum of openings is an opening; and an infimum of closing is a closing.

A natural structuring element in this case is a segment of a given length L. Since mor-
phological1 openings and closings yield the same result, it does not matter whether they are
centered or not. The length L provides a parameter that offers a compromise between the
effectiveness of the filter and the maximum curvature of the feature one seeks to keep. A
straightforward, parallel implementation of this idea consist of generating a family of line seg-
ments, and simply performing the successive openings and closings, retaining respectively the
supremum or the infimum, which can be built iteratively.

Using an effective algorithm for computing arbitrary erosions and dilations, such as in (Van-
droogenbroeck and Talbot, 1996) and especially (Urbach and Wilkinson, 2008) may help, but
the complexity of a single such openings/closings remains of the order of O(L × N) in the
worst case, with N the number of pixels in the image. Assuming one samples D directions,
one requires O(L × N × D) operations. In order to cover all the useful angles, D ≈ πN ,
and so the total complexity is O(L2 × N). Nonetheless such algorithms were used with a
small D (fewer than 10) in some applications. One of the earliest documentation for such an

1I.e. structuring element-based, as opposed to algebraic, which may not be the composition of an erosion
and a dilation.
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(a) (b) (c) (d)

Figure 2.13: The classical “burner” application showing a metal grid with gas burner behind
(a). The objective here is to detect the grid, which can be performed by an infimum (d) of a
vertical (b) and an horizontal (c) closing with a long and thin structuring element (100 × 1
and its transpose)

(a) (b)

Figure 2.14: The reason why algorithms using Van Herk-like recursive computation along
oriented lines to perform openings with oriented segments are not translation-invariant. In
(a) we show a Bresenham discrete line. In (b) its decomposition into successive segments 9
pixel long. All segments indeed have the same length, however the arrangement of successive
pixels is not the same from one segment to the next.

instance is in the Micromorph example manual (Gratin, 1989) with the “burners” application
(see Fig. 2.13).

In order to improve speed, in 1992 Van Herk (1992) proposed an algorithm to compute
MM operators along vertical or horizontal lines in constant time irrespective of L. A straight-
forward extension of the Van Herk algorithm is to consider sloped discrete lines, for instance
Bresenham lines (1965), which then yields operators with arbitrarily oriented line segments.
This lowers the complexity to O(L × D) (Soille et al., 1996). Improvements of the basic
Van Herk scheme proposed by Gil and Kimmel (2002) and then Vandroogenbroek and Buck-
ley (2005) helped improving the speed even further. However, the recursive approach common
to all these algorithm loses the translation invariance property of the straightforward parallel
implementation. We will look into this problem in section 2.3.1.1, however Fig. 2.14 explains
this problem. Using a recursive computation along a line segment amounts to using different
segments as structuring elements depending on the origin location.
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θ

δθ

O

Figure 2.15: Vincent’s local paths: a local minimal path is computed from the center of a
window at O to the border of the window, constrained in a semi-cone oriented along θ and of
aperture δθ.

2.2.2 Binary-only approaches

Finding the orientation of binary thin objects is a problem in itself. They can be handled as a
grey-level object of course, but it is sometime useful to exploit the binary nature of the data.
For instance, Kurdy and Jeulin in (1989), as well as Tuzikov et al. (1992) proposed to use
rotated pairs of points as structuring elements and covariogram-like approaches to find the
orientation of binary objects. Following a suggestion by Beucher, in Soille and Talbot (1998)
we proposed to take as local orientation at a point x ∈ A measure the direction of the longest
segment fitting in A at x. (Altendorf and Jeulin, 2009) have proposed to use the combined
information from several distance transforms to compute local orientation in 2D and 3D. This
is an extension of a classical approach consisting in computing the gradient of the distance
transform of a binary object, although the latter is not very precise. In text processing, the
de-skewing of a scanned page requires the computation of a global orientation, which can be
achieved very cheaply by projection and histogram (Bloomberg and Vincent, 2010). Since it
is fairly unusual to benefit from purely binary data as input, these approaches suffer from the
need to obtain a segmentation first. As orientation is a strong cue for segmentation, these
methods are often hampered by a chicken-and-egg situation.

2.2.3 Local minimal path

Minimum-cost paths can be computed in images at a relatively low cost, by considering typi-
cally a restriction of the local connectivity graph (Dijkstra, 1959; Rosen and Vincent, 1994).
Since paths embed some local orientation information, an idea is be to consider families of
paths going through a point. Vincent (1998) proposed to compute shortest paths constrained
by oriented (semi-)cones (or wedges), as shown on Fig. 2.15. In spite of their apparent com-
plexity, these shortest paths can be efficiently computed in scan order in parallel. Paths can
be more or less constrained depending on the aperture of the considered cones. Given a
sufficiently small aperture, one can increase the angular resolution arbitrarily, however more
constrained cones tend to look more like line segments, losing some of the specificity of this
approach.

Local shortest paths can be used in several fashions. A simple way is to record at each
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(a) (b)
ure

(c)

Figure 2.16: Fibre segmentation with local shortest paths. (a) A thin fibre on a noisy back-
ground; notice the disconnections. (b) Image of the smallest length of local shortest paths,
using cones of aperture 15 degrees. (c) threshold of image (b), detecting the fibre.

cone origin the smallest of all the (weighted) length of all the constrained local paths. It is
also useful to record the orientation of the cone from which this path originates, as well as
other information about all the other paths from different cones, such as the highest, or the
average length. In this way, it is possible to distinguish cone origins coming from a flat regions
(in which most paths will be of equal length) vs. an oriented region, where some paths might
cost significantly more or less than the average path. Vincent used the smallest constrained
path as a new metric on the image, from which to derive further processing.

2.2.4 Connected morphological filters

Work of Breen and Jones, Work of M. Wilkinson, also some work at the CMM for retina
angiography in 2D. This is quite important !

2.2.5 Geodesic paths and path voting

Discrete paths can be computed using Dijkstra-like methods, however more regular versions
of the same concept can be derived from the Fast-Marching Method and similar (Tsitsiklis,
1995; Sethian, 1999a). Such paths are sometime termed geodesic paths. Significant work has
been derived from path computations in 2D and 3D (Cohen and Kimmel, 1997; Ardon and
Cohen, 2006; Cohen and Deschamps, 2007; Benmansour and Cohen, 2009, 2011).

An interesting approach to the filtering and segmentation of thin objects is geodesic vot-
ing (Rouchdy and Cohen, 2008). The idea is to seed the computation of many geodesic paths
throughout the image, which tend naturally to converge to thin structures. In flat regions
only a few geodesic paths are present, whereas in areas where oriented objects are present,
the density of paths tend to increase. A measure based on the density of such path leads to
useful metrics for the detection of thin objects, although shading effects sometimes affect the
results (Rouchdy and Cohen, 2009).
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2.2.6 Other approaches

Many other, more ad-hoc, approaches have been proposed to detect thin structures. They
tend to depend on properties that are not always easy to generalize outside of a few appli-
cations. One exception is the oriented median Graf and Wörn (2007), which uses directional
information from the structure tensor. A 1D median filter is then applied instead of a more
common diffusion approach. 1D median filtering in orthogonal directions is sometimes used to
filter oriented structures that are not uniformly dark or white (Sun et al., 2006). Unstructured
graph-based approaches have been used when thin objects are sufficiently wide, yet to noisy
to be detected as one feature (Viero and Jeulin, 1995).

Importantly, topological information, which is a strong cue but is not always easy to deal
with, has been used in edge and thin object linking (Shih and Cheng, 2004) as well as thin
surfaces segmentation (Dokladal et al., 1999; Cardoso et al., 2011). One critical aspect is that
topological information is a fragile global property, whereas most image analysis is local and
affected by noise. In some instances, as above, when the whole dataset is visible (e.g. whole
organ like the liver or the brain), this can prove very useful.

2.2.7 Demosaicing

Demosaicing is a very specific problem, which has however been widely studied because of the
relatively recent ubiquity of colour sensor arrays. CFAs are a sensible and cost-effective solu-
tion to colour sensing and have contributed widely to the miniaturization and democratization
of digital cameras. It is interesting to note that even in recent cameras, the most commonly
used CFA is the original Bayer contribution, dating from the 1970s (E.Bayer, 1976). In spite
of its many flaws and incorrect assumptions, so much work has been proposed to correct the
artifacts that it generates, that the quality of the resulting images is effectively “good enough”.
Meanwhile the patent has lapsed and camera manufacturers have been able to reap the re-
wards of this research, as well as of a good part of the research put forward by the academic
community on this problem.

A very good literature review of many CFA demosaicing approaches was written by Gun-
turk et al. for the IEEE Signal Processing Magazine (2005) in 2005. Since then some progress
has been done, but all the issues are well described in this article.

2.2.8 Discussion

Although it cannot be claimed that the previous sections constitute a complete coverage of the
processing and analysis of thin objects in the imaging literature, it is hopefully representative
of the variety of efforts researchers have spend studying these objects. Also, at this stage it
should be obvious that even though thin objects are not the most studied features in image
analysis, their processing is important. Virtually all areas of image processing have devoted
some effort to their particular cases, which are unfortunately neither unified nor simple. As a
result the solution proposed are not all satisfactory. Taking as example the wavelet domain,
there does not exist as yet a method of representing edges or oriented textures which is
fully satisfactory. Arguably the most promising approach, bandelets, is not a fully developed
technology. Other linear filters, in spite of a large variety of useful properties, either propose
something that is too local or too global. Less effort has been extended to non-linear filters, as
the community working in this area is indeed smaller, however there has been some promising
approaches, which deserve to be extended. This is the topic of the next section.
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Figure 2.17: An image of thin man-made vitreous fibres, including thin ones.

2.3 Contributions to thin objects filtering

In this section, we present and discuss contributions to the domain of thin object filtering and
segmentation.

2.3.1 Segment-based operators

Since my original training is in mathematical morphology, it should come as no surprise that
some of my contributions were made in this framework. My original Ph.D work involved the
filtering and segmentation of man-made vitreous fibres, which appear in 2D as a superposition
of multiscale, thin, oriented objects, as on Fig. 2.17

In spite of the simplicity of the problem: measuring the diameter of all the visible fibres,
it is in fact difficult. No fibre can be missed and they shouldn’t be counted more than once.
Fibres can be very thin indeed, their diameter reaching down to the highest resolution of the
microscope. The risk of missing a fibre is therefore high. Since they are long, and corrupted
with noise, as well as overlapping, the problem is non-local, the risk of separation is high, and
so the risk of multiple counting is high as well. In addition, the thinnest fibres are in fact
those of highest interest. This provided motivation for many years of research, and indeed I
do not consider the problem as solved even today.

2.3.1.1 Faster, less noise sensitive, and translation-invariant morphological op-
erators with line segments

As noted in section 2.2.1, one way to filter thin objects is to consider them locally straight,
and fast operators for MM operators using line segments have been proposed in the literature.
However there were two remaining problems with these approaches: i) the lost property of
translation-invariance and ii) the noise sensitivity.

The translation-invariance property of filtering operators is always important, but espe-
cially so for thin objects. Indeed, it is common in applications to have several similar objects
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(a) (b) (c)

(d) (e) (f)

Figure 2.18: Image of cauliflowers leaves (a), opened by Bresenham line segments with the
same orientation and the same length (15), but of different origin (b-f). The results can be
startlingly different.

to filter in the same image. If the operator does not behave in exactly the same way through-
out the image, then parameter optimization can become impossible. For thin objects, the
difference might be quite noticeable, as shown on Fig. 2.18, and can lead to unreliable results.

Noise sensitivity is a somewhat different issue, since it is a feature of the operator itself.
Indeed the geometrical interpretation of an opening (or a closing) helps explaining the problem.
Assuming any set F , a morphological opening operator γS with structuring element S will
not filter it out completely it, i.e. γs(F ) 6= ∅ if and only if S ⊂ F . However, if F is line-like,
i.e. thin and long, then S must be as well, to discriminate F from other objects. However,
noise becomes more and more problematic as the length of S increases. Indeed, in the limit a
single noise pixel along the length of F might ensure that S will not fit into it, and so γS will
filter it out. As shown on Fig. 2.19, in the presence of noise, only segment with small length
can be used, longer segments erase all features. However segments with small lengths are not
able to eliminate the noise.

2.3.1.2 Restoring the translation invariance

The situation can be described in the following: we want to keep using recursive algorithms
to compute segment-based MM operators because of the speed benefits, but we do not want
to lose the translation invariance property.

In (Soille and Talbot, 2001) we propose two solutions, which share a common part. The
common part is as follows: First we restrict ourselves to orientations that can be expressed as
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(a) (b) (c)

Figure 2.19: Line filtering sensitivity in the presence of noise: in (a) a synthetic image of
line-like objects. In (b), the same image corrupted by salt-and-pepper noise. In (c), the result
of the union of openings by arbitrarily oriented segments of length 5.

a rational number. This is not a drawback concerning visual and quantitative quality of the
output, yet it ensures that the number of operations we need to compute is finite (and indeed,
relatively small). Both solution involve computing a number of Bresenham lines for any given
orientation, indeed, all the Bresenham lines that have the same slope but a different origin.

Denoting ψBLλi (dx,dy) the non translation-invariant (TI) morphological operator performed
along a Bresenham line of length λ, of origin i, and orientation vector (dx, dy), with k =
max |dx|, |dy| and i ∈ 1, . . . , k. We denote ψLλi (dx,dy) the TI equivalent. We show the following
property:

k∨
i=1

γBLλi (dx,dy) =
k∨
i=1

γLλi (dx,dy) (2.25)

k∧
i=1

ϕBLλi (dx,dy) =
k∧
i=1

ϕLλi (dx,dy) (2.26)

In other words, since these operators are respectively openings and closings on both sides
of the equal signs, it is possible to generate TI operators from non-TI ones, at the expense of
having to consider a larger family of operators. On the other hand, we argue that considering
this larger family yields a much finer final operator, which is better able to preserve thin details,
and we do extract significant benefits from using this larger family beyond the translation-
invariance only.

To compute the actual operator, this is where the two solutions diverge. We can either use
the van Herk recursive formula or any of its variants, or we can use a sliding window combined
as proposed in (Gil and Werman, 1993) and extended to arbitrary shapes and combined with
an histogram search in (Vandroogenbroeck and Talbot, 1996). While the recursive formula
is relatively straightforward, we also proposed a translation-invariant way to visit successive
pixels along a particular oriented line, which is compatible with the sliding-window algorithm.
This sliding-window algorithm is particularly interesting, because it allows us to combine
morphological and rank filters, which is extremely useful for noise sensitivity.
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(a) (b) (c)

Figure 2.20: Line filtering with rank-max opening: in (a) a synthetic image of line-like objects.
In (b), the same image corrupted by salt-and-pepper noise. In (c), the result of a union of
rank-max openings using segments as structuring elements. Compare with Fig. 2.19.

2.3.1.3 Improving noise sensitivity

Noise sensitivity of morphological operators is a serious problem, which has been well illus-
trated for instance by Heijmans (1996) and undermines the effectiveness of the framework in
some applications. For instance, given a set A and an opening γB by a structuring element
B. We assume γB(A) = A with a noise-free A. Irrespective of the size of A and B, if A is
corrupted by a single noise pixel to form A′, it could well happen that γB(A′) = ∅. Various
strategies have been developed to cope with this problem, giving rise to the theory of morpho-
logical filtering (Serra and Vincent, 1992), which depending on the context may be more or less
flexible (Bloch and Maitre, 1994), computationally intensive or effective (Meyer, 2004). How-
ever one family of morphological filters, solves this particular problem very effectively (Soille,
2002):

Rank order filters are at the basis of very powerful openings and closings called rank-max
openings and rank-min closings. These operations have been originally proposed by Ronse
(1986), also in Ronse (1988). The idea of rank-max operators is instead of using a plain
discrete structuring element B whose cardinal number equals n pixels, a variable structuring
element is used instead. Taking as example the opening, the rank-max opening consists of
taking the supremum of the morphological openings by all possible subsets B′ ⊆ B with
cardinal k, 1 ≤ k ≤ n.

Denoting γB,k the rank-max opening with structuring element B and parameter k, we
have

γB,k =
∨
γB′ , B

′ ⊆ B and card(B′) = k, (2.27)

with 1 ≤ k ≤ card(B). Computing this operator with this definition is prohibitive, fortunately,
Ronse showed that the following expression is equivalent:

γB,k = id∧(δBζB,n−k+1), (2.28)

Where ∧ is the pointwise infimum, δB is the adjunct dilation to erosion εB, and ζB,l is the
rank operator using l as rank. We see that when k is 1, ζB,n reduces to the max filter, i.e.
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(a) (b) (c)

Figure 2.21: On an image of fibres in a microprobe (a). Comparison between translation
invariant opening (b) and rank-max opening (c). Colours indicate orientation.

the dilation operator. Since the dilation is extensive, γB,1 reduces to identity through the
pointwise minimum operator. On the other hand, if k is n, ζB,1 reduces to the min filter and
the rank-max operator is a classical opening. In between these values, the rank-max opening
has the properties described above, which have the effect of reducing the noise sensitivity of
morphological operators.

Since noise-sensitivity is even more important for thin objects, it is useful to be able to
compute rank-max operators with segment-based morphological operators. Fortunately this
is possible using our TI operators described in the section above, particularly the sliding-
windows implementation, which is suitable for any rank operator. In Fig. 2.20, we illustrate
the capacity of a union of rank-max opening with line segments as structuring elements to
restore the thin and straight parts of an image, with some false positives.

In Fig. 2.21 we show a real example of fibres imaged in an X-ray microprobe. Orientation
is calculated pointwise by the opening that yields the highest response. We see that this
information is useful, naturally highly correlated, and that the rank-max version yields a less
noise-sensitive result, as expected.

The combination of translation-invariance and noise robustness properties make these ra-
dial operators useful in a number of applications. Some will be shown at the end of this
chapter.

2.3.1.4 Other remarks

The supremum of openings with line segments is sometimes called the radial opening, and
complement operator: the infimum of closings with line segments is sometimes called ra-
dial closing. From these several other interesting operators can be built, including oriented
granulometries, orientation histograms, segmentation methods using orientation, and oriented
top-hat.

An important point is the efficiency of these operators. In spite of the larger family of
SEs that must be considered to retain the translation invariance, the TI radial operators still
keep a low complexity. By considering the Farey sequence (1816) to find out which individual
operator to perform, their number is kept to a minimum.

These important details are described bySoille and Talbot (1998, 2001). This latter paper
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is reprinted in this document as Appendix D. Please refer to it for more details.

2.3.2 Operations with paths as structuring elements

In Fig. 2.20, we show the result of a morphological, rank-max radial opening. While the
straight elements of the original image are sufficiently well restored (with some false positives),
the curved thin object is completely lost. The reason for this, of course, is that it is not
sufficiently locally straight to fit with the model of the radial opening. To cope with this
sort of objects, we need a larger family of structuring elements: some that are thin, but not
necessarily locally straight.

One idea, inspired by the approach of Vincent (1998) it to use families of paths constrained
in such a way that they are always subset of a cone at every vertex. However, if we consider
for instance a cone of aperture π

2 and an 8-connected graph, at each vertex three edges are
admissible for path continuation, and so if the path is of length L, the total number of
admissible paths is 3L, which quickly becomes a very large number.

Nonetheless, since morphological operators can be computed recursively, we now show we
can actually define and compute such operators.

2.3.2.1 Graphs and path operators

In this section we recall the definition of path openings and closing, and we expand their use
to include morphological profiles. In this and the following section, all definitions are given for
the binary image space P(E). The results can be generalised to the space of grey-scale images
Fun(E, T ) by means of the thresholding theorem for flat morphological operators (Heijmans,
1994, Chapter 11). Path-based morphological operators were first described in Buckley and
Talbot (2000), and again with a much better formalism in Heijmans et al. (2004).

Let E be the image domain endowed with a binary adjacency relation x 7→ y, meaning
that that there is an edge going from x to y. In general, the relation ‘7→’ is non-symmetric,
which means that the graph given by the vertices E and the adjacency relation 7→ is a directed
graph. If x 7→ y, we call y a successor of x and x a predecessor of y. Using the adjacency
relation we can define a dilation on P(E) by writing

δ({x}) = {y ∈ E | x 7→ y} . (2.29)

In other words, the dilation of a subset X ⊆ E comprises all points which have a predecessor in
X. These concepts are illustrated on Fig. 2.22. Here b1, b2, b3 are successors of a and δ({a}) =
{b1, b2, b3}. Furthermore, a1, a2, a3 are the predecessors of b and δ̆({b}) = {a1, a2, a3}.

The L-tuple a = (a1, a2, . . . , aL) is called a δ-path of length L if ak 7→ ak+1, or equivalently,
if

ak+1 ∈ δ({ak}) , for k = 1, 2, . . . , L− 1 . (2.30)

Note that a = (a1, a2, . . . , aL) is a δ-path of length L if and only if the reverse path ă =
(aL, aL−1, . . . , a1) is a δ̆-path of length L. Given a path a in E, we denote by σ(a) the set of
its elements:

σ(a1, a2, . . . , aL) = {a1, a2, . . . , aL} . (2.31)
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Figure 2.22: b1, b2, b3 are successors of a and a1, a2, a3 are the predecessors of b.

Figure 2.23: A set X ⊆ E (black points on the left) and its opening α6(X) (black points on
the right). The points on the right with a white center are discarded by the transform.

We denote the set of all δ-paths of length L by ΠL. The set of δ-paths of length L contained
in a subset X of E is denoted by ΠL(X), i.e.,

ΠL(X) = {a ∈ ΠL | σ(a) ⊆ X} , (2.32)

We define the operator αL(X) as the union of all paths of length L contained in X:

αL(X) =
⋃
{σ(a) | a ∈ ΠL(X)} . (2.33)

The transform αL has all the properties of an algebraic opening (Heijmans et al., 2005),
and we call it the path-opening. Conversely, path-closings are defined by straightforward
complementation (i.e. exchanging foreground and background). We illustrate the result of a
simple path opening on Fig. 2.23.

In (Heijmans et al., 2005) we provide a recursive formula for computing paths operators
with length parameter k + 1 from the path operators with length k, and an associated poly-
nomial complexity algorithm.

Path openings and closings are dependent on the notion of graph connectivity. In order
to be useful, this connectivity should reflect the kind of paths that the application requires.
Examples of useful graphs are those that define cones oriented in the principal directions
of the grid, as shown in Fig. 2.24. Path openings and closings in these graphs are those
that retain paths that at each point fit in a π

2 angle cone, oriented in a principal direction.
Combinations by supremum (for openings) and infimum (for closings) make it possible to
retain paths oriented in all possible directions just using these four adjacencies.

Employed in this manner, path openings and closings can be used to retain features that
are locally oriented but not necessarily perfectly straight. Path openings and closings can be
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Figure 2.24: Four different adjacencies defining overlapping π
2 cones.

implemented efficiently both in the binary and grey-level cases with a linear time complexity
with respect to L using a decomposition algorithm Heijmans et al. (2005). Improved algo-
rithms were proposed in Appleton and Talbot (2005a); Talbot and Appleton (2007). In terms
of efficiency, these path-based operators are about as fast as radial operators for the same
dimensions (segment length vs. path length). In terms of translation-invariance, path-based
operators inherit this property from the graph they use. Since the graphs in Fig. 2.24 are
TI, so are the path-based operators they are based upon. Paths with smaller aperture are
typically not TI, so composition by Sup/Inf can be performed to restore this property as with
the segments-based operators.

2.3.2.2 Path-based operators and noise sensitivity

Similarly to segment-based openings, operators with paths are noise-sensitive to some degree.
Because paths may be sufficiently flexible, depending on the adjacency graph that is used, they
can “route” around noise pixels to some degree, however it is still useful to add a measure of
robustness. This is achieved in a different way to segment-based operators, because a recursive
way to compute rank filters does not exist to our knowledge, and so formula 2.28 may not be
employed in the path context.

Instead, we have to rely on a more “brute-force” approach.
The path-opening αL(X) of a set X comprises the union of all length-L paths contained

inside X. We can relax this condition by demanding that only k out of L vertices of the path
lie inside X, thus yielding a so-called incomplete path-opening αkL(X). We present a formal
definition below.

Define Πk
L(X) as the collection of length-L paths in E which contain at least k points

inside X:

Πk
L(X) = {a ∈ ΠL | |σ(a) ∩X| ≥ k} . (2.34)

Note that this definition only makes sense for 0 ≤ k ≤ L, and that

ΠL(X) = ΠL
L(X) ⊆ ΠL−1

L (X) ⊆ · · · ⊆ Π1
L(X) ⊆ Π0

L(X) = ΠL . (2.35)

We define the incomplete path-opening as

αkL(X) =
⋃
{σ(a) ∩X | a ∈ Πk

L(X)} . (2.36)

Note that it is obvious that

αLL ≤ αL−1
L ≤ · · · ≤ α0

L , (2.37)

and that

αLL = αL and α0
L(X) = {x ∈ X | Λ(x) ≥ L} , (2.38)
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(a) (b) (c)

Figure 2.25: Line filtering with incomplete path openings: in (a) a synthetic image of line-like
objects. In (b), the same image corrupted by salt-and-pepper noise. In (c), the result of a
incomplete path opening with length 15 and gap 2. Compare with Fig. 2.19 and 2.20. Here we
recover both the lines and the curve.

where Λ(x) is the length of the longest paths that contains x. Putting

ĒL = {x ∈ E | Λ(x) ≥ L} . (2.39)

we get that

α0
L(X) = X ∩ ĒL . (2.40)

Furthermore, we define

ψkL(X) = {α1 | a ∈ Πk
L(X)} . (2.41)

We have

ψLL = ψL and ψ0
L(X) = {x ∈ E | λ̆(x) ≥ L} =

⋃
k≥L

Ĕk . (2.42)

Using the the convention that ψkL ≡ ∅ if k > L, it is possible to express ψk+1
L+1 in terms of ψk+1

L

and ψkL (Heijmans et al., 2005), and from there to express a polynomial-complexity algorithm.
In its binary form, the above recursion expresses the fact that the path operator can be

computed by a propagation operation first following the underlying connectivity graph, and
then in the reverse way. This enough to provide a workable general purpose implementation.
This was first performed by M. Buckley prior to the year 2000 using threshold decomposi-
tion. In Talbot and Appleton (2007), however, we proposed a much more efficient, ordered
algorithm.

This ordered algorithm, considers threshold levels from lowest to highest, and keeps in data
structures the paths that it encounters, building them recursively with the same formulas from
(Heijmans et al., 2005). We show that the complexity of this approach is linear in terms of
gaps pixels (i.e. a path operator allowing p gaps will take O(p) longer than a path with zero
gaps).
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Table 2.2: Some reference algorithms for the segmentation and classification of blood vessels

Method Accuracy (standard deviation)
2nd observer 0.9473 (0.0048)
Path operators 0.9445 (0.0084)
Zana et al. 0.9377 (0.0077)
Jiang et al. 0.9212 (0.0072)
Martinez-Perez et al. 0.9181 (0.0240)
Chaudhuri et al. 0.8773 (0.0232)

On Fig. 2.25, we show the result of using an incomplete path opening on our image of
thin objects corrupted by noise. We find that the incomplete path opening is capable of
eliminating all the noise which is sufficiently far away from the features of interest, both
straight and curved. From this result, finding the structure of interest is relatively easy (for
instance, perform an isotropic closing followed by thinning). We are not aware of any other
transform with similar characteristics.

Many more details about path operators are given in Appendix E, which is a reprint
of (Heijmans et al., 2005).

2.3.2.3 Applications in 2D

Path operators, being relatively new, have not yet been used extensively. They are useful for
filtering textures and objects that are long and thin. Some applications have included

• Hair detection and removal on skin lesions (Skladnev et al., 2004);

• Small glass and mineral fibre segmentation (Talbot et al., 2000);

• Neurite segmentation (Bischof et al., 2005);

• Nerve analysis on the cornea and non-destructive testing (Morard, 2012);

• Retina blood vessel analysis (?).

This latter topic is interesting because a limited public benchmark is available: the Dig-
ital Retinal Image for Vessel Extraction (DRIVE) at http://www.isi.uu.nl/Research/
Databases/DRIVE/ Staal et al. (2004), with 40 images and their associated ground truth.
Some results are shown on Fig. 2.26.

The full method is described in Már Sigurdsson et al. (2013). This analysis is ongoing
as of this writing, however based on early results, we have obtained the accuracy shown on
Table 2.2.

The competing methods are referenced in Niemeijer et al. (2004). The results provided by
path operators are very encouraging, however, as shown on Fig. 2.26, improvements are still
possible and necessary.

2.3.2.4 Extensions to 3D

Extensions of path operators to 3D or more are not problematic from the theoretical point
of view. Indeed, only a directed graph is necessary, which can easily be embedded in an

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.isi.uu.nl/Research/Databases/DRIVE/
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(a) (b)

(c) (d)

Figure 2.26: Eye fundus blood vessel analysis. (a) reference DoG ridge detection ; (b) path
closing detection; (c) path closing classification; (d) ground truth.
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arbitrary dimension lattice. However, from the point of view of the implementation, efficiency
is important because the number of possible oriented graphs increases and neighborhood of
any point becomes more complicated.

C. Luengo Hendriks was the first to propose a 3D implementation with some interesting
improvements in (Hendriks, 2010), which he used and evaluated in an application for wood
fibre analysis. However, this implementation does not include incomplete paths, which are
very useful for noise robustness.

A different approach for path noise robustness was proposed by F. Cokelaer et al. (Cokelaer
et al., 2012). Whereas incomplete path propose a global criterion for robustness (i.e. so many
pixels may be noise over the whole given length of the path), robust path operators (RPO)
propose a local criterion, by which any given succession of pixels may be noise, anywhere in
the path. The proportion of noise pixels is not given, only how many such pixels in succession
may be noise anywhere along the path, in arbitrary proportion. It turns out that the latter
approach requires much less accounting, but provides in practice similar results.

The use of 3D path operators is being currently investigated for crack detection, brain and
heart vessel segmentation. In particular alternatives to classical vesselness measures based on
these operators are of interest. A freely available implementation of path operators is available
at http://hugues.zahlt.info/ as well as http://pinkhq.com. Cris Luengo also maintain a
version as part of DIPlib at http://www.diplib.org/.

2.3.3 Other approaches

Many other approaches have been proposed for thin objects analysis. Performing a complete
analysis and comparison would be highly desirable, but fall out of the scope of the current
work.

Among the approaches that we have investigated but that we do not have the space
to present here are the combined linear-morphology approach of the Morpho-Hessian
by Tankyevych et al. (2008, 2009), recently improved with non-local filtering in Nguyen et al.
(2013).

We have also investigated shortest-path and fast-marching-based approaches, inspired by
the seminal work of Cohen and Kimmel (1997), as well as more recent work by Benmansour
and Cohen (2011). This has given rise to an efficient method for segmenting object based
on closed contour detection (Appleton and Sun, 2003), providing an exact 2D solution to the
Geodesic Active Contour model (Appleton and Talbot, 2005b), that we will present in the
next part of this work.

Recently, inspired by geodesic voting techniques introduced by Rouchdy and Cohen (2008,
2009), we have proposed an efficient 2D polygonal path voting technique (Bismuth et al., 2012),
which is very efficient at finding very thin structures in noisy environments, as illustrated on
Fig. 2.28.

2.4 Conclusion

In this long chapter, we have first provided a survey of the state of the art regarding the
filtering and segmentation/identification of thin objects in images, and we have outlined our
contribution.

http://hugues.zahlt.info/
http://pinkhq.com
http://www.diplib.org/
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(a)

(b)

(c)

Figure 2.27: Path operators on 3D fibres: (a) complete operator; (b) robust operator; (c)
classification. Results from Cokelaer (2013)
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Figure 2.28: X-ray fluorescence guide-wire extraction. Vesselness, Rotated Filtered Banks and
Polygonal path images, from Bismuth et al. (2012).

On the survey of thin object filtering While we cannot claim to have performed a
thorough survey, one conclusion is that most methods are set in the linear framework. These
include derivative-based filters, filter banks, steerable filters and of course a number of wavelet
frames and bases. The objectives of these approaches were not unique, the filtering of thin
objects being only one of the application. Other applications include in particular image
denoising/restoration with the constraint of preserving contours, and image coding/sparse
representation in the presence of arbitrarily oriented textures, thin objects and contours. In
this context, it is probably fair to say that only a subset of this work concerns 3D or higher-
dimension data. Exceptions include all the vesselness-oriented work using derivative-based
filters. Filter banks become expensive to compute in 3D, steerable filters beyond the basic
ones difficult to formulate. There exist some work on 3D wavelets but is as advanced and
sophisticated as in 2D. 3D curve and surface wavelet representations in particular are all but
absent.

In the non-linear domain, significant work has been based on shortest paths derived from
the fast-marching method, for vessel identification in particular. In this area the work on
surface identification has not been as convincing. Mathematical morphology work in this area
has focused on the use of segments as structuring elements, based on the hypothesis that
thin objects are at some scale straight enough. For filtering work, some elongation-based
connected thinning operators have also been proposed. They have been used for instance for
volume rendering, or in 2D angiography.

On our contribution Over the last few year, our work has focused on two areas: improving
the segment-based morphological operators, and developing path-based operators. Segment-
based operators were either slow or lost some important property like translation-invariance,
which practically meant that they could not be guaranteed to preserve some thin objects,
depending on their location in the image. We have shown how to reconcile the two, while also
providing a measure of noise-robustness via a rank-max formulation. Nonetheless segment-
based operators are fundamentally limited by their model, which supposes that at some scale
thin objects are segment-like, which may not be true.

For this reason, we have developed the theory and practice of path-based morphological
operators, which remove this assumption. These operators bridge the gap between segment-
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based operators, which are very oriented and assume local regularity and connected operators
like area-based openings and closings, or elongation-based thinnings which are much more
isotropic. Path based operators can behave more like one or the other, depending on the
underlying graph geometry and connectivity that is given. We have provided noise-resistant
operators via incomplete paths and robust paths, and we have extended them to 3D, all the
while providing robust and efficient algorithms.

We have also briefly outlined our contribution regarding combining linear and non-linear
operators in the Morpho-Hessian filter for thin objects, the polygonal path image, and the
link we have drawn between shortest-path computation and the segmentation of objects by
the detection of their closed contour as a thin object. This allowed us to formulate a practical
and exact solution to the well-known Geodesic Active Contour (GAC) problem. However
interesting, this solution only works in 2D, which led us to investigate flow-based methods to
solve the same problem in 3D or more. This is the topic of the next part, which will take us
in a completely different domain.



Part II

Flow methods in image analysis and
computer vision





Introduction

In this part we consider both discrete and continuous segmentation methods, particularly
those based on flow simulations.

Maximum flow methods are a classical way of solving a particular class of linear program-
ming problems, that are a subclass of transport methods. These methods are highly efficient
and usually solved on directed graphs. Due to seminal work of Y. Boykov, O. Veksler, and
R. Zabih (Boykov et al., 1998) to provide a general framework for formulating and solving
useful and interesting problems in computer vision on graphs, applications in imaging have
blossomed in this area.

We became interested in both discrete and continuous optimization methods soon after
2000 but somewhat independently of this particular work. At that time PDE-based methods
(finite differences and level sets) were the standard and so we cast our work in this frame-
work. More recently it has become clear that these methods can also be viewed in a convex
optimization framework, which is in fact more versatile and flexible.

This part includes a review of seeded, or so-called interactive segmentation methods, a
chapter on discrete methods and a chapter on continuous methods.
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Chapter 3

Seeded segmentation methods for
medical image analysis

Segmentation is one of the key tools in medical image analysis. The objective of segmentation
is to provide technique for reliable, fast and effective organ delineation. While traditionally,
particularly in computer vision, segmentation is seen as an early vision tool used for subsequent
recognition, in medical imaging the opposite is often true. Recognition can be performed
interactively by clinicians or automatically using robust techniques, while the objective of
segmentation technique is to precisely delineate contours and surfaces. This can lead to
effective techniques known as “intelligent scissors” in 2D and their equivalent in 3D.

This chapter is divided as follows. Section 3.1 starts off with a more “philosophical” section
that sets the background for this study. We argue for a segmentation context where high-level
knowledge, object information and segmentation method are all separate.

In section 3.2, we survey in some details a number of segmentation methods that are
well-suited to image analysis, in particular of medical images. We illustrate, make some
comparisons and some recommendations.

In section 3.3 we introduce very recent methods that unify many popular discrete segmen-
tation methods and we introduce a new one. In section 3.4 we give some remarks about recent
advances in seeded, globally optimal active contour methods that are of interest for this study.

In section 3.5 we compare all presented methods qualitatively and give some discussion.
We then conclude and give some indications for future work.

3.1 The need for seed-driven segmentation

Segmentation is a fundamental operation in computer vision and image analysis. It consists
of identifying regions of interests in images that are semantically consistent. Practically, this
may mean finding individual white blood cells amongst red blood cells; identifying tumors in
lungs; computing the 4D hyper-surface of a beating heart, and so on.

Applications of segmentation methods are numerous. Being able to reliably and readily
characterize organs and objects allows practitioners to measure them, count them and identify
them. Many images analysis problems begin by a segmentation step, and so this step condi-
tions the quality of the end results. Speed and ease of use are essential to clinical practice.

This has been known for quite some time, and so numerous segmentation methods have
been proposed in the literature (Pham et al., 2000). However, segmentation is a difficult
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problem. It usually requires high-level knowledge about the objects under study. In fact, se-
mantically consistent, high-quality segmentation in general is a problem that is indistinguish-
able from strong Artificial Intelligence and has probably no exact or even generally agreeable
solution. In medical imaging, experts often disagree amongst themselves on the placement of
the 2D contours of normal organs, not to mention lesions. In 3D, obtaining expert opinion is
typically difficult, and almost impossible if the object under study is thin, noisy and convo-
luted, such as in the case of vascular systems. At any rate, segmentation is, even for humans,
a difficult, time-consuming and error-prone procedure.

3.1.1 Image analysis and computer vision

Segmentation can be studied from many angles. In computer vision, the segmentation task
is often seen as a low-level operation, which consists of separating an arbitrary scene into
reasonably alike components (such as regions that are consistent in terms of color, texture
and so on). The task of grouping such component into semantic objects is considered a
different task altogether. In contrast, in image analysis, segmentation is a high-level task that
embeds high-level knowledge about the object.

This methodological difference is due to the application field. In computer vision, the
objective of segmentation (and grouping) is to recognize objects in an arbitrary scene, such as
persons, walls, doors, sky, etc. This is obviously extremely difficult for a computer, because of
the generality of the context, although humans do generally manage it quite well. In contrast,
in image analysis, the task is often to precisely delineate some objects sought in a particular
setting known in advance. It might be for instance to find the contours of lungs in an X-Ray
photograph.

The segmentation task in image analysis is still a difficult problem, but not to the same
extent as in the general vision case. In contrast to the vision case, experts might agree
that a lesion is present on a person’s skin, but may disagree on its exact contours (Menzies
et al., 1996). Here the problem is that the boundary between normal skin and lesion might
be objectively difficult to specify. In addition, sometimes there does exist an object with a
definite physical contour (such as the inner volume of the left ventricle of the heart). However,
imaging modalities may be corrupted by noise and partial volume effects to an extent that
delineating the precise contours of this physical object in an image is also objectively difficult.

3.1.2 Objects are semantically consistent

However, in spite of these difficulty, we may assume that, up to some ambiguity, an object
(organ, lesion, etc) may still be specified somehow. This means that semantically, an object
possess some consistency. When we point at a particular area on an image, we expect to be,
again with some fuzziness, either inside or outside the object.

This leads us to the realization that there must exist some mathematical indicator function
that say whether we are in or out of the object with high probability. This indicator function
can be considered like a series of constraints, or labels. They are sometimes called seeds or
markers, as they provide starting points for a segmentation procedures, and they mark where
objects are and are not.

In addition, a metric that expresses the consistency of the object is likely to exist. A
gradient on this metric may therefore provide object contour information. Contours may be
weak in places where there is some uncertainty, but we assume they are not weak everywhere
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(else we have an ambiguity problem, and our segmentation cannot be precise). The metric may
simply be the image intensity or color, but it may express other information like consistency
of texture for instance. Even though this metric may contain many descriptive elements (as a
vector of descriptors for instance), we assume that we are still able to compute a gradient on
this metric (Sagiv et al., 2006).

This is the reason why many segmentation methods focus on contours, which are essentially
discontinuities in the metric. Those that focus on region do so by defining and utilizing some
consistency metric, which is the same problem expressed differently.

The next, and final step for segmentation, is the actual contour placement, which is equiv-
alent to object delineation. This step can be considered as an optimization problem, and this
is the step on which segmentation methods in the literature focus the most. We will say more
about this in section 3.2 listing some image segmentation categories.

3.1.3 A separation of powers

In summary, to achieve segmentation in the analysis framework, we need three ingredients:
(1) an indicator function that say whether we are in or out of the object of interest ; (2) a
metric from which we may derive contour information and (3) an optimization method for
placing the contour accurately.

To achieve accuracy, we need flexibility and robustness. Some have argued that it is useful
to treat these three steps separately. This was first described in Meyer and Beucher (1990))
as the morphological method, but this also called by others interactive or seeded segmenta-
tion (Grady, 2006b). In this context, this does not mean that user interaction is required,
only that object identification is provided by some means, and contour extraction is provided
separately by a segmentation operator.

The first ingredient, the object identification, or our indicator function, is of course es-
sential and it is frustrating to be obliged to only write here “some means”. Accurate content
identification can simplify the requirements on the segmentation operator greatly. Unfortu-
nately, the means in question for contents identification are problem-dependent and sometime
difficult to publish, because they are often seen as ad-hoc and of limited interest beyond their
immediate use in the problem at hand. Fortunately some journals allow such publications,
e.g. the Journal of Image Analysis and Stereology and applications journals (e.g. Journal of
Microscopy, materials, etc). There are also very few recent books on the matter, although
some do exist (Najman and Talbot, 2010; Dougherty and Lotufo, 2003). Software libraries
are also important and not many are freely available for training, although the situation is
improving.

Also whereas in computer vision a fully automated solution is required, in medical imaging
a semi-automated method might be enough. In bio-medical imaging, a large number of objects
are typically measured (such as cells, organelles, etc), and a fully-automated method is often
desirable. However, in medical imaging, typically a relatively small number of patients is
being monitored, treated or surveyed, and so human-guided segmentation can be sufficient.
The objective of the segmentation method in this context is to provide reasonable contours
quickly, that can be adjusted easily by an operator.

In this variety of contexts, is it possible to define precisely the segmentation problem?
The answer is probably no, at this stage at least in image analysis research. However, it is
possible to provide formulations of the problem anyway. While this may sound strange or
even suspicious, the reason is that there exists a real need for automated or semi-automated
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segmentation procedures for both image analysis and computer vision, and so solutions have
been proposed. They can still be explained, compared and evaluated.

3.1.4 Desirable properties of seeded segmentation methods

We come to the first conclusion that to provide reliable and accurate results, we must rely
on a segmentation procedure and not just an operator. Object identification and constraints
analysis will set us in good stead to achieve our results, but not all segmentation operators are
equivalent. We can list here some desirable properties of interactive segmentation operators.

• It is useful if the operator can be expressed in an energy or cost optimization formulation.
In this fashion, it is amenable to existing optimization methods, which entails a number
of benefits. Lowering the cost or the energy of the formulation can be done in several ways
(e.g. continuous or discrete optimization), which results in different characteristics and
compromises, say between memory resources and time. Optimization methods improve
all the time through the work of researchers, and so our formulations will benefit too.

• It is desirable if the optimization formulation can provide a solution that is at least
locally optimal, and if possible globally optimal, otherwise noise will almost certainly
corrupt the result.

• The operator should be fast, and provide guaranteed convergence, because it will be
most likely restarted several times, in order to adjust parameters. Together with this
requirement, the ability to segment many objects at once is also desirable, otherwise the
operator will need to be restarted as many time as there are objects in the image. This
may not be a big problem if objects do not overlap and if bounding boxes can be drawn
around them, because the operator can then be run only within the bounding box, but
this is not the general case.

• The operator should be bias-free: e.g. with respect to objects size or to the discretization
grid or with respect to initialization.

• The operator should be flexible: it is useful if it can be coupled with topology information
for instance ; or with multi-scale information.

• It should be generic: not tied to particular data or image types.

• It should be easy to use. This in practice means possessing as few parameters as possible.
Of course one can view constraints setting as an enormous parameter list, but this is
the reason why we consider this step as separate.

Such a method certainly does not yet exist to our knowledge, but some might be considered
to come close. We describe some of them in the next section.

3.2 A review of segmentation techniques

Here we list and detail some segmentations methods categories that are compatible with the
image analysis viewpoint. We cannot hope to present a complete description of this field, but
we hope to be helpful in presenting a few categories.
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3.2.1 Pixel selection

Pixel selection is likely the oldest segmentation method. It consists of selecting pixels solely
based on their values and irrespective of their spatial neighborhood. The simplest pixel selec-
tion method is the humble thresholding, where we select pixels that have a grey-level value
greater or smaller than some value. This particular method is of course very crude, but used
all the time nonetheless Multiple thresholding uses a range of values instead of a single value
; color and multi-spectral thresholding using vectors of values and not just scalars. By defi-
nition, all histogram-based methods for finding the parameters of the thresholding, including
those that optimize a metric to achieve this (Otsu, 1975), are pixel selection methods. Sta-
tistical methods (e.g. spectral classification methods) that include no spatial regularization
fall into this category as well. This is therefore a veritable zoo of methods we are mentioning
here, and research is still active in this domain.

Of course thresholding and related methods are usually very fast and easily made inter-
active, which is why it is still used so much. By properly pre-processing noisy, unevenly
illuminated images, or by other transforms, it is surprising how many problems can be solved
by interactive or automated thresholding. However, this is of course not always the case, hence
the need for more sophisticated methods.

3.2.2 Contour tracking

It was realized early that (1) on the one hand, human vision is sensitive to contours, and (2) on
the other hand, there is a duality between simple closed contours and objects. A simple closed
contour (or surface) is one that is closed and does not self-intersect. By the Jordan theorem,
in the Euclidean space, any such contour or surface delineates a single object of finite extent.
There are some classical difficulties with the Jordan theorem in the discrete setting (Najman
and Talbot, 2010), Chap. 1, but they can be solved by selecting proper object/background
connectivities, or by using a suitable graph, for instance the 6-connected hexagonal grid or
the Khalimsky topology (Khalimsky et al., 1990; Daragon et al., 2002).

A contour can be defined locally: it is a frontier separating two objects (or an object
and its background in the binary case), while an object usually cannot: an object can have
an arbitrary extent. A gradient (first derivative) or a Laplacian (second derivative) operator
can be used to define an object border in many cases, and gradients are less sensitive to
illumination conditions than pixel values. As a result, contour detection through the use
of gradient or Laplacian operators became popular, and eventually led to the Marr-Hildreth
theory (1980).

Given this, it is only natural that most segmentation methods use contour information
directly in some ways, and we will revisit this shortly. Early methods used only this information
to detect contours and then tried to combine them in some ways. By far the most popular and
successful version of this approach is the Canny edge detector (1986). In his classical paper,
Canny proposed a closed-form optimal 1D edge detector assuming the presence of additive
white Gaussian noise, and successfully proposed a 2D extension involving edge tracking using
non-maxima suppression with hysteresis.

One problem with this approach is that there is no optimality condition in 2D, no topology
or connectivity constraints and no way to impose markers in the final result. All we get is a
series of contours, which may or may not be helpful. Finding suitable combination of detected
contours (which can be incomplete) to define objects is then a combinatorial problem of high
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complexity. Finally this approach extends even less to 3D.
Overall, in practical terms, these contour tracking methods are surpassed by more recent

methods and should not be used without good reasons. For instance, more recent minimal-
path methods can be assimilated to contour tracking methods, although they are much more
sophisticated in principle (Appleton and Sun, 2003; Cohen and Kimmel, 1997). To this class
of methods belongs also the “intelligent scissors”-types. There were many attempts in previous
decades to provide automated delineating tools in various image processing software packages,
but a good contribution was provided relatively recently by Mortensen and Barrett (1998).
This method is strictly interactive, in the sense that it is designed for human interaction and
feedback as opposed to being a possibility or an option. “Intelligent scissor” methods are useful
to clinicians for providing ground truth data for instance. Such methods are still strictly 2D.
As far as we know, no really satisfying 3D live-wire/intelligent scissor method is in broad use
today(Ardon and Cohen, 2006). However, minimal surfaces methods, which we will describe
shortly in section 3.4.3, in some ways do perform this extension to n-D (Grady, 2006a).

3.2.3 Statistical methods

The opposite approach to contour detection is to work on the objects, or regions themselves.
An early and intuitive approach has been to try divide (the splitting step) an image into
uniform regions, for example using a hierarchical representation of an image in the form of
quadtrees (in 2D) and octrees (in 3D). Uniformity can be defined by statistical parameters
and/or tests. Subsequently, a merging step considering neighboring and statistical region
information is performed (Horowitz and Pavlidis, 1974). Initial considered statistics were
color and intensity, but other region descriptors can be used as well, for instance including
texture, motion and so on. In this approach, even though regions statistics are used, they are
inevitably derived at the pixel level. The split and merge approach consists of acquiring all
the statistics first and to base a decision on them.

A different, also productive approach consists of building a model first. One way is to
consider an image as a 2D or 3D graph of pixels, to start from a vast over-segmentation at the
pixel level, and to evolve cliques of pixels (e.g. sets of one, two or more pixels that are fully-
connected, respectively called unary, binary or higher-level cliques) to fit that model. This
is the Markov Random Field (MRF) model, named in this way by comparison to classical
one-dimensional Markov chains, for which only immediate neighboring relationships matter.
Models that can be written using these cliques turn out to correspond to energies featuring
weighted finite sums with as many terms as there are different kinds of cliques. (Geman and
Geman, 1984) proposed to optimize these sums using Gibbs sampling (a form of Monte-Carlo
Markov Chain algorithm) and simulated annealing. This was first used for image restoration,
but can be readily applied to segmentation as well. This approach was very successful because
it is very flexible. Markers, texture terms can all be added in, and many algorithmic improve-
ment were proposed over the years. However, it remains a relatively costly and slow approach.
Even though Geman and Geman showed that their simulated annealing strategy can converge
under some circumstances, it only does so under conditions that make the algorithm extremely
slow, and so usually only a non-converged or approximate result is used. More recently, it
was realized that Graph-Cut methods were well-suited to optimized some MRF energies very
efficiently. We will give more details in the corresponding section.

MRFs belong to the larger class of Bayesian methods. Information-theoretic perspectives
and formulations, such as following the Minimum Description Length principle also exist.
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These frameworks are also very flexible, allowing for example region competition (Zhu and
Yuille, 2002). However the corresponding models might be complicated both to understand
and run, and sometimes possess many parameters that are not obvious to tune. Well-designed
methods are guaranteed to converge to at least a local minimum.

In general, when dealing with regions that have complex content (for instance textures, or
multispectral content), statistical methods can be a very good choice although they cannot
be recommended for general work, since simpler and faster methods often are sufficient.

3.2.4 Continuous optimization methods

In the late 1980s, it was realized that contour tracking methods were too limited for practical
use. Indeed, getting closed contours around objects was difficult to obtain with contour
tracking. This meant that detecting actual objects was difficult except in the simplest cases.

3.2.4.1 Active contours

Researchers therefore proposed to start from already-closed loops, and to make them evolve
in such a way that they would converge towards the true contours of the image. Thus were
introduced active contours, or snakes (Kass et al., 1988). The formulation of snakes takes the
following continuous-domain shape:

Esnake =

∫ 1

0
Einternal(v(s)) + Edata(v(s)) + Econstraints(v(s))ds (3.1)

Without entering into too much detail, this model is very flexible. It contains internal
terms, image data terms and constraints terms:

• The first term, the internal energy, contains a curvature term and a “rubber band” energy.
The former tends to smooth the resulting contour following a thin plate, while the latter
tends to make it shrink around features of interest. Other terms such as kinetic energy
can be added too, which makes it possible for the snake to avoid some noisy zones or go
past some flat areas.

• The second term, the data energy, attracts the active contours towards points of interests
in the image: typically image contours (zones of high gradient), lines or termination
points.

• The last term, the constraint term, is optional, but allows interaction with the snake by
defining zones of attraction and repulsion.

To solve this equation, the Euler-Lagrange of (3.1) is worked out (typically in closed form),
and a gradient descent algorithm is used. All the terms are combined in a linear combination
fashion, allowing them to be balanced according to the needs of the user. Due to this flexibility,
the active contour model was very popular in the literature as well as in applications. It fits
very well into the interactive segmentation paradigm because constraints can be added very
easily, and it can be quite fast, because it uses a so-called Lagrangian framework: the contour
itself is discretized at regular interval points and evolves according to (3.1). Convergence
towards a local minimum of the energy is guaranteed, but may require many iterations.
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(a) (b)

Figure 3.1: Embedding and evolving a curve as a level set of a higher-dimension function. The
zero-level of function ψ is shown in color, representing a 2D contour. To evolve the contour,
the whole function evolves. Note that topology changes can occur in the contour, while the
embedding surface shows no such effect.

In practice, there are some difficulties: the snake energy is flexible but difficult to tune.
Because of the contour evolution, points along the contour tend to spread out or bunch
up, requiring regular and frequent resampling. There can also be topological difficulties, for
instance causing the snake to self-intersect. The snake is also sensitive to its parametrization
and to initialization. Finally, even though a local optimum is guaranteed, in practice it may
not be of good quality due to noise sensitivity.

One major difficulty with snakes is that they can be extended to 3D via triangulation,
but such extensions can be complicated, and that topological problems plaguing snakes in 2D
are usually more difficult to avoid in 3D. However 3D active surfaces are still widely used,
because they make it easy to improve or regularize a triangulated surface obtained by other
means. For instance, the brain segmentation software FreeSurfer includes such a method. To
distinguish them from other models we are going to introduce now, snake-like active contours
or surfaces that are sometimes called parametric deformable models.

3.2.4.2 Level sets

One way to avoid altogether some of the problems brought about by the way parametric
deformable models are discretized, is to embed the contour into a higher-dimensional manifold.
This idea gave rise to level sets, proposed by Osher and Sethian (1988). Remarkably, this is
around the same time when active contours were proposed. However level sets were initially
proposed for computational fluid dynamics and numerical simulations. They were applied
to imaging somewhat later (Malladi et al., 1995; Sethian, 1999b). A contour is represented
on the surface S of an evolving regular function ψ by its zero level-set, which is simply the
threshold of the function ψ at zero. By using sufficiently regular embedding functions ψ,
namely signed distance transforms from an initial contour, it was possible to propose effective
evolution equations to solve similar problems to Lagrangian active contours.

The main advantages of the level-sets method were that contour resampling was no longer
necessary, and that contour self-intersection (shock solutions) were also avoided. Because level
sets were able to change topology easily (see Fig. 3.1(b)). This means practically that it was
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possible, at least in theory, to initialize a segmentation by drawing a box around a series of
object of interest, and that the level set could find a contour around each of them. This was
seen as a major benefit by the vision community. The level set Eulerian formulation (where the
whole space is discretized) is thought to offer better theoretical guarantees than the Lagrangian
framework of previous non-embedded formulations, and the simulation of function evolution
is a well-researched topic, with many usable and interesting results. Finally, the formulation
is dimension independent: level sets work virtually unchanged in 3D or higher dimensions,
which is a major benefit.

There are many drawbacks as well. First the level set formulation is more expensive than
earlier active contour formulations. It requires the iterative solving of PDEs in the whole
space, which is expensive. In practice it is possible to limit the computation in a narrow
band around the contour, but this is still more than if they were limited to the contour itself,
and requires the resampling that was sought to be avoided. The surface S of function ψ is
implicitly represented by the function itself, but it requires more space than the contour. In
3D or more this could be sometimes prohibitive. Some contour motions are not representable
(e.g. contour rotation), but this is a minor problem. More importantly, the fact that level-sets
can undergo topology changes is actually a problem in image analysis, where it is useful to
know that a contour initialized somewhere will converge to a single simple closed contour. In
some cases, a contour can split or even disappear completely, leading to undesirable results.

Nonetheless, level-set formulations are even more flexible than active contours, and very
complex energies solving equally complex problems have been proposed in the literature.
Solving problem involving texture, motion, competing surfaces and so on is relatively easy
to formulate in this context (Paragios and Deriche, 2002a,b). For this reason they were and
remain popular. Complex level-set formulation tend to be sensitive to noise and can converge
to a poor locally optimal solution. On the other hand, more robust, closer to convex solutions
can now be solved via other means. An example of relatively simple PDE that can be solved
by level sets is the following:

ψt + F |∇ψt| = 0, (3.2)

where F is the so-called speed function. Malladi and Sethian proposed the following for
F :

F =
1− εκ

1 + |∇I| + β(∇ψ.∇|∇I|) (3.3)

The first part of the equation is a term driving the embedding function ψ towards contours
of the image with some regularity and smoothing controlled by the curvature κ. The amount
of smoothing is controlled by the parameter ε. The second term is a “balloon” force that tend
to expand the contour. It is expected that the contour initially be placed inside the object
of interest, and that this balloon force should be reduced or eliminated after some iterations,
controlled by the parameter β. We see here that even though this model is relatively simple
for a level-set one, it already has a few parameters that are not obvious to set or optimize.

3.2.4.3 Geodesic active contours

An interesting attempt to solve some of the problems posed by overly general level sets was to
go back and simplify the problem, arguing for consistency and a geometric interpretation of
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the obtained contour. The result was the geodesic active contour, proposed by Caselles et al.
(1997). The level set formulation is the following;

ψt = |∇ψ| div

(
g(I)

∇ψ
|∇ψ|

)
(3.4)

This equation is virtually parameter-free, only a g function is required. This function is
a metric and has a simple interpretation: it defines at point x the cost of a contour going
through x. This metric is expected to be positive definite, and in most cases is set to be a
scalar functional with values in R+. In other words, the GAC equation finds the solution of:

argminC

∫
C
g(s)ds, (3.5)

where C is a closed contour or surface. This is the minimal closed path or minimal closed
surface problem, i.e. finding the closed contour (or surface) with minimum weight defined by
g. In addition to simplified understanding and improved consistency, (3.4) has the required
form for Weickert’s PDE operator splitting (Weickert et al., 2002; Goldenberg et al., 2001)
allowed PDEs to be solved using separated semi-implicit schemes for improved efficiency.
These advances made GAC a reference method for segmentation, which is now widely used
and implemented in many software packages such as ITK. The GAC is an important interactive
segmentation method due to the importance of initial contour placement, as with all level-sets
methods. Constraints such as forbidden or attracting zones can all be set trough the control
of function g, which has an easy interpretation.

As an example, to attract the GAC towards zones of actual image contours, we could set

g ≡ 1

1 + |∇I|p (3.6)

With p = 1 or 2. We see that for this function, g is small (costs little) for zones where
the gradient is high. Many other functions, monotonically decreasing for increasing values for
∇I, can be used instead. One point to note is that GAC have a so-called shrinking bias, due
to the fact that the globally optimal solution for (3.5) is simply the null contour (the energy
is then zero). In practice, this can be avoided with balloon forces but the model is again
non-geometric. Because GAC can only find a local optimum, this is not a strong problem, but
this does mean that contours are biased towards smaller solutions.

3.2.5 Graph-based methods

The solution to (3.5) proposed in the previous section was in fact inspired by preexisting
discrete solution to the same problem. On computers, talking about continuous-form solutions
is a bit of a misnomer. Only the mathematical formulation is continuous, the computations
and the algorithms are all necessarily discrete to be computable. The idea behind discrete
algorithm is to embrace this constraint and embed the discrete nature of numerical images in
the formulation itself.
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3.2.5.1 Graph cuts

We consider an image as a graph Γ(V, E) composed of n vertices V and m edges E . For
instance, a 2D nx × nx 4-connected square grid image will have n = n2

x vertices and m =
2 × nx × (nx − 1) edges1. We assume that both the edges and the vertices are weighted.
The vertices will typically hold image pixel values and the edges values related to the gradient
between their corresponding adjacent pixels, but this is not necessary. We assume furthermore
that a segmentation of the graph can be represented as a graph partition, i.e:

V =
⋃
Vi∈Γ

Vi;∀i 6= j, Vj ∩ Vi = ∅. (3.7)

Then E? is the set of edges such that their corresponding vertices are in different partitions.

E? = {e = {pi, pj} ∈ E, pi ∈ Vi; pj ∈ Vj , i 6= j}. (3.8)

The set E? is called the cut, and the cost of the cut is the sum of the edge weights that
belong to the cut:

C(E?) =
∑
e∈E?

we, (3.9)

where we is the weight of individual edge e. We assume these weights to be positive.
Reinterpreting these weights as capacities, and specifying a set of vertices as connected to a
source s and a distinct set connected to a sink t, the celebrated result of Ford and Fulkerson
(1962) is the following:

Theorem 3.1 Let P be a path in Γ from s to t. A flow through that path is a quantity which
is constrained by the minimum capacity along the path. The edges with this capacity are said
to be saturated, i.e. the flow that goes through them is equal to their capacity. For a finite
graph, there exists a maximum flow that can go through the whole graph Γ. This maximum
flow saturates a set of edges Es. This set of edges define a cut between s and t, and this cut
has minimal weight.

This theorem is illustrated in Fig. 3.2.
In 2D and if Γ is planar, this duality essentially says that the Ford and Fulkerson minimum

cut can be interpreted as a shortest path in a suitable dual graph to Γ (Appleton, 2004). In
arbitrary dimension, the maxflow - mincut duality allows us to compute discrete minimal
hypersurfaces by optimizing a discrete version of (3.4).

There exist many algorithms that can be used to compute the maximum flow in a graph
(also called network in this framework), but none with a linear complexity. Recent augmenting
paths algorithms (Boykov and Kolmogorov, 2004) are effective in 2D where the number of
vertices is relatively high compared to the number of edges. In 3D and above, where the
reverse is true, push-relabel algorithms Goldberg and Tarjan (1988) are often more efficient.
These algorithms can only be used when there is one source and one sink. The case where there

1This particular computation is left as an exercise to the reader...
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(a) (b)

Figure 3.2: (a) A graph with edge weights interpreted as capacities, shown as varying diameters
in this case. (b) A maximum flow on this graph. We see that the saturated vertices (in black)
separate s from t, and they form a cut of minimum weight.

are multiple sources or sinks is known to be NP-hard. To compute energies comprising several
sources or sinks and leading to multi-label segmentation, approximations can be used, such
as α-expansions. These can be used to formulate and optimize complex discrete energies with
MRF interpretations (Veksler, 1999; Boykov et al., 2001), but the solution is only approximate.
Under some conditions, the results are not necessarily a local minimum of the energy, but can
be guaranteed not to be too far from the globally optimal energy (within a known factor, often
2).

In the last ten years, Graph-Cut (GC) methods have become extremely popular due to
their ability to solve a large number of problems in computer vision, particularly in stereo-
vision and image restoration. In image analysis, their ability to form a globally optimal
binary partition with a geometric interpretation is very useful. However, GC do have some
drawbacks. They are not easy to parallelize, they are not very efficient in 3D, they have a
so-called shrinking bias, just as GAC and continuous maxflow have as well. In addition they
have a grid bias, meaning that they tend to find contours and surfaces that follow the principal
directions of the underlying graph. This results in “blocky” artifacts, which may or may not
be problematic.

Due to their relationship with sources and sinks, which can be seen as internal and external
markers, as well as their ability to modify the weights in the graph to select or exclude zones,
GC are at least as interactive as the continuous methods of previous sections. Much more
details about this can be found in the next chapter, chapter chap:discrete-maxflow

3.2.5.2 Random walkers

In order to correct some of the problems inherent to graph cuts, Grady introduced the Random
Walker (RW) in 2004 (Grady and Funka-Lea, 2004; Grady, 2005). We set ourselves in the
same framework as in the Graph Cuts case with a weighted graph, but we consider from the
start a multilabel problem, and, without loss of generality, we assume that the edge weights
are all normalized between 0 and 1. This way, they represent the probability that a random
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particle may cross a particular edge to move from a vertice to a neighboring one. Given a set
of starting points on this graph for each label, the algorithm considers the probability for a
particle moving freely and randomly on this weighted graph to reach any arbitrary unlabelled
vertex in the graph before any other coming from the other labels. A vector of probabilities,
one for each label, is therefore computed at each unlabelled vertex. The algorithm considers
the computed probabilities at each vertex and assigns the label of the highest probability to
that vertex.

Intuitively, if close to a label starting point the edge weights are close to 1, then its
corresponding “random walker” will indeed walk around freely, and the probability to encounter
it will be high. So the label is likely to spread unless some other labels are nearby. Conversely,
if somewhere edge weights are low, then the RW will have trouble crossing these edges. To
relate these observations to segmentation, let us assume that edge weights are high within
objects and low near edge boundaries. Furthermore, suppose that a label starting point is set
within an object of interest while some other labels are set outside of it. In this situation,
the RW is likely to assign the same label to the entire object and no further, because it
spreads quickly within the object but is essentially stopped a the boundary. Conversely the
RW spreads the other labels outside the object, which are also stopped at the boundary.
Eventually the whole image is labeled with the object of interest consistently labeled with a
single value.

This process is similar in some way to classical segmentation procedures like seeded re-
gion growing (Adams and Bischof, 1994), but has some interesting differentiating properties
and characteristics. First, even though the RW explanation sounds stochastic, in reality the
probability computations are deterministic. Indeed, there is a deep relation between random
walks on discrete graphs and various physical interpretations. For instance, if we equate an
edge weight with an electrical resistance with the same value, thereby forming a resistance
lattice, and if we set a starting label at 1 volt and all the other labels to zero volt, then the
probability of the RW to reach a particular vertex will be the same as its voltage calculated by
the classical Kirchhoff’s laws on the resistance lattice (Doyle and Snell, 1984). The problem
of computing these voltages or probability is also the same as solving the discrete Dirichlet
problem for the Laplace equation, i.e. the equivalent of solving ∇2ϕ = 0 in the continuous do-
main with some suitable boundary conditions (Kakutani, 1945). To solve the discrete version
of this equation, discrete calculus can be used (Grady and Polimeni, 2010), which in this case
boils down to inverting the graph Laplacian matrix. This is not too costly as it is large but
very sparse. Typically calculating the RW is less costly and more easily parallelizable than
GC, as it exploits the many advances realized in numerical analysis and linear algebra or the
past few decades.

The RW method has some interesting properties with respect to segmentation. It is quite
robust to noise and can cope well with weak boundaries (see Fig 3.3). Remarkably, in spite
of the RW being a purely discrete process, it exhibits no grid bias. This is due to the fact
that level lines of the resistance distance (i.e. the resistance between a fixed node and all the
others) in an infinite graph with constant edge weights are asymptotically isotropic (Cserti,
2000). RW exhibit a shrinking bias but not as strong as GC.

3.2.5.3 Watershed

While there are many variations on discrete segmentation methods, we will consider one
last method: the Watershed Transform (WT). It was introduced in 1979 by Beucher and



84 Seeded segmentation methods
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Figure 3.3: An intuitive explanation of why the Random Walker copes well with weak bound-
aries. We assume constant, high probabilities everywhere on this graph, except where thick
vertical lines cross an edge, where the probabilities are low. A and B represent labels, and we
estimate the probability of a random walker in C to move to the left as opposed to all the other
directions (north, south or east). We see that locally the probabilities are identical, but globally,
there are many ways for a random walker to come from B to the north, east or south position
from C. However, there is only one way to move to the west of C, and that is to go through
C. Therefore, Random walker probabilities must be high up to C, and then drop precipitously.
Since the situation is symmetrical with respect to A, it is likely that the region left of the thick
lines will be labelled with A, and the region right to it is going to be labelled with B. This is in
spite of the fact that the boundary defined by the thick vertical lines is weak and closer to A
than B.

Lantuéjoul (1979) by analogy to the topography feature in geography. It can be explained
intuitively in the following manner: assimilate a grey-level image to a 3D topographical surface
or terrain. A drop of water falling onto this surface would follow a descending path towards
a local minimum of the terrain. The set of points, such that drops falling onto them would
flow into the same minimum, is called a catchment basin. The set of points that separate
catchment basins form the watershed line. Finally, the transform that takes an image as
input and produces its set of watershed lines is called the Watershed Transform. To use this
transform in practical segmentation settings, we must reverse the point of view somewhat.
Assume now that labels are represented by lakes on this terrain and that by some flooding
process, the water level rises evenly. The set of points that are such that waters from different
lakes meet is also called the watershed line. Now this watershed line is more constrained,
because there are only as many lines as necessary to separate all the lakes.

This intuitive presentation is useful but does not explain why the WT is useful for segmen-
tation. As the “terrain”, it is useful to consider the magnitude of the gradient of the image.
On this gradient image, objects interior will have values close to zero and will be surrounded
by zones of high values: the contours of the objects. They can therefore be assimilated to
catchment basins, and the WT can delineate them well (see 3.4.
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(a) (b) (c)

(d) (e)

Figure 3.4: Watershed segmentation: (a) an MRI image of the heart, (b) its smoothed gradient,
(c) the gradient seen as a topographic surface, (d) Watershed of the gradient, (e) topographical
view of the watershed.

The WT is a seeded segmentation method, and has many interesting interpretations. If
we consider the image again as a graph as in the GC setting, then on this graph the set of
watershed lines from the WT forms a graph cut. The edges of this tree can be weighted with
a functional derived from a gradient exactly as in the GC case. Computing the WT can be
performed in several efficient ways that are broadly similar (Vincent and Soille, 1991; Meyer,
1994), but an interesting one is to consider the Maximum Spanning Forest algorithm (Cousty
et al., 2008). In this algorithm, the classical graph algorithm for maximum spanning tree
(MST) is run on the graph of the image, following for instance the algorithms of Kruskal (1956);
Prim (1957), with the following difference: when an edge selected by the MST algorithm is
connected with a seed, then all vertices that are connected with it become also labelled with
this seed, and so on recursively. However, when an edge selected by the MST algorithm would
be connecting two different seeds, the connection is simply not performed. It is easy to show
that (1) eventually all edges of the graph are labelled with this algorithm; (2) that the set of
edge that are left connected form a graph cut separating all the seeds; and (3) that the labels
are connected to the seeds by subtrees. The result is a maximum spanning forest, and the set
of unconnected edges form a watershed line. The maximum spanning forest algorithm can be
run in quasi-linear time (Cousty et al., 2010).

3.2.6 Generic Models for Segmentation

Even though seeded models are the focus of this chapter, we say here a few words about
generic models that are not seeded by default, because they contain powerful ideas for the
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future of seeded models.

3.2.6.1 Continuous models

Over the years, several now widely cited formulations of the segmentation problem have been
proposed, including for instance the functional of Mumford and Shah (1989) or the active
contour without edges (AWE) of Chan and Vese (2001). They generally seek to solve the
segmentation problem in the vision setting, and can be used for image restoration as well
(denoising, inpainting, etc).

In particular, the Mumford-Shah functional is the following:

E(f , C) = β

∫
Ω

(f − g)2dA+ α

∫
Ω\C
|∇f |2dA+ γ

∫
C
ds. (3.10)

This formulation is very interesting because it has been an inspiration to many. In this
expression, g is the original image, f a piecewise smooth approximation of g and C a collection
of contours where f is discontinuous. In essence, C represents the segmentation of ð and f
is a restored (denoised, etc) model of ð. The first term in (3.10) is a data fidelity term ; the
second is a total variation term (TV), and the last optimizes an unweighted contour length.

Both MS and AWE initially were solved using level-sets methods, but more recently convex
methods have been used. The MS functional is NP-hard in general, but convex relaxations
are computable, and can be exact in the binary case. In particular, the Rudin-Osher-Fatemi
(ROF) p model is convex, and correspond to the MS model without the last term (Chan and
Bresson, 2010). From the image analysis point of view, these models are not readily usable,
because they correspond to simplistic models of vision, and if markers or shape constraints
are added, they tend to dominate the model, which then does not help very much.

3.2.6.2 Hierarchical models

Hierarchies of segmentations are a powerful way to deal with the multi-resolution inherent to
nature. Many images contain objects at different scales, in medical imaging a vascular network
is a typical example. It is very difficult to come up with a seeded strategy to solve this case.
One general idea is to perform many segmentations at once or in sequence, taking into account
various scales. This is not as easy to do as it sounds, because simply repeating a segmentation
procedure with different parameters will not yield compatible segmentations, in the sense that
contours are not likely to remain stable as the scale increases or decreases. One way of dealing
with this is to offer a measure of the strength of a particular piece of contour, and as the scale
increases, remove pieces of contours with weak strength first. This saliency idea was proposed
by Najman and Schmitt (2002) in the context of watershed segmentation, but more work has
been done on this idea since, for example on ultrametric watershed and connections (Najman,
2011; Soille, 2008). A saliency map or ultrametric watershed is an interactive segmentation
because edge strength can be selected by interactive thresholding for instance, but it is not
always obvious how to combine this with seeded segmentation.

Hierarchical models do offer some other benefits, such as the ability to efficiently optimize
Mumford-Shah like functional on a saliency map (Guigues et al., 2006). Other functional are
also possible, such as optimizing minimum ratio costs (Grady and Schwartz, 2006). There are
some drawbacks as well, such as decreased speed, and extra memory requirement, and again
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the question of compatibility with other constraints. This is at present a very interesting area
of research.

3.2.6.3 Convex and convex relaxation methods

Many optimization-based methods provide an exact solution only in the binary case. This
is true for graph-cut methods with convex or Potts priors. This is also true for TV-based
methods such as the Chan-Vese model (Nikolova et al., 2006). However for more than two
labels, the problem is usually non convex (with exceptions, e.g. Random Walker, Random
Forests and the Watershed-based transforms). The area of convex relaxation techniques that
allow searching for high-quality approximations is currently very active (Chan and Bresson,
2010; Pock et al., 2009). In the realm of unseeded multi-label segmentation methods, a recent
survey was recently published by Nieuwenhuis et al. (2013) comparing most relaxation methods
for the Potts model regularization, and concluding that most methods provided comparable
results but significantly varying performances. They concluded the method by Zach et al.
(2008) was the fastest.

3.2.6.4 Combinations

Many segmentation algorithms can be combined to provide different sets of compromises or
extensions. For instance, Yuille proposed an interesting model combining Bayesian methods
with level-sets (Zhu and Yuille, 2002). An active area of research today are so-called turbopix-
els, where a first-level over-segmentation is performed in order to group pixels into consistent
region of similar size. Then these regions are linked in a graph and a discrete segmentation
is performed over these (Levinshtein et al., 2009). This two-level segmentation procedure has
some advantages in terms of speed and resource allocations. Final segmentations can still
be precise if the first-order grouping is done well, and these methods are compatible with
seeded segmentation. However, segmentation quality may be poor in the presence of weak
edges (Stawiaski et al., 2007).

3.3 A unifying framework for discrete seeded segmentation

In many early segmentation methods, the focus was on the values of the pixels themselves,
or, in graph terms, the values of the vertices. Since the advent of graph-cut methods, it
was realized that focusing instead on the edges was useful. In particular, defining a gradient
function on the edges is easy. Let p and q be two vertices in the graph Γ(V, E) of image I, that
we have been using so far (see section 3.2.5), then we can set as weight wp,q for the edge linking
p and q any value depending on the discrete gradient Iq − Ip, where Iq represents the value
of I at vertex q. For instance, we can use wp,q = exp(−β|Iq − Ip|2), with β a positive scalar
parameter. This is a monotonically decreasing function of the gradient, recommended by
several authors. In addition, there are topological advantages, as a cut in such a graph obeys
the Jordan property in arbitrary dimension. In addition, there is a fundamental difference
between regions, formed of uniformly labeled vertices, and cuts formed of edges. In former
pixel-based segmentation procedures, the contours were themselves made of pixels, which
created problems (Cousty et al., 2008). The only significant drawback is that storing edge
weights rather than pixels costs roughly twice as much memory in 2D, or three times as much
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in 3D for the simplest nearest-neighbour connectivity. This extra cost increases with the
connectivity, and may indeed be a problem in some applications.

3.3.1 Discrete optimization

Assuming then this simple model of discrete images, the segmentation problem can be viewed
as an optimization problem over cliques of one or two pixels, like in the MRF setting. For
instance, classical graph cut can optimize the following problem exactly:

argminxE(x) =
∑
u∈V

wu|xu − yu|+
∑

(u,v)∈E
wu,v|xu − xv|, (3.11)

in the case where x is a binary vertex labeling, y a reference binary image that can
for instance represent seeds, and wu and wu,v positive unary weights and binary weights
respectively. The seeded segmentation case corresponds to an image y containing some vertices
labelled with 0, others with 1 (the seeds) and unlabelled ones as well. The wu for the labelled
vertices in y have infinite weights, and the unlabeled one zero. Using the same notation, the
Random Walker optimizes the following energy:

argmin)xE(x) =
∑
u∈V

wu(xu − yu)2 +
∑

(u,v)∈E
wu,v(xu − xv)2. (3.12)

In this case, the optimal labelling x? is not binary even if y is binary. It expresses the
probability of a vertex to belong to label 0 or label 1. To reach a unique solution, we must
threshold the result:

su = 0 if xu <
1

2
, su = 1 otherwise. (3.13)

In this case the binary result s represents the segmentation. There is a striking similarity
between (3.11) and (3.12), which leads us to propose a unifying framework.

3.3.2 A unifying framework

We propose to optimize the following general discrete energy:

argminxE(x) =
∑
u∈V

wpu|xu − yu|q +
∑

(u,v)∈E
wpu,v|xu − xv|q, (3.14)

The p and q terms are integer exponents. In cases where the optimal x? is not binary, we
threshold it in the end as in (3.13). An analysis of the influence of p and q provides us with
Table 3.1:

In this table, we find some well-known algorithms, such as previously mentioned GR and
RW, in addition to the Shortest Path Forests (Cousty et al., 2010), that uses forests of shortest
path leading to seeds as segmentation criteria. Most of the other cases are not interesting
(Voronoi diagrams for instance), but the case q = 1 or 2 and p→∞ are novel and interesting:
this is the Power Watershed algorithm (Couprie et al., 2009).
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HHH
HHHq

p 0 finite ∞
1 Collapse to seeds Graph cuts Power watershed q = 1

2 `2 norm Voronoi Random walker Power watershed q = 2

∞ `1 norm Voronoi `1 norm Voronoi Shortest Path Forest

Table 3.1: Our generalized scheme for image segmentation includes several popular segmenta-
tion algorithms as special cases of the parameters p and q. The power watershed are previously
unknown in the literature, but may be optimized efficiently with a maximum spanning forest
calculation.

3.3.3 Power watershed

Among the drawbacks of traditional watershed as described in section 3.2.5.3 are the following:
(1) watershed has no energy interpretation and is purely a segmentation algorithm ; (2)
watershed segmentations are not unique: for the same seed placement and edge weights, the
same definition can provide different results ; (3) watershed results tend to leak in the presence
of weak boundaries. We intend to solve all three problems.

An analysis of the convergence of (3.14) in the case q = 1 or 2 and p → ∞ led us to the
following algorithm

Algorithm 1: power watershed algorithm, optimizing p→∞, q ≥ 1

Data: A weighted graph Γ(V, E) and a reference image y containing seed information
Result: A potential function x and a labeling s associating a label to each vertex.
Set x values as unknown except seed values.
Sort the edges of E by decreasing order of weight.
while any node has an unknown potential do

Find an edge (or a plateau) EMAX in E of maximal weight; denote by S the set of
nodes connected by EMAX.
if S contains any nodes with known potential then

Find xS minimizing (3.14) (using the input value of q) on the subset S with the
weights in EMAX set to wij = 1, all other weights set to wij = 0 and the known
values of x within S fixed to their known values. Consider all xS values
produced by this operation as known.

else
Merge all of the nodes in S into a single node, such that when the value of x for
this merged node becomes known, all merged nodes are assigned the same value
of x and considered known.

Set si = 1 if xi ≥ 1
2 and si = 0 otherwise.

This algorithm is illustrated in Fig 3.5. We also show some pictorial results in Fig. 3.6,
where we compare qualitatively the results of PW with the other classical discrete segmen-
tation algorithms, namely GC, RW, SPF and the classical WT in the form of a Maximum
Spanning Forest (MSF).

More details on the Power Watershed algorithm can be found in Couprie et al. (2011b).
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Figure 3.5: Illustration of the different steps for Alg 1 in the case q = 2. The values on
the nodes correspond to x, their color to s. The bold edges represents edges belonging to a
Maximum Spanning Forest . (a) A weighted graph with two seeds, all maxima of the weight
function are seeded, (b) First step, the edges of maximum weight are added to the forest, (c)
After several steps, the next largest edge set belongs to a plateau connected to two labeled trees,
(d) Minimize (3.14) on the subset (considering the merged nodes as a unique node) with q = 2
(i.e., solution of the Random Walker problem), (e) Another plateau connected to three labeled
vertices is encountered, and (f) Final solutions x and s obtained after few more steps. The
q-cut, which is also an MSF cut, is represented in dashed lines.

(a) GC (b) RW (c) SPF (d) MSF (e) PW

Figure 3.6: Slides of a 3D lung segmentation. The foreground seed used for this image is a
small rectangle in one slice of each lung, and the background seed is the frame of the image.
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We show that the PW algorithm performs very well in terms of quantitative results, that
qualitatively PW is devoid of size bias and grid artifacts, while being only slightly slower
than standard watershed and much faster than either GC or RW, particularly in 3D. The PW
algorithm provides a unique unambiguous result, and an energy interpretation for watershed,
which allows it to be used in wider contexts as a solver, for instance in filtering (Couprie
et al., 2010) and surface reconstruction. One chief advantage of PW, with respect to GC for
instance, is its ability to compute a globally optimal result in the presence of multiple labels.
When segmenting multiple objects this can be important.

3.4 Globally optimum continuous segmentation methods

Here we provide some arguments for globally optimal segmentation in the context of
continuous-domain optimization.

3.4.1 Dealing with noise and artifacts

Even assuming we can construct a contents metric as explained in the first section, there are
several sources of artifacts in segmentation: (1) weak edges cause uncertainty in the result ;
(2) noise tends to corrupt boundaries, and for some methods tend to lead to wrong results ;
(3) method artifacts, such as a size bias or blockiness artifacts can cause undesirable results.
Of course all these artifacts are linked and essentially due to the contents metric, reflecting
insufficient knowledge about the content, but this is precisely to solve this problem that we
require segmentation.

Weak edges are a fact of life in medical imaging. Most often in CT for example it is
difficult to delineate a lesion because it has a similar radiation absorption profile as surrounding
tissues. In this case it is useful to use methods that interpolate contours and surfaces well.
The Geodesic Active Contour (GAC) is very useful in this context because of its geometric
formulation and shortest path/minimal surface interpretation. In addition it is straightforward
to add simple shape information, such as elliptical or spherical shape priors.

Many iterative methods do not cope well with noise. One reason might be that the
formulation of the corresponding energy is not convex, which implies that it would probably
not have a single global optimum. This is unfortunately the case of most active contours
and level set formulations, including the classic formulation of Geodesic Active Contours. In
addition, these methods make it easy to add terms to the energy and make it look like it can
be optimized. The reality is that in most cases, these methods get stuck into a poor quality
local minimum. If models are complex, tweaking their parameters is difficult and error-prone.
This is the reason why most recent segmentation models feature few parameters and tend to
propose formulations that can be optimized globally.

Finally all segmentation methods present artifacts. Graph Cuts for instance tend to both
produce blocky results (grid bias) and favour small objects (shrinking bias). They can be
coped with by augmenting the connectivity of the graph and by metric manipulation knowing
the position of the seeds. However it is better to prefer formulations that are isotropic in
nature, such as continuous-domain ones.

These are some of the reasons that motivate us to mention continuous, isotropic, efficient
formulations for finding the global solution to the GAC equation exactly.
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3.4.2 Globally optimal Geodesic Active Contour

In spite of advances in GAC optimization, more efficient ways of solving equation (3.5) do exist.
In particular, in 2D, this equation can be solved by a continuous-domain, non point-convex
circular shortest path (Appleton and Sun, 2003). The solution, called the globally optimal
geodesic active contour (GOGAC) is globally optimal and extremely efficient (Appleton and
Talbot, 2005b), although it can only find a single contour at a time. The GOGAC solution
is as flexible as the original GAC, but due to its formulation and algorithm, it is significantly
less affected by noise.

This GOGAC has no shrinking bias and no grid bias, however it tends to favour circular
boundaries due to its polar coordinate equivalence. This may be desirable in some applications,
but not in others. It can be avoided by using a different weighting than the 1/r given in the
original article. A flat weighting can be used if small solutions are forbidden for instance.

3.4.3 Maximal continuous flows and Total Variation

The GOGAC solution is extremely efficient but does not extend to 3D and more, but in 2006,
Appleton and Talbot proposed a continuous maximum flow solution to solve this problem.
Their solution, inspired by local solvers for discrete graph cuts, consists of simulating a flow
originating from a source s and ending in a sink t, and a pressure field, linked by a PDE
system forming a propagation equation and constrained by the metric g:

∂ ~F
∂t = −∇P
∂P
∂t = −div ~F

‖~F‖ ≤ g
(3.15)

This unusual system, at convergence, produces a scalar field P that acts as an indicator
function for the interior of the contour C of (3.5). It solves the closed minimal surface problem
exactly and efficiently, and so this represents a better way to solve it than (3.4). The result
in 2D is exactly the same as that obtained with GOGAC. This Continuous Maximum Flow
(CMF) result provides a direct algorithm for solving the problem posed by independently Iri
and Strang (Iri, 1979; Strang, 1983). Interestingly, researchers in image restoration have pro-
posed over the years solution to Strang’s dual problem, that of minimizing the total variation
(TV) of a functional. Initial solutions used level-set formulations (Rudin et al., 1992), and
later ones convex optimization methods (Chambolle, 2004; Pock et al., 2009). Nonetheless, it
is thought that primal maximum flow methods may be better suited to segmentation than TV
formulations (Couprie et al., 2011c). Note that CMF are also biased towards small contours,
and because they find a global optimum, this is a more serious problem than with standard
GAC. However there exist ways to remove this shrinking bias for an arbitrary collection of
sources and sinks (Appleton, 2004), and the bias is less strong in 3D and can be ignored, as
long as small solutions are forbidden, using for instance large enough inner seeds. CMFs are
about as fast as GC, but can be parallelized easily.

3.5 Comparison and discussion

In the space of a single chapter it is not possible to present a thorough, quantitative assess-
ment of most popular segmentation methods. However, in table 3.2, we present a qualitative
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(a) (b)

(c) (d)

Figure 3.7: Segmentation of the lungs in a chest CT image. (a) The CT image. (b) Segmen-
tation using 3D standard Geodesic Active Contours. The surfaces fail to fill the base of the
lung. (c) Segmentation using a discrete maximal flow algorithm. Observe the directional bias
due to the grid. (d) Segmentation from identical input using continuous maximal flows.

comparison.

In this table, we have presented all the methods families discussed in the chapter. The fig-
ure 1 indicates a low, undesirable score and the highest figure is 5. These score are potentially
controversial and represent experience and opinion rather than hard fact. We have ranked
all methods according to some desirable features. In the following discussion, we present ro-
bustness as the ability of a method to cope with noise and weak edges. Flexibility denotes
the ability of a method to be used in different contexts: seeded or non-seeded segmentation,
the possibility to optimize different models, for instance with texture, the ability to use the
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Table 3.2: A qualitative assessment of many popular segmentation methods. See text for
details.

Method score
Pixel selection
Contour tracking
Split and merge
MRF - SA
Active contours
Level sets
GAC
Graph cuts
Watershed
Random Walker
GOGAC
CMF
Power watershed

5 5 1 1 1 5 5 5 1 29
5 5 1 4 3 4 1 1 2 26
4 4 5 2 2 3 4 3 5 32
1 3 4 4 3 3 3 5 2 28
4 4 1 5 2 2 2 2 2 24
1 2 2 5 2 3 5 4 3 27
2 2 2 3 3 3 5 4 3 27
2 3 2 4 5 2 4 2 3 27
4 4 5 2 3 5 5 3 4 35
3 3 5 3 4 4 4 4 3 33
5 3 1 1 5 3 1 1 2 22
3 2 1 2 5 3 5 4 3 28
4 3 5 3 4 5 5 2 4 35
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method in different contexts.
Taking methods in order, we see that (1) pixel selection uses low resources but is extremely

simplistic ; (2) has some speed and flexibility advantages but is limited to 2D ; (3) Split-and-
merge methods generally have high scores but are not robust and not flexible; (4) MRFs and
Bayesian methods optimized by simulated annealing feature a lot of flexibility but are very
slow ; (5) Active contours are fast and flexible but not robust, they find only one object at a
time, and cannot be extended easily to 3D ; (6) Level sets (LS) are similar in some ways but
are quite slow, require lots of resources and are not robust. They do extend to 3D readily ; (7)
GAC are a particular case of LS methods, which are popular in medical imaging because they
are faster and more robust but less flexible. Still standard GAC is slow compared to many
other methods and still not robust enough. (8) Graph cuts are a very popular recent method,
which feature relatively high score across the board, in particular they are among the most
flexible and robust methods. However, they are slow, particularly in 3D, not parallelizable
easily and feature much bias. (9) Watershed is an old method but has definite advantages
for segmentation: it is fast, bias-free and multi-label (it can segment many objects at once).
However, it is not flexible or very robust. Watershed can be extended readily for multi-
resolution, and due to its age, many parallel implementations exist, including hardware ones.
(10) The Random Walker is a recent method which is similar in some ways to Watershed, but
is significantly more robust. It requires more resources, however.

Among the newer methods presented in this chapter, (11) GOGAC solves GAC exactly
and quickly in 2D, and so provides a quick robust solution, which is good for 2D interactive
segmentation of single objects. However is is not flexible in its model. (12) CMF is probably
among the most robust segmentation method in the literature for 3D segmentation, but it
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segments only one object at a time, is not very flexible, and has no grid bias but does feature
a shrinking bias. Finally (13) power watershed fits in between standard watershed and random
walker. It is significantly more flexible and robust than standard watershed. Its speed is also
comparable, but it uses more memory, and is less parallelizable.

The global score is probably even more subject to controversy than the individual ones,
but it would tend to show that active contour methods should not be tried as a first choice
method. For medical imaging, Random Walker and watershed-based methods are probably
a good first choice, particularly for ease of use. It is comforting to realize that more modern
methods suitable for 3D medical imaging (GC, RW, PW and CMF) are all very robust.

Many advantages presented in the literature, such as purported sub-pixel accuracy of
segmentation, are not listed here because they are an illusion. The reported ability of some
methods to control topology or on the contrary to let it allow to change is not necessarily a
drawback or advantage either way, so we do not report it as well.

3.6 Conclusion and future work

In conclusion to this study, we argue that seeded or interactive segmentation is useful in
medical imaging. Compared with model-based segmentation, seeded segmentation is more
robust in actual image analysis applications, as opposed to computer vision. The ability to
separate (1) seeds/markers ; (2) contour information and (3) contour optimization method is
very useful, as these elements can play together to bring a higher likelihood of good results.
From this point of view, we argue that segmentation is a process and not merely an operator.

In general, the literature focuses on contour placement optimization to the expense of the
other two components, with some rare exceptions. This is unfortunate but understandable
with respect to seeds/markers, because they are highly application dependent. Choice of
methods for obtaining contour information is also limited, this is probably a good area for
future research. One conclusion of this study is that contour placement optimization methods
are important. More recent methods focus on optimization robustness, which is a very good
thing. For someone not yet experienced in medical segmentation, simpler, more robust meth-
ods should be preferred over complex ones. Among those, power-watershed seems like a good
candidate because of its combination of speed, relative robustness, ability to cope with mul-
tiple labels, absence of bias and availability (the code is easily available online). The random
walker is also a very good solution, but is not generally and freely available.

We have not surveyed or compared methods that encompass shape constraints. We rec-
ognize that this is important in some medical segmentation methods, but this would require
another study altogether.

Finally, at present there exists a kind of dichotomy between the way discrete and
continuous-domain work and are presented. In the near future it is likely we will see methods
unifying both aspects to great advantage.
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Chapter 4

Discrete flow-based methods for image
segmentation and filtering

In this chapter we review discrete flow-based methods for segmentation and filtering. Flow-
based method have been used in the discrete domain for quite some time to solve minimum-cut
and related optimization problems. Our approach, perhaps uncommon, is to start from the
algorithms and their particularities, to arrive at formulations and applications. One reason
for this is to show that the particular characteristics of the discrete flow algorithms carry over
to the very end in sometimes unexpected fashions.

We review the motivation, the formulations and applications.

4.1 Discrete flows in networks

Historically, maximum-flow/minimum cut problems were studied by L. R. Ford, Jr. and D. R.
Fulkerson (1956). Most detailed can be found in their 1962 book (Ford and Fulkerson, 1962).

4.1.1 Motivation

Maximum flow (maxflow) problems are common in graph theory as well as in applications.
They are a form of transport problem common in optimization theory. The objective of the
maxflow problem is to maximize the flow of a quantity through a network, when the transport
cost itself is not considered.

In the process of finding this maximum throughput, Ford and Fulkerson showed that
another dual quantity is minimized, corresponding to a minimum partition cost. Consequently
maxflow algorithms are also widely used in partitioning problems. Image segmentation is a
particular case of those. Recently, it was realized that more complex problems such as multi-
label segmentation and image restoration/denoising could be non-trivially cast as partitioning
problems.

4.1.2 Flows in graphs

Let G = {V, ~E} be a graph with n vertices V and m directed edges ~E. We denote vi ∈ V
a vertex and eij ∈ ~E the edge linking vertex vi to vertex vj . We also denote N (vi) all the
neighbours of vertex vi, i.e. all the vertices ej such that there exist an edge linking ei to ej or
vice-versa.



98 Discrete Flow-based methods

We consider the case where the edges are weighted, and are interpreted as capacities. For
the edge linking vertices i to j, we denote Cij this capacity. Let s and t be two disjoint vertices
of this graph, called respectively the source and the sink. A flow from s to t is a function
F : ~E −→ R associating each edge eij ∈ ~E with values in R with the following properties:

• Flow sign: the flow coming into a vertex, i.e. for a vertex vi, any flow from a vertex
vj into vi along an edge eji is counted positively. Conversely, any flow coming out of
a vertex is counted negatively, i.e from vertex vi to a vertex vj along eij . This can be
formulated in the following form:

∀eij ∈ ~E, F (eij) = −F (eji) (4.1)

• Conservation of flow: the total (signed) flow in and out of any vertex is zero:

∀vi, ∀vj ∈ N (vj),
∑
j

F (eij) = 0 (4.2)

• Capacity constraint : the flow along any edge is less or equal to its capacity:

∀eij , F (eij) ≤ Cij (4.3)

A graph endowed with capacities and flow is called a network. We will say that an edge is
saturated if the flow going through it is equal to its capacity.

For consistency, we may add a directed edge between t and s with infinite capacity so that
the total flow in the network is conserved. Our objective will shortly be to maximize the flow
through the network or equivalently consequently through this extra edge. We denote the
total (signed) flow through the graph as |F | as the flow exiting the source s, and we write:

|F | =
∑

j,esj∈ ~E

fsj = fts

4.1.3 Minimum cost graph cuts

A seemingly distinct problem to the previous one is the problem of minimizing the cost of a
graph cut. For this we need some new definitions.

Given a graph G = {V, ~E}, let P(V ) be a partition of the vertices of this graph. Let
P(V ) = {V1, V2, . . . , Vp}, we have

V =
⋃

i=1,...,p

Vi and ∀i 6= j, Vi ∩ Vi = ∅. (4.4)

Note that we do not require the Vi to be connected within themselves. Given such a
partition P, its cut is the collection of vertices that link two different vertex subsets Vi and
Vj . We will denote ~E? this collection.

~E? = {epq | vp ∈ Vi, vq ∈ Vj , i 6= j} . (4.5)
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The cost K( ~E?) of this cut is the sum of the capacities C of the edges belonging to the
cut.

K( ~E?) =
∑

epq∈ ~E?
Cpq (4.6)

We will now define an s-t cut as a cut obtained when special vertices s and t respectively
lie in two different partitions. A minimum s-t cut is one such with minimal cost. In general,
it is not unique. It is possible to generalize to arbitrary numbers of sources and sink, but in
the remainder, we are only considering the binary case, with a single s and a single t, because
it is the only case for which there exist a polynomial-complexity algorithm.

4.1.4 Images as graphs

As the topic of this chapter is image analysis, it is useful to establish notation for images
as well. We assume an image can be represented as a regular graph, i.e. each pixel p is a
vertex in a graph G = {V, ~E}, which is connected to neighbours as in a regular grid. The
dimensionality of the grid is not specified, but is usually 2D or 3D. In 2D most common
grids are the familiar 4-connected or 8-connected ones, meaning that most pixels, except at
the border, have respectively 4 or 8 neighbours. In 3D the 6-connected, 18-connected or 26-
connected grids can be considered. We will not usually specify the dimensions of the image, but
if necessary, a 2D image will be arranged in a {1, . . . , nx}×{1, . . . , ny} pixels grid. The number
of pixels will then be n = nx.ny. In 3D, we will have a similar arrangement with an extra
dimension with voxels arranged in nz planes, the number of voxels will be n = nx.ny.nz. Most
often in images the weights on the m vertices are symmetric, and so the graph is undirected,
but this is not the general case, so we will continue to consider an directed graph with edges
in ~E.

4.2 The Ford-Fulkerson maxflow-mincut theorem

Given the definitions above, the Ford and Fulkerson maxflow-mincut theorem is the following:

Theorem 4.1 (Ford-Fulkerson maxflow-mincut) A maximum {s-t} flow in a graph G =
{V, ~E} is equal to the cost of a minimum s-t cut.

Proof : If we write both problems as linear programs, they are dual to one another.

The primal formulation is a straightforward interpretation of the maxflow definition
given in section 4.1.2. The dual is correct from the algebraic point of view, but needs
more explanation. In fact every s-t cut determines a feasible solution of this dual as
follows:

d(eij) =

{
1 if eij belongs to the cut
0 otherwise (4.7)

pi =

{
1 if i belongs to the partition that includes s
0 if i belongs to the partition that includes t (4.8)
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Table 4.1: Maxflow-mincut duality formulation

Maximum flow (primal) Minimum cut (dual)

Maximize |F | =
∑

j,esj∈ ~E

fsj Minimize
∑
eij∈ ~E

Cijd(eij)

Subject to: Subject to:

∀eij ∈ ~E, F (eij) ≤ Cij

∀vi ∈ V,
∑
j

F (eij) +
∑
j

F (eji) = 0

∀eij ∈ ~E, F (eij) ≥ 0

∀eij ∈ ~E, d(eij)− pi + pj ≥ 0

ps = 1

pt = 0

∀i, vi ∈ V, pi ≥ 0

∀eij ∈ ~E, d(eij) ≥ 0

It is also easy to verify that the cost of this cut is the expected one, i.e.
∑

eij∈ ~E? Cij .

With this, the maxflow-mincut theorem is nothing more than a particular instance of
the strong linear programming duality theorem (Bradley et al., 1977, Chapter 4), which
states that the optimums for the primal and dual problems are the same. �

More details about this classical result can be found in Papadimitriou and Steiglitz (1998),
particularly chapter 3 and 6. From the dual formulation, an important remark is that the
edges forming the cut are necessarily saturated.

4.3 Examples and remarks

Even simple examples can be enlightening in this context. On figure 4.1 we have a minimal
example where the maxflow has been computed. With the extra t-s edge, all nodes are fully
balanced. A minimum cut with cost 7 is represented by the saturated edges.

To say:

• saturated edges = mincut

• mincut = shortest path in dual graph in 2D, minimal surface in 3D.

Even though the maxflow-mincut problem is a linear program, it is inefficient to solve it
using standard linear programming methods such as the simplex. For this reason, specific
algorithms have been developed to solve it.
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Figure 4.1: A very simple maxflow on a directed graph. The thin dashed t-s edge is optional,
but it balances the whole network. The maximum flow is the total flow exiting s, which is equal
to the flow through the edge {ts}. The thick dashed edges are the saturated edges separating
s from t. They represent the mincut. Note that the flow through these edges is the maximum
flow.

4.4 Augmenting path algorithms

In addition to proving the maximum flow minimum cut duality, Ford and Fulkerson proposed
a general algorithm for the computation of a maximum flow. This algorithm successively
builds a maximum flow from a source s to a sink t by repeatedly locating paths along which
more flow may be pushed. At each step in this algorithm the flow is feasible: it satisfies the
conservation constraint. Once there are no more unsaturated paths between the source and
the sink, the flow is maximal. As above we consider a directed graph.

For this algorithm, we use the network G(V, ~E) defined above, with capacities Cij , on
which we define a flow F (eij), initially set to zero. At each step, the Ford and Fulkerson
algorithm produces a feasible flow, in the sense that it obeys equations (4.1), (4.2), and (4.3)
at each step of the algorithm.

We also need to maintain a residual network Gf (V, ~Ef ), with capacity Cfij = Cij −F (eij),
called the residual capacity and no flow. We note that it is possible that a flow from j to i be
allowed in the residual network even though it may not be possible in the original one. For
instance, if F (eji) > 0, Cji = 0, then Cfji = Cji − F (eji) = 0 + F (eij) > 0. In this instance, it
means we can scale the flow back in the original network, which is perfectly natural.

Searching for an augmenting path in Gf can be done either breadth-first or depth-first.
The breadth-first version is called the algorithm of Edmonds and Karp (1972). The original
Ford-Fulkerson algorithm uses depth-first search.

The algorithm terminates when no further augmenting path can be found. At this point,
s will not be able to reach t in the residual network. This means that the original network will
feature a set of saturated edges, such that any path leading from s to t will pass through at
least one of these edges. This mean that there exist a set of edges in the original network that
separate s from t via saturated edges. This set of edges therefore must include a cut. Since
this cut was formed by augmenting the flow through the original network, the flow must be
maximal and the cut must be of minimal cost. The resulting flow is not necessarily unique.
Once a maximum flow has been obtained, a minimum cut may then be extracted by removing
the saturated edges from the graph and extracting the connected components. It is possible
that more than one cut of equal, minimum value exists, in which case any one of these cuts
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Algorithm 2: Augmenting paths algorithm

Data: A network G(V, ~E) with capacities C
A network Gf (V, ~Ef ) with capacities Cf

A source node s and a sink node t
Result: A flow F (eij) which is maximum for G
Set F = 0 on each edge of G
Set Cf = C on each edge of Gf ;
while there exists a path p in Gf from s to t, so that ∀eij ∈ p, Cf (eij) > 0 do

find Cf (p) = min{Cf (eij), eij ∈ p}
for all edges eij ∈ p do

F (eij)←− F (eij) + Cf (p) (Augment the flow uniformly along the path)
Cf (eij)←− C(eij)− F (eij) (Update the residual capacity along the path)
Cf (eji)←− C(eji) + F (eij) (Update the reverse residual capacity along the path)

may be selected arbitrarily.
When the capacities are integers, the runtime complexity of the Ford and Fulkerson al-

gorithm is bounded by O(|E|L), where |E| is the number of edges in the graph and L the
number of levels (or the highest capacity). This is due to the fact that each while loop of the
algorithm is guaranteed to raise the total flow by at least one unit. When the capacities are
not rational, there are examples of graphs where the Ford and Fulkerson algorithm does not
converge. However, the Edmonds-Karp algorithm is guaranteed to converge with a runtime
complexity of O(|E|2|V |), where |V | is the number of vertices in the graph. Note that this
complexity is independent of the flow and capacity values.

Augmenting path algorithms form a large class of efficient algorithms, but there exists at
least two other classes of algorithms for solving the maxflow-mincut problem.

4.5 Push-relabel algorithms

Goldberg and Tarjan proposed an interesting alternative to the augmenting path algorithm.
Here we summarise the discussion presented in Sedgewick (2002) of the push-relabel algorithm,
sometime called pre-flow push algorithm.

A pre-flow is a relaxed form of a flow F , which satisfies the following constraint:

• Pre-flow constraint: The inward flow to a vertex is greater than or equal to the outward
flow from that vertex.

A vertex which has greater inward flow than outward flow is called an active vertex, with the
excess being the positive difference between the two. The algorithm proceeds by repeatedly
pushing flow outwards from active vertices toward the sink. A height function H : V → Z+

is introduced on the vertices in order to guide the flow along the shortest unsaturated path
toward the sink. The height of each vertex approximates the distance from that vertex to the
sink via the unsaturated edges in the graph. The source and sink have fixed heights of |V |
and 0 respectively and the sink may never become active.

Here we present the algorithm of Goldberg and Tarjan. Active vertices are stored in a
queue, Q. As was the case with the augmenting flow algorithm, this general pre-flow push
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Algorithm 3: Push-relabel maxflow algorithm

Data: A network G(V, ~E) with capacities C
A source node s and a sink node t
A queue Q
A height scalar H(vi) associated with each vertex
Result: A flow F (eij), which is maximum for G
Set F = 0 on each edge of G
Let H be the length of the shortest unweighted path to the sink t, and set H(vi) = |V |
Set the source s as active and place it in Q
while Q is not empty do

retrieve an active vertex v from Q
for all neighboring vertices u of v do

if the edge evu is unsaturated and H(v) = H(u) + 1 then
while evu is not saturated and v still has excess do

Increase F (evu)

if Flow to u has increased then
Set u as active
Place u in Q

if v still has positive excess then
Increment H(v)
Place v in Q

else
Set v as inactive

algorithm forms the basis of a class of maximum flow algorithms. A proof that this algorithm
gives a maximum flow at termination is given in Sedgewick (2002).

Individual algorithms differ on the function and implementation of the queue Q as well as
a number of additional heuristics which have been found to reduce running times in practice:

Priority queue: An effective choice of queue is a priority queue, using the height H of each
active vertex as its priority. This causes the algorithm to focus its attention on pushing flow
out of the vertices which are furthest from the sink, ideally examining each vertex only a small
number of times. As the heights are integers we may use an efficient, integer priority queue
which handles insertions, removals and priority changes in O(1) time.

Global relabelling: Ideally H should resemble the length of the shortest unsaturated path
to the source, so that the flows do not take unnecessarily tortuous paths. The global rela-
belling heuristic periodically recomputes H to ensure this, labelling vertices v which have no
unsaturated path to the sink with height max{H(v), |V | + 1}. To ensure that this heuris-
tic incurs constant amortised cost the global relabelling is only performed once per O(|V |)
iterations.
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Gap relabelling: A gap forms in the priority queue at height h when no active vertices have
height h but there exist active vertices of both lesser height and greater height. Recall that
flow can only be pushed from a vertex v to a neighbouring vertex u if H(v) = H(u) + 1. Note
also that the height function H can only increase with each iteration. So the vertices with
height greater than h cannot reach the sink, and therefore these vertices may be relabelled
with height |V |+ 1.

The algorithm may be further improved by noting that when an active vertex was unable
to reduce its excess to 0, rather than merely incrementing H(v) we may increase H(v) to one
greater than the maximum of its neighbours. The combination of all of these heuristics gives
a practical implementation of the pre-flow push algorithm with good performance on a large
class of graphs, including the regular multidimensional grids we usually encounter in image
analysis.

Finally, we note that while the augmenting flows algorithm operated on the graph as a
whole, the basic pre-flow push algorithm (without relabelling heuristics) operates only on
a single vertex and its neighbours at a time. This property of locality will later inspire an
approach to the continuous generalisation of maximum flows and consequently minimum cuts.

4.6 Classical algorithms and recent advances

Algorithms for computing the maxflow/mincut have been an important topic of research,
even more so now since applications demand solving transport and flow problems on very
large graphs by linear optimization standards, and since architecture changes are driving the
need for parallel methods.

Table 4.2 summarizes a subset of classical general-purpose algorithms that exploit the
maxflow-mincut duality.

Table 4.2: Table of general-purpose maxflow-mincut algorithms

Algorithm Complexity Remarks
Ford and Fulkerson (1956) O(V |maxlabel|) May not converge if labels

are not integers.
Edmonds and Karp (1972) O(V.E2) Variation of FF that finds

paths by breadth-first
search. Guaranteed to
always converge.

Dinic (1970) O(V 2.E) Variant of EK with blocking
flows.

General Push-Relabel (Goldberg and
Tarjan, 1988)

O(V 2.E) First preflow method.

P-R with FIFO vertex rule (Cormen
et al., 2001)

O(V 3) In many "real-world" situa-
tions, P-R algorithms vari-
ants are faster than aug-
menting paths.

P-R with highest active vertex rule O(V 2.
√
E)

P-R with dynamic tree data structure O(V 2. log(V 2/E))
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Min-cut only algorithm and Hochbaum’s conjecture: D. Hochbaum made the remark
that at the end of the maxflow algorithms, the min-cut can be deduced from the max-flow, but
not the other way around. She conjectures that there may exist more efficient algorithms that
compute only the min-cut and dispense with the max-flow. Indeed there exist such algorithms,
the most well-know of which is the Stoer-Wagner algorithm, with a runtime complexity of
O(V.E + V 2 log(E)), but in practice they are not the fastest methods for dealing with image-
related data.

Specialized image-related algorithms Most images feature relatively few grey-levels and
regular grids with symmetries that can be exploited to provide faster algorithm than general-
purpose ones. The recent interest in minimum cost graph-cut algorithms in computer vision
is due in no small part to such a dedicated algorithm, proposed by Boykov and Kolmogorov
(2004). This algorithm uses augmenting path without a residual graph, but uses instead some
well-founded heuristics. In particular, instead of searching a new path at each iteration, it
remembers the paths already found and reuses them to find bottlenecks faster.

Compared with the classical algorithms, the BK algorithm can be 4-25 times faster on 2D
regular networks, depending on the problem. On 3D examples, it performs about as well as
PR, but get progressively worse as the graph connectivity increases. In their 2004 paper, BK
do not provide a polynomial bound for their algorithm.

Other authors have proposed improvements to the BK algorithm. For instance, Juan and
Boykov (2007) provide a weak polynomial bound for a related algorithm to BK and improve
the 3D performance.

4.7 Applications

The message from the previous sections is that there exists fast methods to solve the
maxflow/mincut optimization problem. In the vision literature, these methods are very pop-
ular and and simply called “Graph Cuts” (GC) methods. How GC relates to imaging and
vision is the topic of this section. Here we briefly survey the type of applications where such
methods are useful

4.7.1 Seeded image segmentation

The most natural application of GC is binary, seeded segmentation. Image segmentation
is described in chapter 3, and refers to the tessellation of images into consistent regions of
interests. Binary here means there are only two regions: foreground and background. Seeded
means the location of both these regions is indicated by markers.

To solve this problem, we can consider the image as a graph G(V,E) , with each pixel
considered a vertex and neighboring pixels linked with edges. The capacity (or weight) of
each edge is set to a function of the gradient of the image g(∇I). In this case, we consider the
discrete gradient ∇I = wij = I(j)− I(i). Classically, one considers monotonically decreasing
function of the magnitude of the gradient, such as g ≡ exp(−α|∇I|2) or g ≡ 1/(1+|∇I|p), with
p = 1 or 2. Finally, we can connect the foreground seeds to the source s and the background
seeds to the sink t. With such a setting, the maxflow/mincut problem corresponds to solving
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the following problem:

argmin
E?

∑
eij∈E?

g(|∇I|)

s.t.


V = Vs ∪ Vt
Vs ∩ Vt = ∅
s ∈ Vs, t ∈ Vt
eij ∈ E? ⇐⇒ ei ∈ Vs, ej ∈ Vt

(4.9)

In other words, this finds the set E? that tessellates the graph G(V,E) into two distinct
subsets, one containing s, the other t, with minimal cost. This situation and its solution is
illustrated on Fig 4.2. This is the discrete equivalent to the Geodesic Active Contour (GAC)
equation (3.4) of chapter 3.

S

T

S

T

mincut

Figure 4.2: Simple binary seeded graph and associated segmentation

An example actual segmentation with this model is given on Fig 4.3. While simple,
this example is fairly representative of GC seeded segmentations: with relatively good seed
placement, the result is quite good. The method is relatively insensitive to seed placement,
but tends to favour small contours, when seeds are too small. Also the final result may be
look relatively blocky due to grid bias.

In order to ameliorate these problems, the binary segmentation method can be extended
using so-called unary weights.

4.7.1.1 Segmentation using unary weights:

A relatively simple extension to this scheme is add so-called unary terms between s and t
respectively to all the pixels in the image (Boykov and Funka-Lea, 2006), as on Fig 4.4. These
are simply extra weighted edges drawn from both the source and the sink to every pixel in the
image. The unary weights can be derived from simple intensity or colour differences. They can
also be derived from local measure such as texture, or any arbitrary measure giving rise to a
scalar weight. Conventionally, s can be associated to the foreground and t to the background.
Topology constraints and user interaction can be enforced through the use of some strong edge
weights either to the source or the sink.

The more traditional marker-controlled segmentation procedure of previous paragraphs is
nothing more than a special case where only topology constraints are enforced. On Fig. 4.5,
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(a) (b)

(c) (d)

Figure 4.3: Grey level segmentation of an apple. This type of CG segmentation is robust to
seed placement, but tends to favour small boundaries and readily features grid bias.

we show a segmentation of red blood cells using unary weights, in this case a distance between
each pixels and either pure white or pure black. In this case we did not use any hard seed to
enforce topology.

An important issue is the increased graph complexity that arise when considering unary
weights, that slows down computations. This has been recently studied by Lermé et al. (2010),
showing that it is possible to still achieve reasonable computation speed even with these extra
weights.

4.7.2 Maximum A-Posteriori - Markov Random Fields interpretation

One very important aspect of graph cut optimization is their interpretation in terms of the
Maximum A Posteriori - Markov Random Fields approach (MAP-MRF).

In broad terms, an MRF is a model consisting of the following items: a set of sites (a.k.a.
pixels) S = {s1, . . . , sn}, a set of random variable y = {y1, . . . , yn} associated with each pixel,
and a set of neighbors N1...n at each pixel location. The set Np describes the neighborhood of
pixel p, for instance it contains the indices of the subset of S connected to p.

Furthermore, the model must obey the Markov condition, which is that

Pr(yp|yS\p) = Pr(yp|yNp), ∀p ∈ S (4.10)

In other words, the probability of yq depends only on its immediate neighbours, not on
the whole image.
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S

T

(a)

S

T

(b)

Figure 4.4: Segmentation with unary weights. In this case weighted edges link the source and
the sink to all the pixels in the image (a). The min-cut is a surface separating s from t (b).
Some strong edge weights can ensure the surface crosses the pixel plane, enforcing topology
constraints.

(a) (b)

Figure 4.5: Binary segmentation with unary weights

Now, given a set of observables x = {x1, . . . , xn}, we can write, using Bayes’ rule:

ŷ = argmax
y1...n

Pr(y1...n|x) (4.11)

= argmax
y1...n

n∏
n=1

Pr(xn|yn)Pr(y1...n) (4.12)

= argmax
y1...n

n∑
n=1

log[Pr(xn|yn)] + log[Pr(y1...n)] (4.13)

= argmin
y1...n

n∑
n=1

Up(yp) +
∑
u∈Np

Pu,p(yu, yp) (4.14)

This last sum contains unary terms Up(yp) and pairwise terms Pu,p(yu, yp). With some
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restrictions, graph cuts can optimize these energies.
As an illustration, the binary segmentation problem with unary weights above can be

written:

argmin Ê(G) =
∑
vi∈V

wi(Vi) + λ
∑
eij∈ ~E

wijδVi 6=Vj (4.15)

In equation (4.15), Vi is 1 if vi ∈ Vs and 0 if vi ∈ Vt, i.e. it is 1 if pixel i belongs to the
partition containing s and 0 otherwise. δVi 6=Vj is 1 if the corresponding eij is on the cut, and
0 otherwise. The first sum contains the pairwise terms, and sums the cost of the cut in the
image plane. The second sum contains the unary terms, and adds the cost of a pixel to belong
to either the partition containing s or the partition containing t.

This energy corresponds to the energy of an MRF, has a MAP interpretation, and can be
optimized exactly using mincut/maxflow techniques.

4.8 A general discrete framework for energy minimization

At this stage we know how to perform binary segmentation with and without unary weights,
and we have a MAP-MRF interpretation of this problem. The next question is can we extend
these results to other settings? For instance can we perform image denoising or other vision-
related applications within this framework?

Image restoration can indeed be written as a MAP-MRF problem, for instance consider
the following formulation. Once more we consider a graph G = {V, ~E}. Let x be observations
of an unknown x, under the condition that x takes values over a finite set of labels L. These
can represent for instance grey-level values in an image. We can define L as an ordered discrete
set of labels {1, . . . , Q}. We denote xu the label assigned to node u ∈ V . The unknown x∗ is
a minimum argument of the following energy function:

E(x) =
∑
ui∈V

D(xi) + λ
∑
ei,j∈ ~E

R(xi, xj), (4.16)

where λ is a positive real value. D(xi) is often called the data fidelity term and R(xi, xj) the
regularization or smoothness prior.

A common choice of data term D is a pixelwise distance D = |xi − xi|p between the
desired labeling x and a reference x, representing noisy acquired data, where p is a small
positive integer, e.g. 1 or 2.

Many choices of R lead to useful algorithms and results. A common model is the so-called
Potts model, where R(xi, xj) = wij min(1, |xi − xj |), and wij are spatially variant positive
pairwise weights. This model corresponds to a piecewise constant prior. Other choices for R
includeR = wij |xi−xj |q, where q is typically 1 or 2 for linear and quadratic priors respectively.
The latter represents an “everywhere smooth” prior with good denoising properties and lack
of staircase effect in the result, but with blurred boundaries.

In recent years, energy-based optimization methods using discrete flow-based solutions,
(Graph Cuts) have become very popular in computer vision applications (Boykov et al.,
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1998; Ishikawa, 2003; Boykov et al., 2001). GC optimization has been applied to e.g. stereo-
vision (Woodford et al., 2008), multiview reconstruction (Sinha et al., 2011), motion analy-
sis (Xiao and Shah, 2007), segmentation (Boykov and Jolly, 2002) and image restoration (Dar-
bon and Sigelle, 2006b). GC methods tend to provide optimal or near-optimal solutions to
classical Markov Random Fields (MRF) problems, with some guarantees and in reasonable
time, unlike earlier methods like Simulated Annealing (SA) (Geman and Geman, 1984) or
Iterated Conditional Modes (ICM) (Besag, 1986). From the algorithmic point of view, GC
problems can be solved exactly when the energy is submodular, which was shown for the
binary case (binary L) in Murota (2000); Kolmogorov and Zabih (2004) and for multi-label
cases in Schlesinger and Flach (2006)

One way to solve such problems is to present the optimization problem as a segmentation
problem. This was proposed by Ishikawa and Geiger (1999).

4.8.1 The Ishikawa construction

In this approach, a graph is built to represent an image represented on a finite (usually small)
number Q of discrete levels. We assume the image is represented on a discrete set of vertices
V, e.g. for a regular, 4-connected, 2D image, V = {1, . . . , nx} × {1, . . . , ny}. The Ishikawa
construction involves representing the quantized levels of the image in the graph itself.

The graph G = {V, ~E} is defined as follows:

1. V = V× {1, . . . , Q} ∪ {s, t} is the set of vertices quantized over Q levels, together with
two special vertices, the source s and the sink t.

2. ~E = ~ED ∪ ~EC ∪ ~EP is the set of edges. As before, an oriented edge from vertex a to
vertex b is denoted by ea,b. We have :

(a) ~ED =
⋃
v∈V ~E

v
D is the upward columns of the graph. For all v ∈ V, let hv,k denote

the node in column v and row k. A single column associated with pixel v is defined
as
~EvD =

{
es,hv,1

}
∪
{
ehv,k,hv,k+1

|, k ∈ {1, ..., Q− 1}
}
∪ {hv,Q, t} ,

(b) ~EC =
⋃
v∈V ~E

v
C the downward columns of the graph, with

~EvC =
{
ehv,k,hv,k+1

| k ∈ {1, ..., Q− 1}
}
,

(c) and the penalty edges of the graph are thus defined as
~EP =

{
ehv,k,hw,k | {v, w} neighbours ∈ V, k ∈ {1, ..., Q}} .

The above graph is depicted in Fig. 4.6. In this figure, for simplicity we assume the image
is one-dimensional, i.e. each pixel has only two neighbours, which allows us to represent
the graph in a 2D planar layout. For 2D or 3D images, correspondingly more penalty edges
between all neighbours in V are present in the graph. For such images, it is best to see the
arrangement of v vertices as in the original images, with the column of penalty edges in an
extra dimension.

4.8.2 Image restoration using the Ishikawa graph

Let us consider the separable function defined in (4.16) with D(xi) = |xi − xi|, i.e. an `1
data fidelity term, and R = wij |xi − xj |, i.e. also an `1 regularization term. This energy
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formulation is convex and has been studied by many authors. With wij ≡ 1 everywhere,
this regularization term is the discrete total variation (TV). Minimizing (4.16) with these two
terms corresponds to a discrete formulation of the ROF model. With wij positive, this is the
weighted TV formulation (Darbon and Sigelle, 2006a).

We now set the weights on the Ishikawa graph to solve this problem in the following
manner:

1. The links to the source are set to an infinite capacity:

∀v ∈ V, c
(
es,hv,1

)
= +∞. (4.17)

2. The data fidelity terms for any pixel v ∈ V is

∀k ∈ {1, . . . , Q− 1}, c
(
ehv,k,hv,k+1

)
= |rk − f(v)|, (4.18)

c
(
ehv,Q,t

)
= |rQ − f(v)|. (4.19)

3. The capacity of downward columns is infinite to constrain a single cut per column:

∀v ∈ V,∀k ∈ {1, . . . , Q− 1}, c
(
ehv,k+1,hv,k

)
= +∞. (4.20)

4. The regularization term along the penalty edges of the graph is:

for every {v, w} neighbours ∈ V, ∀k ∈ {1, . . . , Q}, c
(
ehv,k,hw,k

)
= λ (4.21)

The above graph G can be extended to any convex functionR (Ishikawa and Geiger, 1999).
The capacities of E are adjusted in such a way that a cut of G corresponds to the solution of
(4.16), granted by the following result:

Proposition 4.2 With any convex function R and any positive function D, then the min cut
of G = (V, ~E) as described by (4.17) through (4.21) is the globally optimal solution to (4.16).

Proof : This result is derived from the construction of the graph. First note that we build
here a binary flow network with one source and one sink. As seen in section 4.2, any
binary cut that separates s and t along a series of edges, that can be interpreted as a
solution xP . Indeed, the infinite capacity of the downward edges ensure a single cut
edge in each column of the graph, and the infinite capacity of the upward es,hv,1 edges
for all v ensures that, in all columns, this cut will be located above one of the nodes
corresponding to a level k ∈ {1, . . . , Q}. We can therefore associate the cut in column
v with the value of the level immediately below the cut, and associate this with xP(v).
Recalling that all labels below the cut will have the same label as s, and all that above
the cut the same label as t, the value of xP at pixel v is the highest level l in column v
of the graph that is labelled like the source s. Here, by convention, the source is labelled
with 1 and the sink with 0. We can then write xP(v) = max{k, hv,k = 1}.
Now, the computation of the maxflow/mincut on this graph minimizes the energy of the
cut, interpreted as the sum of two terms:
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1. since the downward constraint edges ensure a single cut edge along each column of
the graph, this corresponds to contribution of the data fidelity term R to the total
energy.

2. Similarly, we note that each penalty edges in ~EP with capacity λ can be cut at most
once. Let u and v be two neighbouring pixels in the graph. The cut along penalty
edges between xP(u) and xP(v) crosses exactly as many penalty edges as there are
quantization level differences between u and v. We note that this correspond to a
contribution of λ|xP(u)− xP(v)| to the total energy.

Hence, the computation of the maxflow/mincut on this graph solves (4.16) exactly. �

NM321
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Q−1

Q−2
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t

Figure 4.6: Construction of the Ishikawa optimization graph. Arrows represent the edges ~E
and circles the nodes in V . Horizontal edges are in ~EP , the dotted upward vertical edges are
in ~ED and the plain downward vertical edges are in ~EC . Vertices s and t are respectively
the source and the sink. All pixels in the image from 1 to n are represented in the columns.
In actual 2D images, there exist many more penalty edges EP than depicted here: all those
between neighbours in V.

Remark 4.3

1. Optimizing (4.16) when R is convex and not necessarily the `1 norm is done by adding
non-horizontal penalty edges (Ishikawa, 2003). These extra edges are weighted with the
finite-difference approximation of the gradient of R.
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2. In the case when the number of quantized levels Q is small (say between 1 and 32), the
Ishikawa framework is very efficient.

3. As the dimensionality of the problem increases, so does the number of penalty edges in
the graph. The cut is always an hypersurface of codimension 1.

4. Ishikawa recommends solving the maxflow/mincut by using a push-relabel algorithm,
which makes perfect sense as the dimensionality increases, because these algorithms
have an asymptotic complexity which is less than linear in the number of edges (see
section 4.5).

5. It is worth repeating that in this framework, everything is discrete, and that optimization
is carried out completely in the discrete domain. The solution found may not exactly be
equal to a convex programming solution of a continuous-version of (4.16).

Many authors have reused and improved on the Ishikawa construction, for instance (Dar-
bon and Sigelle, 2006b,a). The ability of the Ishikawa construction to deal with non-convex
data fidelity has been used with profit in remote sensing, particularly with SAR denois-
ing (Shabou et al., 2009), and in stereo-vision. We have also used it for joint quantization and
denoising in Chaux et al. (2010); Jezierska et al. (2010).

4.9 The move framework

We have seen how a restoration problem can be mapped to a graph-cut formulation. The
Ishikawa construction is remarkable, in particular because it makes few hypotheses on the
data fidelity (most remarkably, convexity is not required), yet can find the global discrete
optimum of this formulation. The main drawbacks of the method are the time and memory
requirements, which are quickly prohibitive as soon as n,m or Q increase. To improve on this,
several authors have proposed other schemes based on simpler, iterative graph constructions,
called moves.

The so-called move algorithms were developed to solve multi-label problems by solving
a series of binary sub-problems. Following the definition given in Veksler (2007), a move
algorithm is an iterative algorithm where an estimation xn+1 of x is a function of xn, an
earlier estimation, through a “move” space M, i.e. xn+1 ∈ M(xn). A local minimum with
respect to a set of moves is reached for x if E(x′) ≥ E(x) for any x′ ∈M(x).

GC move algorithms have typically good theoretical guarantees for quality for certain sets
of regularization terms. Classical move algorithms include expansion and swap moves Veksler
(1999); Boykov et al. (2001). More recently, more sophisticated moves have been proposed,
e.g. range moves and fusion moves (Veksler, 2007; Kumar and Torr, 2008; Veksler, 2009;
Lempitsky et al., 2010).

All are geared towards improving the quality of the solution and the speed of the algorithm.
The time complexity of move algorithms usually increases steeply with the number of labels.
For example, the worst-case complexity of swap moves is quadratic in the number of labels
while range-moves perform even worse. However, for problems where the number of labels
is relatively low, these methods can be fast enough. Hence, move algorithms scale well with
connectivity, are flexible with respect to data fidelity terms, but may not scale well with the
number of labels.
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4.9.1 Binary representation and sub-modularity

Now in order to be able to optimize GC move energies, we need to define their graph-
representability, i.e. the ability to build an {s, t}-graph cut associated with these energies.

Definition 4.4 (Graph-representability) A function E of n binary variables is called
graph-representable if there exists a graph G = {V, ~E} ∪ {s, t} and a subset of vertices
V0 = {v1, . . . , vn} ⊂ V , such that for any binary vector x, the value of E(x) equals that
of the associated minimum s-t cut up to a constant.

We note that for those energies that are graph-representable, maxflow-mincut algorithms
as described earlier in this chapter are able to compute the global optimum of this energy in
polynomial time.

We also note the following lemma:

Lemma 4.5 (Additivity) The sum of two graph-representable energies is graph-
representable.

The proof of this lemma is simple if the graphs representing the two energies are defined
on the same set of vertices. In this case, simply adding the two sets of edge weights together
yields a graph that represents the sum of the two energies. A missing edge in one or the other
graphs is taken as having a weight of value zero. Here, we do not need to prove this lemma
in the more general case.

4.9.1.1 Sub-modularity

We now consider only binary energies with unary and pairwise terms, i.e. those that corre-
spond to (4.16), but with x binary. Then we have the following theorem:

Theorem 4.6 (Sub-modularity) Let E be a function of a binary vector x in the form of
equation (4.16), which we equivalently write here as follows:

E(x1, . . . , xn) =
∑
i

Ei(xi) +
∑
i<j

Eij(xi, xj) (4.22)

Note that we consider ordered vertices because Eij(xi, xj) = Eji(xj , xj), and we do not
want to consider the pairwise terms twice. In this context, E is graph-representable if and
only if for every pairwise terms:

Eij(0, 0) + Eij(1, 1) ≤ Eij(1, 0) + Eij(0, 1) (4.23)

This theorem was given in the present form in Kolmogorov and Zabih (2004), however,
submodularity is the discrete equivalent of the notion of convexity. This has been known since
at least the 1980s, when this notion was used in economics. A thorough treatment of discrete
convexity is given in Murota (2003). We reproduce here the constructive proof of Kolmogorov
and Zabih (2004) because it is very enlightening.
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Proof : We begin by representing the unary terms of (4.22). We follow the convention
that cutting the s-vi edge represents Ei(1) and cutting the vi-t edge represents Ei(0).
For each vertex i, there are only two cases: either Ei(0) > Ei(1) or the complement
Ei(1) ≥ Ei(0). In either cases, we draw a graph containing only positive weights, as
represented on Fig. 4.7. We also take advantage of the fact that adding a constant to
such graphs does not change the optimization result, so in Fig. 4.7(a) we subtracted
Ei(0) and in Fig. 4.7(b) we subtracted Ei(1). This allows us to remove one edge of the
graph, and also to cope with non-positive energies.

For the pairwise terms of (4.22), there are four cases for energy Ei,j :

A B

C D
=

Ei,j(0, 0) Ei,j(0, 1)

Ei,j(1, 0) Ei,j(1, 1)
(4.24)

We decompose these four cases in the following way:

A B

C D
= A+

0 0

C −A C −A +
0 D − C
0 D − C +

0 B + C −A−D
0 0

(4.25)

In this decomposition, A is a constant, so we do not need to represent it. The following
two matrices show weights that are constant respectively with i and with j, and so can
simply be added to the unary weights. This is done in a similar way as above. For the
first matrix, which involves only the s-vi and the vi-t edges, we weight them either with
C − A, A − C or zero, in such a way that all weights are positive. The second matrix
involves only the edges s-vj and vj-t and we do the same thing with D − C or C −D.

The last matrix can be represented by an edge from i to j with weight B +C −A−D.
We note that since the energy is sub-modular, (4.23) translates to A+D ≤ B + C and
so this edge weight is always positive.

The full solution for binary weights is shown on Fig. 4.7(c). �

Here we have shown that a sub-modular energy involving unary and binary terms is always
graph-representable, but the converse is also true. For simplicity we do not show the proof
here, although it is not difficult.

Now we can use this general framework for applications.

4.9.2 The expansion move

As an illustration, we describe here the expansion move. This was introduced in Veksler
(1999); Boykov et al. (2001). It can be use for a wide class of regularization functions R, as
long as it corresponds to a metric on the space of labels, i.e. when it obeys the following rules:

R(xi, xj) ≥ 0 (positivity rule) (4.26)
R(xi, xj) = 0⇐⇒ xi = xj (equality rule) (4.27)

R(xi, xj) = R(xj , xi) (symmetry rule) (4.28)
R(xi, xj) +R(xj , xk) ≥ R(xi, xk) (triangular inequality) (4.29)
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Ei(0)− Ei(1)

s

t

vi

(a)

Ei(1)− Ei(0)

s

t

vi

(b)

max(C −A, 0)

B + C −A−D

s

t

vi vj

max(A− C, 0)

max(D − C, 0)

max(C −D, 0)

(c)

Figure 4.7: Graph-representability of unary and binary weights: (a) unary case when Ei(0) >
Ei(1); (b) unary case when Ei(1) ≥ Ei(0) ; (c) binary general case, where R is the ramp
function, i.e. R(x) = x if x ≥ 0 and 0 otherwise. A,B,C,D are defined in the text.

For instance, the familiar `1 distance R(xi, xj) = |xi − xj | obeys all of the above rules,
and is therefore a metric. On the other hand, the following regularization term R(xi, xj) =
max(|xi − xj |, T ) with T > 0 is not a metric. We note that we do not put restrictions on
unary weights, i.e. on the data fidelity term.

Consider a particular labelling f , i.e. an arbitrary instance of {1, . . . , Q}n over the n
vertices of G, and a particular level α ∈ {1, . . . , Q}. Another labeling f ′ is defined to be an
expansion move from f if for a particular vertex p, f ′(p) 6= α implies f ′(p) = f(p). This means
that the set of pixels assigned the label α cannot shrink when going from f to f ′.

We note that it is straightforward to represent a single expansion step as a binary problem,
for instance, for all p ∈ V , we can encode it with a binary vector associated with each graph
vertex x = {xp, p ∈ V }, such that f ′(p) = f(p) ⇔ xp = 0, and f ′(p) = α ⇔ xp = 1. The
following binary matrix represents the pairwise energy:

Ei,j(0, 0) Ei,j(0, 1)

Ei,j(1, 0) Ei,j(1, 1)
=
R(xi, xj) R(xi, α)

R(α, xj) R(α, α)
(4.30)

Of course the full energy associated with any expansion move includes unary terms. We
include them following the convention on Fig. 4.7(a) and (b). These weights are always graph-
representable.

The pairwise energy represented by (4.30) is sub-modular due to the fact thatR is a metric.
Indeed in this case R(α, α) = 0, and thanks to the triangular inequality R(xi, α)+R(α, xj) ≥
R(xi, xj), therefore (4.23) is verified.

Since an α-expansion step is sub-modular, it graph-representable. A single step of expan-
sion can therefore be represented as in section 4.9.1. We can easily adapt Fig. 4.7 to our needs.
More precisely, we consider a particular quantization level, or label α, to which we associate
a graph Gα = {V, E}, defined as follows:

1. V = V ∪ {α, α}, where α, α are the two special nodes playing the role of s and t in
Fig. 4.7, and V is the set of image nodes.
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wα,u wα,v

wv,α

wu,α

wu,v

Figure 4.8: Notations for the α-expansion graph, following Kolmogorov and Zabih (2004).
Here we took a simplified 2-pixel neighbourhood. The cost (or capacity) between u and v is
labelled as wu,v, and so on for all edges. The expressions for the capacity for all edges are
given in the text.

2. E = EV ∪ EN is the set of edges, defined as follows :

(a) EV =
⋃
v∈V {eα,v, ev,α} is the set of edges between special term nodes and image

nodes ;
(b) EN =

⋃
{u,v}neighbours is the set of edges between neighbours and N is the set of

neighbours pairs containing only ordered pairs u, v, i.e. such that u < v.

A simple 2-node graph with s and t is shown on Fig 4.8. The capacity for all the edges
are given following (4.25), Fig. 4.7 and (4.30).

4.9.2.1 Principle and convergence of expansion moves

The principle of the expansion move algorithm is to cycle through all the labels in some order
(fixed or random) and to find the lowest energy expansion move from the current labeling. If
this expansion move has strictly lower energy than the current labeling, then it becomes the
current labeling. Although we do not reprint a formal proof the convergence of the expansion
move, we give the major arguments:

• The full energy of (4.22) is represented as a finite discrete sum, therefore it is itself
always finite and discrete.

• Every expansion move strictly lowers energy (4.22) because we use this energy as refer-
ence when choosing the most effective expansion move.

• The two preceding points combined imply that expansion moves eventually converge.

• Expansion move are effective at lowering energy (4.22) because the ground state E(0, 0)
of (4.30) is precisely the pairwise energy of (4.22), and the unary weights of any ex-
pansion move are also the unary weights of energy (4.22). This means that when no
further expansion move can be effected, the resulting energy is at least a local minimum
of (4.22).
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The algorithm terminates with a labeling that is a local minimum of the energy with
respect to expansion moves; more precisely, there is no expansion move, for any label α, with
lower energy. It is also possible to prove that such a local minimum lies within a multiplicative
factor of the global minimum (Boykov et al., 2001). In practice this result is seldom useful,
but the bound is tight: examples can be constructed for which the expansion move will only
reach this bound.

As described, the expansion move can be improved significantly from the computational
perspective. In particular, although new graph weights must be recomputed at each iteration,
there are ways to reuse existing flows to compute the next solution.

4.9.3 Convex and Non-convex moves

The requirement that the prior R be a metric is a sufficient condition for the associated
expansion move to be submodular, however it is not strictly necessary. The Potts model
R(xi, xj) = 1 − δ(xi − xj), where δ is the Kronecker function (i.e: δ(0) = 1, δ(x 6= 0) = 0,
can be approximately optimized by expansion moves. More complex moves exist, notably the
α − β swap move (Veksler, 1999; Boykov et al., 2001), which is suitable for all semi-metric
priors, i.e. metrics that verify (4.26) through (4.28) but not the triangular inequality (4.29).
Many different moves and applications have been proposed.

We have ourselves contributed several moves and applications, which we illustrate briefly
here.

4.9.3.1 Joint quantization and denoising

In Jezierska et al. (2010) we have proposed a joint denoising-quantization method. Quantiza-
tion, defined as the act of attributing a finite number of levels to an image, is an essential task
in image acquisition and coding. It is also intricately linked to various image analysis tasks,
such as denoising and segmentation. We have investigated vector quantization combined with
regularity constraints, a little-studied area which is of interest, in particular, when quantizing
in the presence of noise or other acquisition artifacts. In this context we proposed and val-
idated optimization methods combining continuous projection methods for quantization and
graph cuts for restoration.

On Fig. 4.9 we show an example of this procedure compared with well-known Lloyd-max
quantization in the case of a greyscale microscopy image.

4.9.3.2 Truncated convex moves

In Jezierska et al. (2011), we proposed a joint quantizing-convex move to optimize energies
with truncated convex priors. Such non-convex energies with semi-metric priors correspond to
a piecewise-smooth image model. They are similar in many ways to robust metrics in model
fitting and regression, particularly M -estimators with the Tukey biweight function (Huber
and Ronchetti, 1981).

Optimizing these energies efficiently is a difficult problem. Semi-metric energies can be
optimized with graph cuts using swap moves (Veksler, 1999). Expansion moves can also be
used but the result is only approximate, since not all configurations are graph-representable.
Belief Propagation (Felzenszwalb and Huttenlocher, 2004) and tree-reweighted methods (Kol-
mogorov, 2006) have also been proposed. More recently fusion moves (Lempitsky et al., 2010)



4.9 The move framework 119

(a)

(b) LM: 0.84 bpp

(c) Ours: 0.58 bpp

Figure 4.9: Joint quantization and denoising: figures (a,b,c) illustrate a fragment of the orig-
inal image, Lloyd-Max (LM) and our results, respectively. Note that LM retained the vertical
acquisition artifacts as well as a lot of noise, which are absent in our result. Note also the
improved entropy figure in our case.
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Table 4.3: Interpretation of (4.31) depending on the values of p and q.

H
HHH

HHq
p 0 finite −→∞

1 Reduction to seeds Graph cuts
Max Spanning

Forest
[Allène et al. 07]

2 `2-norm Voronoi Random walker
Power watershed
[Couprie et al. 09]

∞ `1-norm Voronoi `1-norm Voronoi
Shortest Path
[Sinop et al. 07]

were shown to be effective in this case. Graph-cut methods were shown to outperform BP in
several cases examined by Szeliski et al. (2008)

4.10 Power watershed

It is possible and fruitful to generalize (4.16) in the following way:

min
x

∑
eij∈E

wij
p|xi − xj |q︸ ︷︷ ︸

Prior

+
∑
vi∈V

wi
p|xi − li|q︸ ︷︷ ︸

Fidelity

(4.31)

For this equation to correspond to a graph, we propose the arrangement of Fig. 4.10. In
these equation and figure, x is the sought after result, and l is a reference image. We note
that if l is binary, then it is the same as Fig.4.4.

l

x

Figure 4.10: Graph arrangement for (4.31)

In this equation, we have two exponents p and q. Depending on their value, we can
interpret (4.31) in several ways, indicated on Table 4.3.

Some of these interpretations are not very useful, particularly the reduction to seeds and
the Voronoï results, however the relationship between graph-cuts and watershed in the case
q = 1 was demonstrated by Allène et al. (2007) and the convergence to shortest paths forests
by Sinop and Grady (2007). The case q = 2 and p −→ ∞ was novel, however. Note that the
result we seek is the outcome of this convergence process (in the epi-convergence sense), and
not the p =∞ case, which is not interesting.
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(a) (b)

(c)

(d)

(e)

Figure 4.11: Convergence of the Power Watershed. (a) Initial image with seeds; (b) Result of
Power Watershed;(c) Result of Random walker with p = 2; (d) RW with p = 16: (e) RW with
p = 30.
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The convergence is illustrated on Fig. 4.11. Obviously it is not a good idea to compute
the PowerWatershed in this way, so we have proposed an efficient algorithm. It boils down to
the following theorems:

Theorem 4.7 (Power watershed)

• The cut obtained by the power watershed algorithm is a MSF cut (and a watershed cut
if seeds are the minima of the weights).

• When q > 1, the solution x obtained by the power watershed algorithm is unique.

• The power watershed result can be computed in quasi-linear time with respect to the
number of pixels and in linear time with respect to the number of labels, by computing
the MSF cut and a random walker on each contested plateaus.

These and related results are all proved by Couprie et al. (2011b), reprinted as Appendix H
in this document. Power watersheds share common characteristics between traditional water-
shed and graph-based discrete optimization methods:

• PW is quite efficient

• PW is multi-label with only a small cost associated with the number of labels. Contrary
to traditional WS, this cost is non-zero however.

• PW is an optimization framework, with both unary and pairwise terms. PW can be
used in similar circumstances as graph cuts or random walker beyond segmentation, e.g.
for image filtering.

As illustrations we have used PW for two applications: image filtering and surface recon-
struction.

4.10.1 Image filtering

Following Grady and Polimeni (2010), and denoting A the adjacency matrix of an oriented
graph, we may write the anisotropic diffusion equation as

dx

dt
= AT g(Ax)Ax, (4.32)

where x are the node weights representing the image data to be regularized. The functional
g is designed to be close to zero near edges, so as to prevent edge blurring, for instance:

g(x) = exp
(
−αx2

)
. (4.33)

We typically solve (4.32) with a forward Euler scheme like so:

xk+1 = xk + dtAT g(Axk)Axk. (4.34)
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However, Black et al. (1998) have shown that anisotropic diffusion equation (4.32) can be
seen as the gradient of the energy

E(x) = σ(Ax), (4.35)

with σ a robust estimator in the statistical sense. A gradient of the Black et al energy in
(4.35) is given by

dE

dx
= ATσ′(Ax)Ax. (4.36)

Therefore, when σ′(Ax) = g(Ax), then the gradient of the Black et al energy, (4.36) is
the same as the anisotropic diffusion equation in (4.32). In fact the σ(z) corresponding to the
Perona-Malik weighting function in (4.33) is given by the Welsch function

σ(z) = 1− exp
(
−αz2

)
. (4.37)

This function is a common, differentiable approximation of the `0 pseudo-norm. When
used in a regularizer, as we will see in the next chapter, it is often called `2 − `0. Following
classical variational formulation, we may write

E(x) = σ(Ax) + λh(x, f), (4.38)

in which f represents the intensities of the input unfiltered image, h(x, f) represents a loss
function (commonly the neg-log likelihood for the type of noise under study) and λ is a
Lagrangian free parameter. When

h(x, f) = ||x− f ||22, (4.39)

then the gradient of (4.38) becomes

dE

dx
= ATσ′(Ax)Ax+ λ (f − x) , (4.40)

which achieves a fixed point when(
ATσ′(Ax)A+ λI

)
x = λf. (4.41)

Since (4.41) may be viewed as a backward Euler solution for the anisotropic diffusion
equation (4.32) when λ = 1

dt , then the anisotropic diffusion algorithm may be seen as the
optimization of a robust estimator of the image gradient. If we alter the loss function to be
the same as the regularization:

E(x) = σ(Ax) + λσ (x− f) , (4.42)

with gradient given by

dE

dx
= 2αATσ′(Ax)Ax+ 2αλσ′(x− f)x. (4.43)
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(a) Noisy image, SNR
= 24.24dB

(b) PM, SNR =
34.03dB

(c) PM, SNR =
30.46dB

(d) PW, SNR =
31.54dB

Figure 4.12: Comparison of Perona-Malik(PM), and power watershed(PW) algorithms for
denoising a synthetic image. (b) PM used with 80 iterations α = 0.0015, leading to a good
PSNR but with remaining isolated noisy pixels. (c) PM, best compromise found for this image
to remove the isolated pixels with 50 iterations and α = 0.0005. (d) A median filtered image
as initialization and λ = 0.975 allows to obtain a better SNR while removing isolated noisy
pixels.

From Eq. 4.43, we can neglect the 2α. If, at any iteration, we fix the values of x inside the
robust error function, then we have

dE

dxk+1
= ATσ′(Axk)Axk+1 + λσ′(xk − f)xk+1. (4.44)

This energy may be written as the steady-state optimization of the energy functional

Ek+1 = xk+1TATσ′(Axk)Axk+1

−λxk+1Tσ′(xk − f)xk+1, (4.45)

that may also possibly be writen

Ek+1 =
∑
eij

σ′(Axk)
(
xk+1
i − xk+1

j

)2

+λ
∑
vi

σ′(xk − f)
(
xk+1 − f

)2
. (4.46)

This expression for the energy to compute a minimum step is of a form that may
be optimized by the power watershed, with q = 2, p = α, the pairwise weights wij =

exp
(
−(xki − xkj )2

)α
and the unary weights wi = λ exp

(
−(xki − yi)2

)α.
Therefore, we propose the following filtering algorithm :

1. Set x0 = f .

2. Until convergence:

3. Generate weights for σ′(Axk) and λσ′(xk − f).

4. Use power watershed to optimize (4.46) to obtain xk+1.
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Since both the regularizer and the fidelity loss function are non-convex, the initialization
is important. In the case of denoising, we achieved good result with starting from a median-
filtered version of the noisy image, as shown on Fig. 4.12.

Although interesting, since it correspond to a very efficient non-convex solver, this approach
needs more work. The non-convex fidelity term in particular cannot easily be interpreted in
a MAP framework. More results and details can be found in Couprie et al. (2010).

4.10.2 Surface reconstruction from isolated points
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Figure 4.13: (a) Three dots in a 4× 5 lattice. (b) Associated lattice weighted by an Euclidean
distance map from the dots, with Foreground and Background seeds. (c) First steps of the power
watershed algorithm optimizing (4.31) in the case q = 2 and p→∞. Nodes with a maximum
weight are merged. (d) A plateau of weight 2 (in green) including different seeded nodes is
encountered. The Random walker algorithm is applied to label the nodes on the plateau. (e,f)
New plateaus of weight 1 and 0 are encountered, the Random walker algorithm is applied, (g)
Final labeling x solution of (4.31). The resulting isocontour is represented in red.

This problem of reconstructing a surface from isolated points, e.g. from laser range data,
has been studied multiple times. In particular, recently TV and graph-cut approaches have
been proposed. In this problem, we assume a discretized volume, given isolated points, as
well as inner and outer markers (i.e. points that lie respectively inside the surface to be
reconstructed or outside). We do not assume a particular topology for the surface, but it
has to separate the inner markers from the outer markers. A graphical explanation for the
algorithm in 2D is given in Fig 4.13

From then on, extension to 3D is straightforward, and some comparative results are shown
on Fig.4.14. More details, results and comparisons are given in Couprie et al. (2011a). Over-
all, we argue that among dense reconstruction algorithms (those needing a full volume recon-
struction), the Power-watershed based method offer an interesting compromise with respect
to image quality, speed of result, seed placement, and memory consumption.
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(a) (b) (c)

Figure 4.14: Grid size : 234 × 297 × 301, complete and zoomed results. (a) Total variation
minimization result, (b) Graph cuts result, (c) power watershed result. Isosurfaces at 0.5 have
been extracted on all results, and were downsampled by 2 to render the surfaces.

Since then, we have also used power watershed for stereo-vision (Couprie, 2011) and sub-
pixel accurate tangent surface estimation between touching grains (Jaquet et al., 2013). A
reference implementation by Camille Couprie is freely available on the web at http://www.
esiee.fr/~coupriec/code.html.

4.11 Conclusion and future work

We have described in this chapter the basis of many recent works in discrete optimization.
We have started from basic network graphs and the maximum flow principles, and we have
proceeded through the various algorithm and to the applications. We have shown how network
graphs and maxflow-mincut algorithms can be used to respectively represent and optimize
energies that are relevant for image analysis and computer vision. As examples, we have
mostly shown image segmentation and image restoration, but the basic principles can be used
in other applications such as stereo and tracking. We have shown that though the principles
are fairly simple, the art of graph construction can be complex, due to its versatility. We have
surveyed recent work on discrete flow-based image optimization methods.

Graph-cuts methods are interesting in particular because they allow practitioners to effi-
ciently solve long-standing MRF formulations in computer vision, which even in the relatively
recent past required much slower (e.g. simulated annealing) or much less effective (e.g. ICM)
methods. They are also very interesting because formulations exist to solve widely useful en-
ergies, most notably some for which the data fidelity term has very few requirements. Many of
these have strong guarantees on the solution, e.g. the final result is typically a local minimum,

http://www.esiee.fr/~coupriec/code.html
http://www.esiee.fr/~coupriec/code.html
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within a known factor of the global solution. For convex priors, globally optimal solutions
can be found. However, graph cuts are not able to solve all problems: sometimes a graph
solution is not easy to propose, and many interesting energies are not submodular. Included
in these are formulations involving so-called higher order cliques, i.e. triplets or more, which
are sometimes difficult to optimize (Kolmogorov and Rother, 2007).

We also have presented some of our own contribution in discrete optimization. In par-
ticular, we presented quantized-convex moves for optimizing `2 − `0 sparsity measures, and
a new, more general framework for discrete optimization, that includes, among others, wa-
tershed, graph cuts and random walkers. In this framework, a discrete-optimization version
of the watershed was presented, termed the Power watershed. We showed applications to
non-segmentation tasks, like image denoising and surface reconstruction.

In the next chapter, we will study some continuous formulations of flow methods and how
they relate to optimization tasks.
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Chapter 5

Continuous Flow-based methods for
image segmentation and filtering

Based on the previous chapter, we have seen that discrete maximum flow/minimum cut meth-
ods are useful in optimization: as partitioning tools, image segmentation, but also in some
specialized versions of linear and integer programming problem. These methods are classical
although much research is still devoted to solving maxflow/mincut, in particular regarding still
more efficient (e.g. parallel) algorithms. However, their efficient application to vision-related
problems is quite recent.

Continuous versions of the maxflow/mincut problem have been studied as well, particu-
larly by Iri (1979) and Strang (1983). More recently, Appleton (2004); Appleton and Talbot
(2006) have proposed a continuous versions of flow-based methods. These have strong links
to continuous Total Variation minimization considerations (Chambolle, 2004; Nikolova et al.,
2006). We have also proposed a discrete calculus formulation of the problem (Couprie et al.,
2011c), in order to reap benefits from both approaches.

Given the versatility and usefulness of graph cuts in the discrete domain, the question
remains whether such techniques can be applied to the continuous domain as well. In partic-
ular, is there an equivalent to a flow in the continuous domain, and is there the equivalent of
a maxflow-mincut theorem? We will see in this section that these questions can be answered
in the affirmative.

5.1 Motivation

If graph cuts are so useful and effective in the discrete domain, why worry about the continuous
domain at all? after all, the continuous domain is a model, where mathematical objects are
not necessarily simple to deal with, and for which we will need to consider discretization again,
should we wish to perform calculations on computers.

One motivation is of course the quest for understanding and generalization: our intuition,
tools and techniques will be different in a different domain. Another is to realize that graph-cut
models do exhibit some limitations. One is the grid bias, or lack of isotropy, which only gets
worse as the dimensionality increases, and is difficult to deal with using graph cuts (Boykov
and Kolmogorov, 2003). Applying graph cuts on segmentation and filtering problems leads to
so-called metrication artifacts due to this bias. There is also always the hope that constraints
are algorithmically different in a different domain. In particular, discrete maxflow/mincut
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algorithms are difficult to parallelize effectively, but perhaps an equivalent algorithm in the
continuous domain will behave differently.

Importantly, there are some deep links between discrete total variation minimization and
maxflow-mincut optimization techniques. Continuous-domain as well as discrete-domain TV
optimization has been an active area of research for several year for image restoration and
other applications (Rudin et al., 1992; Vogel and Oman, 1996; Chambolle and Lions, 1997;
Chan et al., 1999; Malgouyres, 2002b). It could be very useful to see if flow techniques in the
continuum can be applied to solve similar problems.

5.2 Previous work

Hu and Gomory (see Hu (1969, Chapter 12)) provided some initial motivation for looking at
the maxflow/mincut problem in the continuum, but sought to solve this problem using discrete
tools. Initial theoretical investigations into maximum flow considerations in the continuous
domain were performed by Iri (1979) and Strang (1983). Thorough mathematical analysis of
both works have been proposed by Nozawa (1990, 1994) more recently. We now revisit these
works, and provide links with Total Variation minimization.

5.2.1 Functions with bounded variation

In the remainder of this section, we consider functions with bounded variation on a domain
Ω, which is an open subset of Rn. We denote by Ω its closure. Given a function f belonging
to L1(Ω), i.e. the measurable functions f of Rn that have a finite absolute value integral over
Ω, its total variation TV is defined by

TV(f,Ω) = sup


∫
Ω

f(x) div ξ(x) dΩ : ξ ∈ C1
c (Ω,Rn), |ξ(x)| ≤ 1

 . (5.1)

Here, C1
c (Ω,Rn) is the set of continuously differentiable function of Rn with compact

support included in Ω. Note that if Ω is itself compact, this implies that f is zero almost
everywhere on ∂(Ω). If not, f vanishes at infinity.

If f ∈ C1(Ω), then the Green-Gauss formula yields:

∀ξ ∈ C1
c (Ω,Rn),

∫
Ω

f div ξ dΩ = −
∫
Ω

ξ∇f dΩ. (5.2)

The maximum is reached if ξ = − ∇f|∇f | almost everywhere. In this case, we have

TV(f,Ω) =

∫
Ω

|∇f |dΩ, (5.3)

where the ∇ operator and the derivatives are understood in a weak sense. We have the
following definition
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Definition 5.1 (Space of bounded variations) A function f of L1(Ω) is said to have
bounded variation on Ω if TV(f,Ω) < ∞. We define BV(Ω) the space of all functions in
L1(Ω) with bounded variation.

Note that the Sobolev space W 1,1(Ω) is a proper subspace of BV(Ω). The converse is
not true, for instance in 1-D in R, a square function function (i.e. f(x) = 1 if 0 ≤ x ≤
1, 0 otherwise) is in L1(R), has bounded variation but is not in W 1,1(R).

Many other details on functions of bounded variation and associated concepts can be found
in Giusti (1984).

5.2.2 Iri’s work

M. Iri (1979), and with applications in Taguchi and Iri (1982) proposed a purely continuous
version of the maxflow-mincut theorem. Iri’s presentation is entirely tensorial. In particular it
allows capacities that varies with the direction of flow. His motivation is the approximation of
dense and large discrete networks by continuous ones. Iri’s mathematical description is formal
but not very rigorous and was revisited by Nozawa (1990) in the Euclidean and scalar setting.

In Iri’s framework, we considers a compact, n-dimensional Euclidean domain Ω, as well as
two disjoint sets S and T belonging to the boundary ∂Ω of Ω. We denote the interior of Ω by
Ω, and we consider a flow F from S to T satisfying the following conditions:

div F = 0 (5.4)

F.−→n = 0 on ∂Ω\(S ∪ T ) (5.5)

Here −→n is a unit outer normal vector to ∂Ω. We assume ∂Ω, S and T sufficiently smooth.
We further assume a non-negative function g on Ω and we formulate a maximum flow

problem (MFPI) as follows:

(MFPI) Maximize
∫
S

F.−→n ds (5.6)

subject to : |F| ≤ g on Ω. (5.7)

Here F is a vector flow from S to T and ds is a surface element.
Conversely, a cut C separating S and T is a subset of Ω such that S ⊂ ∂C and T ∩∂C = ∅.

We assume ∂C to be sufficiently smooth to be able do define the cost K(C) and the dual
minimum cost problem (MCPI) as follows:

(MCPI) Minimize K(C) =

∫
∂C∩Ω

g ds (5.8)

subject to : C separates S and T. (5.9)

Iri asserts that with sufficient smoothness, (MFPI) and (MCPI) are dual to each other, in
the sense that the maximum flow of (MFPI) will be reached on the minimal cut of (MCPI).
This is a very similar result to that of Ford and Fulkerson in the discrete case, however



132 Continuous Flow-based methods

this is somewhat restrictive because of the null divergence hypothesis in the whole of Ω.
Sometime later, G. Strang independently proposed a more rigorous, more flexible framework
for continuous maximum flows that we present in some details in the next section.

5.2.3 Strang’s work on maximum flow through a continuous domain

In the discrete case, we considered in chapter 4 a flow network, i.e. a graph with edge capacities
cij , endowed with a source s and a sink t. We considered a partition of this network into two
regions S containing s and T containing t. The capacity of the cut is the sum of the capacity
of the edges crossing the boundary between S and T :

K(S, T ) =
∑

i∈S,j∈T
cij (5.10)

Here (5.10) is the same as (4.6). Any flow F from s to t is constrained by this capacity as
it must cross its associated boundary. We have seen that the maximum flow in the network
is equal to the minimum cut among all possible S and T .

G. Strang (1983) considers a similar problem, in the 2-D continuous domain. Here the flow
is a vector field defined in a compact domain Ω of interior Ω, denoted F = (F1(x, y), F2(x, y))
in a planar domain. Given a differentiable curve Γ, the flow across the curve is given by

|F |Γ =

∫
Γ

F.−→n ds, (5.11)

where −→n is the unit normal to the curve. The capacity constraint is considered at each point
to be defined by a scalar metric g. We have:

‖F(x, y)‖2 ≤ g(x, y). (5.12)

A different norm than the `2 norm can be considered, as well as a tensorial metric g, however
this is not crucial here. We considered a simply connected compact domain Ω bounded by a
single closed curve Γ. Here Γ is considered parametrized by a Lipschitz-continuous function,
making the curve rectifiable and the parametrization differentiable. We assume the flow is
constrained along Γ to be proportional to a given function ϕ such that:

F.−→n = λϕ on Γ. (5.13)

Here λ is an expression of the total scalar flow crossing Γ. Strang also specifies sources
and sinks within Ω by a function Φ, such that:

div F = ∇.F = −λΦ. (5.14)

Here Φ and ϕ are positive for a sink representing respectively flow disappearing within
Ω or leaving through Γ, and negative for a source, representing flow appearing within Ω or
coming in through Γ. Using the divergence theorem, we have
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∫
Ω

∇.F dΩ =

∮
Γ

F.−→n ds (5.15)

∫
Ω

−λΦ dΩ =

∮
Γ

λϕds, (5.16)

and thus the conservation equation:

∫
Ω

Φ dΩ +

∮
Γ

ϕds = 0 (5.17)

5.2.3.1 Maximum flow through a domain

Given the above, Strang states the continuous maximum flow though a domain (CMFD)
problem as follows:

(CMFD) Maximize λ, (5.18)
Subject to: ‖F‖ ≤ g, (5.19)

F.−→n = λϕ, (5.20)
div F = −λΦ. (5.21)

We note that (5.20) and (5.21) are compatible due to the conservation laws. The system
of equation and constraints has solutions, because any field F of the form F = (ψy,−ψx) for
any C2 function ψ that vanishes on Γ is a solution to both F.−→n = 0 and div F = 0, and so
can be added to any solution to (5.20) and (5.21). We expect that for small λ, (5.19) can be
satisfied for some F, but for some larger λ it may not be. The problem is then to find the
largest λ satisfying (5.19) to (5.21).

5.2.3.2 Minimum cut in a continuous domain

We are now interested to find an equivalent to the Ford-Fulkerson theorem in the continuous
case. To define a cut we specify a new subset S of Ω with finite boundary ∂S and the associated
subset T = Ω\S. As S may have some common boundary with Ω, we defined γ = ∂S\Γ to be
the cut between S and T , and ΓS the common part of ∂S with Γ. We have then ∂S = ΓS +γ.
We define the capacity of γ to be

C(S) =

∫
γ

g ds (5.22)

This capacity bounds the flow from S to T :
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∫
S

div F dS =

∫
∂S

F.−→n ds (divergence theorem)

∫
S

−λΦ dS =

∫
ΓS

F.−→n ds+

∫
γ

F.−→n ds

λ

∣∣∣∣∣∣∣
∫
S

Φ dS +

∫
ΓS

ϕds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
γ

F.−→n ds

∣∣∣∣∣∣ ≤ C(S) (5.23)

Relation (5.23) is one of weak duality and provides a bound on λ that depends only on S.
Strang states the following theorem:

Theorem 5.2 (Continuous maxflow-mincut) There exists some S for which the bound
of (5.23) is tight, i.e. some maximum flow F and some set S for which∣∣∣∣∣∣

∫
γ

F.−→n ds

∣∣∣∣∣∣ =

∫
γ

g ds (5.24)

In this case, the maximum flow is given by:

maxλ = inf
C(S)∣∣∣∣∣∫S Φ dS +

∫
ΓS

ϕds

∣∣∣∣∣
(5.25)

The proof of this property in the general case where Φ is non-null is very interesting, as it
involves duality with the concept of Total Variation.

5.2.3.3 Duality and Total Variation

To formulate the dual, we introduce the Lagrange multiplier u ∈ BV(Ω), where BV(Ω) is the
space of functions with bounded variation as defined in section 5.2.1. The BV norm is called
the Total Variation:

‖u‖BV =

∫
Ω

|u|dΩ (5.26)

We express the dual of the (CMFD) problem by transposing the divergence of F to the
gradient of u and by transposing the norm. We formulate this as the Continuous Total
Variation over a Domain minimization problem (CTVD), as follows:

(CMFD? = CTVD) Minimize
∫
Ω

|∇u|g dΩ (5.27)

Subject to:
∫
Ω

uΦ dΩ +

∫
Γ

uϕds = 1 (5.28)
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To see the link between (CMFD) and (CTVD), we consider the Total Variation of char-
acteristic functions. Functions within BV do not have to be continuous, in fact the functions
in BV are those whose first derivatives (in the sense of distributions) are finite measures. In
particular, the characteristics function u = χS of a set S with finite perimeter has a BV-norm,
equal to the perimeter of S. The characteristic of set S is a function which is uniformly 1
inside S and 0 outside. For such function, its weighted Total Variation is:

∫
Ω

|∇χs|g dΩ =

∫
Γ

g ds = C(S). (5.29)

We now show that if we minimize TV over multiples of characteristic functions, the re-
sult will be a minimum cut. Multiples of characteristic functions are u = αχS . We have∫
Ω

|∇u|g dΩ = αC(S), as well as
∫
Ω

uΦ dΩ = α
∫
S

Φ dΩ and
∫
Γ

uϕds = α
∫

ΓS

ϕds. Overall, the α

cancel each other out and this leads us to

∫
Ω

|∇u|g dΩ

|
∫
Ω

uΦ dΩ +
∫
Γ

uϕds| =
C(s)

|
∫
S

Φ dS +
∫

ΓS

ϕds| (5.30)

We can choose α such that
∫
uΦdΩ +

∫
uϕds = 1 to fulfill (5.28). Finally the left-hand

side is precisely TV and the right-hand side is the minimum cut of (5.25).

5.2.3.4 Condition for optimality

Assuming F and u are feasible for both (CMFD) and (CTVD), we have simultaneously:

∇.F = −λΦ

F.−→n = λϕ

|F| ≤ g∫
Ω

uΦ dΩ +

∫
Γ

uϕds = 1

Using the Gauss-Green formula:

∫
Ω

F.∇udΩ = −
∫
Ω

u∇.F dΩ +

∮
Γ

u.F−→n ds (5.31)

By simple substitution we have on the one hand:

∫
Ω

F.∇udΩ = +

∫
Ω

λΦ dΩ +

∮
Γ

λu.ϕ ds = λ (5.32)
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On the other hand:

F.∇u ≤ |F.∇u| ≤ g|∇u| (5.33)

Altogether, we have the weak duality:

λ =

∫
Ω

F.∇udΩ ≤
∫
Ω

g|∇u|dΩ (5.34)

Optimality holds if the maximum of (CMFD) equals the minimum of (CTVD) and, when-
ever |∇u| is non-zero:

F = g
∇u
|∇u| (5.35)

5.2.3.5 Existence of a minimizing series of characteristic functions

There remain to justify why restricting u to the multiples of characteristics functions is suffi-
cient. Strang does this using the coarea formula:

∫
Ω

|∇u|g dΩ =

∫
R

∮
γt

g dsdt. (5.36)

Here γt is the boundary of the set Ut, which is the binary set for which u ≥ t. This formula
expresses the total variation of any function it terms of the perimeters of all its level sets. For
this formula to make sense, almost all are assumed to have finite length. Strang also uses and
extends a result of Fleming (1954), which states that the extreme points of the unit ball in
BV are reached by multiples of characteristics functions. Strang shows the existence (but not
the general construction) of a minimizing, non-degenerate series un of characteristic functions
converging to the optimum of both the (CMFD) and (CTVD) problems simultaneously.

We note that since the optimum is reached at a multiple of characteristic function, |∇u|
is zero almost everywhere, and that only on the boundary of this function is the optimality
condition (5.35) reached.

Also, even though the presentation is done in 2D, Strang’s results extend readily to a
domain Ω of arbitrary finite dimension, with Γ being of codimension 1.

More details about this proof, illustration, applications, etc can be found in Strang (1983).
It is worth noting that Strang’s work on continuous maxflow/mincut and the TV duality did
not come with an algorithm for computing them practically.

5.2.4 The Nozawa conditions

S. Nozawa spent considerable efforts on Strang’s continuous maflow/mincut proof to render it
more formal. In the process he discovered some examples of duality gap between the (CMFD)
and the (CTVD) formulations.

For an n-dimension problem, Nozawa found that Strang’s theorem holds if the set of all
feasible flows is a weak?-compact set in L∞(Ω,Rn); the capacity must also be a bounded Borel



5.2 Previous work 137

measurable function. The weak? topology, also called ultraweak topology, is related to the
weak-topology operating on the set of bounded operators in Rn, which is the coarsest topology
that makes these operators continuous.

The most critical aspect of these condition is the one on the capacity g. Essentially, the
capacity must be both bounded and continuous on the entire domain Ω. Nozawa goes on
to provide counter-examples of duality gaps between the minimum cut and maximum flow
solutions when g is not continuous or not bounded, both for the Iri and the Strang problems.

Note that since, following (5.30), the (CTVD) problem in Strang’s 1983 paper is defined in
terms of the perimeter of the minimum cut solution, the Nozawa results also provides examples
of (CMFD) and (CDTV) duality gaps when the capacity g is non-continuous or non-bounded.

5.2.5 Total variation minimization algorithms

Since (CMFD) and (CTVD) are dual to one another, Strang’s problem can be solved using
either approach. Historically, the (CTVD) approaches seem more interesting to computer
vision because Total Variation (TV) terms appear in many fundamental computer vision
models, such as the Mumford-Shah functional (1989) of Equation (3.10), or the simpler Rudin-
Osher-Fatemi (ROF) model (1992). A convex formulation is provided by Chan and Bresson
(2010). Early ROF solutions based on level-sets can be seen as attempts to solve the (CTVD)
problem.

More recently, A. Chambolle (2004) proposed a general-purpose TV minimization algo-
rithm based on convex analysis. His algorithm is remarkable because it optimizes the ROF
model exactly, and considers both the continuous and discrete points of view.

5.2.5.1 Chambolle’s algorithm

To simplify notations, Chambolle considers an N × N 2D image. He denotes X the RN×N
Euclidean space, and by Y the X × X vector space. He considers possibly the simplest
discretization of the gradient ∇u = ((∇u)1, (∇u)2) of a function u ∈ X

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N
0 if i = N

(5.37)

(∇u)2
i,j =

{
ui,j+1 − ui,j if i < N
0 if i = N

(5.38)

Then the TV of u is given by

TV(u) =
∑

0≤i≤N
0≤j≤N

|∇u| (5.39)

with |.| the Euclidean norm in Y , i.e: |y = (y1, y2)| =
√
y2

1 + y2
2. With the scalar products

in X and Y defined as the usual Euclidean ones, i.e:
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〈u, v〉X =
∑
i,j

ui,jvi,j (5.40)

〈p, q〉Y =
∑
i,j

p1
i,jq

1
i,j + p2

i,jq
2
i,j (5.41)

We must have that the gradient and divergence are adjoint operators, meaning

∀p ∈ Y and ∀u ∈ X, 〈p,∇u〉Y = 〈−div p, u〉X , (5.42)

which implies the following discretization for the divergence operator:

(div p)i,j =


p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i = 1

−p1
i−1,j if i = N

+


p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N

(5.43)

In his paper, Chambolle starts from the definition of TV from (5.1) and defines as set K
the closure of the set

{div ξ : ξ ∈ C1
c (Ω,R2),∀x ∈ Ω, |ξ(x)| ≤ 1} (5.44)

Then, given a function v ∈ X and λ > 0, he proposes an algorithm for solving

minimize
u∈X

‖u− v‖2
2λ

+ TV(u) (5.45)

with ‖.‖ the usual Euclidean norm in X, i.e. ‖u‖ =
√
〈u, u〉. This is the TV-L2 problem,

which can be interpreted as the Rudin-Osher-Fatemi (ROF) formulation for image denois-
ing (Rudin et al., 1992).

Derivation of a fixed point algorithm If we consider a continuous version of the TV-L2
formulation (5.45):

TVL2(u) =

∫
Ω

|∇u|dΩ + λ

∫
Ω

(u− v)2dΩ (5.46)

We are seeking to minimize this convex functional. Its Euler-Lagrange condition is,

∇.
( ∇u
|∇u|

)
+

(u− v)

λ
= 0 (5.47)

This is classical from (Rudin et al., 1992). However, this equation is not valid in 0, so we
replace ∇u

|∇u| by the vector p defined as

p(x) =

{
∇u
|∇u| if ∇u(x) 6= 0

undefined if ∇u(x) = 0
(5.48)
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This leads us to the following system:

−∇.p +
1

λ
(u− v) = 0 (5.49)

p|∇u| − ∇u = 0 (5.50)

A fixed point iteration for (5.50) is

pn+1 = pn − dt(pn|∇u| − ∇u) (5.51)

Solving for pn+1 yields:

pn+1 =
pn + (τ/λ)∇u
1 + (τ/λ)|∇u| , (5.52)

by setting dt = τ/λ with τ > 0. To eliminate the dependence on u, we use (5.49) rewritten
as:

u = λ∇.p + v, (5.53)

yielding:

pn+1 =
pn + τ∇(∇.pn + v/λ)

1 + τ |∇(∇.pn + v/λ)| , (5.54)

This derivation is due to Unger et al. (2008). Chambolle shows more rigorously that a
solution to (5.45) is given by

u = v − πλK(v), (5.55)

where πλK is the nonlinear projection onto the set λK. Chambolle then proposes the same
fixed point algorithm as (5.54), with 0 < τ < 1/8 and p0 = 0,

pn+1
i,j =

pni,j + τ(∇(div pni,j − v/λ))i,j

1 + τ |(∇(div pn − v/λ))i,j |
(5.56)

He then proves that λ div pn converges towards πλK(v) as n → +∞, and hence
solves (5.45). Chambolle uses this algorithm to solve denoising problems in the presence
of Gaussian noise, as well as an optimal zoom problem.

With this approach, we see that using a suitable function v and renormalization, we may
be able to formulate and solve (5.30) in the case where g ≡ 1.

TV is a well-studied topic in image processing and computer vision. Weighted TV was
studied by Vogel and Oman (1996). Generalized total variation was proposed by Bredies et al.
(2010). Bresson and Chan (2008) proposed an efficient non-local version among many others.
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5.2.6 Proximal methods

Interestingly, Chambolle’s algorithm from the previous subsection can be interpreted as a
method for providing a numerical solution for a general operator called the proximity operator,
in the special case where the function of interest it the total variation.

Let Γ0(Rn) be class of lower semicontinuous convex functions from Rn to ]−∞,+∞] such
that dom f 6= ∅. The following definition is due to Moreau (1965):

Definition 5.3 (Proximity operator) Let f ∈ Γ0(Rn). For every x ∈ Rn, the minimiza-
tion problem

minimize
y∈Rn

f(y) +
1

2
‖x− y‖2 (5.57)

has a unique solution, denoted proxf . The corresponding operator Rn −→ Rn is the proximity
operator of f .

The proximity operator has many desirable properties for optimization algorithms. For
instance, let ∂f be the set-valued subdifferential of f :

∂f : Rn −→ 2R
n

: x 7−→ {u ∈ Rn/(∀y ∈ Rn, (y − x)ᵀu+ f(x) ≤ f(y)}, (5.58)

then

∀(x, p) ∈ Rn × Rn, p = prox
f

x⇔ x− p ∈ ∂f(p). (5.59)

Other properties are also very useful. For instance the prox is firmly non-expansive, and
its fixed point set is precisely the set of minimizers of f . These, and other useful proper-
ties, as well as many classical algorithms such as the Forward-Backward (Levitin and Polyak,
1966), Douglas-Rachford (1956) and Alternating Direction Method of Multipliers (ADMM,
also known as Split-Bregman), initiated by Gabay (1983) are detailed in the tutorial of Com-
bettes and Pesquet (2010).

We will be revisiting proximal methods at the end of the next section, when we introduce
a general primal-dual method after presenting a method for computing maximum flows in the
continuous domain.

5.3 Continuous maximum flows

We have seen that TV is a useful concept in computer vision for image restoration. It can be
used as a prior in many optimization frameworks. However, its dual, the maximum flow, has
not been studied as much.

In Appleton and Talbot (2003), we proposed a method for computing continuous maximum
flows (CMF), which we detail briefly here.

5.3.1 A continuous flow simulation

The continuous maximum flow algorithm consists of simulating the following constrained flow:
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∂P

∂t
= −∇ · F (5.60)

∂F

∂t
= −∇P (5.61)

s.t. ‖F‖ ≤ g, , (5.62)

where F is a vector field simulating velocity, P is a scalar field simulating pressure, and g
is a scalar constraint field, interpreted in the remainder as a metric. Moreover, we define a
source s and a sink t, both separate arbitrary regions of the space. We impose the boundary
conditions Ps = 1 and Pt = 0 without loss of generality.

We can interpret this system of equations as a continuous analogue of the preflow-push
algorithm of Goldberg and Tarjan (1988) for the discrete maxflow-mincut problem, described
in chapter 4.5. We showed in Appleton and Talbot (2006) that this flow simulation, at
convergence, resolved to:

∇ · F = 0
∇P = 0 if |F| < g
∇P = −λF where λ ≥ 0 if |F| = g.

(5.63)

From this, we showed that P is monotonically decreasing from s to t, and so all thresholds
of P define a binary partition separating s from t. In addition, all the isosurfaces of P are
minimal surfaces for the metric g. Our article (Appleton and Talbot, 2006) is reprinted as
Appendix G in this manuscript.

So this system of constrained PDEs solves the continuous maximum flow through a domain
(CMFD) problem defined by Strang, as reprinted in section 5.2.3. In the following, we termed
it the AT-CMF formulation.

A finite difference implementation is relatively straightforward and can be used to solve
the same problem as graph cuts, with some key differences:

• Relatively easy parallelisation

• Absence of grid bias.

An example of system solution is given in Fig. 5.1. In this, the source consists of two disks
of equal radius situated on the top and bottom horizontal surface of a parallelipedic box, while
the sink consists of the four vertical sides of the same box. The metric g is set to uniformly
1. Since the metric is uniform, we expect a geometric minimal surface as a result, and this
is indeed what we achieve. The measured average error between the expected analytical and
the actual result was less than 0.11 pixel.

5.3.2 Relation to TV minimization

From section 5.2.3, we know that TV and maximum flows are related. It is interesting to draw
the relation at the algorithmic level.

We can rewrite (5.48) involving the variable p as follows:

|∇u| = max
‖p‖≤1

(p.∇u) (5.64)
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(a) (b)

(c) (d)

Figure 5.1: The catenoid test problem. (a) The expected minimal surface, constructed analyt-
ically. (b) The iso-surface at value 0.5 of P at convergence. (c) A horizontal slice through P .
The expected cross-section is overlayed in black. (d) A vertical slice through P . The expected
cross-section is overlayed in black.

Substituting into (5.46), we have:

TVL2(u) = max
‖p‖≤1


∫
Ω

p.∇udΩ +
1

2λ

∫
Ω

(u− v)2dΩ

 . (5.65)

The divergence theorem states that

∫
Ω

p.∇u = −
∫
Ω

u∇.p; (5.66)

The Euler-Lagrange condition for minimizing (5.65) then becomes

−∇.p +
1

λ
(u− v) = 0, , and thus: (5.67)

u = λ∇.p + v (5.68)
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which is the same as (5.49). With it, we can rewrite (5.65) as

min(TVL2(u)) = max
‖p‖≤1

−
∫
Ω

λ(∇.p)2dΩ−
∫
Ω

v∇.p dΩ +
1

2λ

∫
Ω

λ2(∇.p)2dΩ

 (5.69)

= min
‖p‖≤1


∫
Ω

v∇.p dΩ +
λ

2

∫
Ω

(∇.p)2dΩ

 . (5.70)

This latter formulation is free of u, and its Euler-Lagrange, valid everywhere is:

−∇(v + λ∇.p) = 0, ‖p‖ ≤ 1. (5.71)

A way to optimize (5.65) is therefore to propose a constrained fixed-point solution
for (5.71):

pn+1 = pn +
τ

λ
(∇(v + λ∇.pn)) (5.72)

pn+1 =
pn+1

max(1, |pn+1|) . (5.73)

This is equivalent to a classical projected gradient algorithm. Together with a fixed-point
discretization of (5.68), we have the system:

pn+1 = pn +
τ

λ
(∇un) (5.74)

un+1 = vn + λ∇.pn (5.75)

pn+1 =
pn+1

max(1, |pn+1|) . (5.76)

We see that by substituting P for u and F for p, and by taking g ≡ 1, then this system is
exactly a discretization of equations (5.60)–(5.62).

In other words, the AT-CMF formulation is equivalent to a projected gradient scheme
for optimizing TV-L2. A slight modification of the above projected gradient scheme, given
by Unger et al. (2008), allows for arbitrary positive scalar field g. In the same work, it is
shown that the AT-CMF/projected gradient scheme is significantly faster than the Chambolle
fixed point algorithm, at least at segmentation tasks.

5.3.3 Generalization to primal-dual convex optimization

Chambolle and Pock (2011) proposed a first-order primal-dual algorithm for solving non-
smooth convex problems. The formulation as a saddle-point minimization problem is as
follows:

min
α∈A

max
β∈B
{〈Hα, β〉+ Φ(α)−Ψ∗(β)} , (5.77)
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where A and B are finite-dimensional real vector spaces, H is a linear operator H : A −→ B,
Φ and Ψ∗ are two proper, convex, lower-semicontinuous functions: Φ : A −→ R ∪ {+∞},
Ψ∗ : B −→ R∪{+∞}. Ψ∗ is the Legendre-Fenchel convex conjugate of a lower semicontinuous
function Ψ.

Algorithm 4: A general primal-dual scheme for solving 5.77
Data: Scalar variables τ > 0, σ > 0, θ ∈ [0, 1]
Initial vector variable α0 ∈ A, β0 ∈ B and α0 = α0

Result: Converged primal variable α and β
for j = 1 to J do

βj+1 = (I + σ∂Ψ∗)−1(βj + σHαj)
αj+1 = (I + τ∂Φ)−1(αj − τH∗βj)
αj+1 = αj+1 + θ(αj+1 − αj)

An algorithm for solving (5.77) consists of a gradient ascent step on the dual variable
β together with a resolvent operator. For the primal variable α a gradient descent step is
performed together with another resolvent operator. An extra gradient step is applied to the
variable α. Timesteps τ and σ are chosen so that τσL2 < 1, with L the Lipschitz constant of
H such that L2 = ‖H‖2.

The resolvent operators can be written as proximity operators (5.57) (Bauschke and Com-
bettes, 2011, Chap. 23):

β = (I + σ∂Ψ∗)−1(β) = argmin
β

{
Ψ∗(β) +

1

2σ
‖β − β‖2

}
(5.78)

= prox
σΨ∗

(β) (5.79)

α = (I + τ∂Φ)−1(α) = argmin
α

{
Φ(α) +

1

2τ
‖α− α‖2

}
(5.80)

= prox
τΦ

(α) (5.81)

This algorithm can be improved if either or both of Ψ∗ and Φ are uniformly convex, i.e.
with a Lipschitz continuous gradient. Much more details can be found in Chambolle and Pock
(2011), further work in Pock and Chambolle (2011), as well as related work in Pock et al.
(2010). The thesis of M. Unger (2012) is also of high didactic interest.

Our AT-CMF algorithm of section 5.3.1 can be seen as an early, more primitive instance of
the Chambolle-Pock (CP) algorithm. Indeed applying the CP algorithm to the TVL2 problem
or equivalently the ROF formulation, yields exactly the same projected gradient algorithm at
that of section 5.3.2 above. This is demonstrated by Unger (2012, chap.2).

Other related, primal-dual, prox-based approaches have been proposed recently in the
literature, for instance by Combettes and Pesquet (2012) or Condat (2012). In other words,
this area of research is currently very active.
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5.4 Convex optimization on graphs

In the previous sections, we have shown how flow methods in image processing relate to, and
in some cases improve upon more established solutions for inverse problem solving in imaging.

However, in spite of significant progress, there are some areas where improvements are
necessary. First is the notion that discrete and continuous approaches to optimization are
different and incompatible. In fact, they have different strengths. As we have shown in Chaux
et al. (2010), reprinted as Appendix F in this manuscript, using both continuous and discrete
optimization together can be fruitful.

Here we would like to extend this notion by providing a formulation of arbitrary convex
problems using continuous convex methods on graphs. We start with a formulation of CMFs
on graphs, which we extend to a more general framework.

5.4.1 Continuous maximum flows on graphs

As before, we consider a graph G = (V,E) with vertices v ∈ V and edges e ∈ E. Specifically
we consider a transport graph G with two additional nodes s and t, respectively a source and
sink. The cardinalities are given by n = |V | and m = |E|. An edge e spanning two vertices vi
and vj is denoted eij . In this section, we will consider weights on both edges and nodes. The
weight of a node vi is denoted gi, while the weight of an edge eij is denoted g̃ij . We denote g
the vector of Rn that contains the gi for all the vertices, and g̃ the vector of Rm that contains
the g̃ij for all the edges. We define a flow through edge eij as Fij , where Fij ∈ R. The vector
F ∈ Rm denotes the flow through all the edges in the graph. The flow is oriented, meaning
that a positive flow on edge eij indicates that the direction of flow is from vi to vj , while a
negative flow indicates a direction from vj to vi.

We use the incidence matrix A as a key operator for defining a graph-based formulation
of continuous maximum flows. Specifically A ∈ Rm×n defines the equivalent of the gradient
operator, while Aᵀ corresponds to the divergence operator. This the definition given in discrete
calculus (Grady and Polimeni, 2010) is:

Aeijvk =


+1 if i = k
−1 if j = k

0 otherwise
(5.82)

An example of incidence matrix is given in Fig 5.2.

5.4.1.1 Graph-based formulation of the CMF problem

Strang’s simplified formulation of the CMFD problem can be expressed as:

maxFst (5.83)

s.t. ∇. #»

F = 0 (5.84)

‖ #»

F ‖ ≤ g. (5.85)

The maximisation must be understood in the sense more precisely defined in section 5.2.3.1.
The conservation equation (5.84), where

#»

F is a vector field, is true everywhere in the domain
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Incidence matrix A ∈ RM×N

A =

p1 p2 p3 p4

e1 −1 1 0 0
e2 −1 0 1 0
e3 0 −1 1 0
e4 0 −1 0 1
e4 0 0 −1 1

Figure 5.2: The incidence matrix of a small graph

excepted source and sink. We have seen how a continuous formulation can solve this problem
in section 5.3.1.

The purely discrete, classical maximal flow formulation on graph can be written in the
following way:

maxFst (5.86)
s.t.AᵀF = 0 (5.87)
|F| ≤ g̃. (5.88)

This is equivalent to the discrete formulations of chapter 4. Now to express the CMF
problem on graph, we propose to find a graph-equivalent for these three equation. We will
still be maximizing Fst, so this does not change. Following Grady and Polimeni (2010) and
Elmoataz et al. (2008), we can express a continuous vector field on the vertices of a lattice, so
the conservation equation (5.87) does not change, although its interpretation changes (from
a discrete to a vector field). Finally, we can follow the same articles to define the `2 norm of
the flow field as

√
|Aᵀ|F2, where |M| denotes a matrix formed by taking the absolute value of

each element individually, where M2 is a matrix formed by taking the square of each element
individually, and so is the square root

√
M. Given this, we formulate the problem as follows:

maxFst (5.89)
s.t. AᵀF = 0 (5.90)

|Aᵀ|F2 ≤ g2 (5.91)

In our article Couprie et al. (2011c) we termed this formulation Combinatorial Continuous
Maximum Flows (CCMF). The key differences with the purely discrete formulation are that
we are dealing with a vector flow, and the capacity constraint. In the purely discrete case, the
capacity is expressed on edges. In our case, it is expressed on vertices. This is illustrated on
Fig. 5.3.

5.4.1.2 Dual formulation

It is possible to mechanically (but not trivially!) derive the Lagrangian dual formulation of
CCMF, yielding:
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S

T

S

T

minimal cut on
saturated edges

minimal cut on
saturated vertices

Scale of weight intensity :

0 ... ∞

Figure 5.3: The difference between classical max-flow on a graph with the combinatorial con-
tinuous max-flow (CCMF) on a graph is that classical max-flow uses edge-weighted capacities
while CCMF uses node-weighted capacities. This difference is manifest in the different solu-
tions obtained for both algorithms and the algorithms required to find a solution. Specifically,
the solution to the CCMF problem on a lattice does not exhibit metrication bias.

min
λ∈Rn, ν∈Rn

λᵀg2 + 1
4

(
1n · /(|A|λ)

)ᵀ(
(c+ Aν)2

)
, (5.92)

s. t. λ ≥ 0,

This is equivalently written in (5.95), and the optimal solution (F∗, λ∗, ν∗) verifies

max
F

cᵀF = cᵀF∗ = 2λ∗ᵀg2, (5.93)

and the n following equalities

λ∗ · |Aᵀ|
(

(c+ Aν∗) · /(|A|λ∗)
)2

= 4λ∗ · g2. (5.94)

The expression of the CCMF dual may be written in summation form as

min
λ,ν

∑
vi∈V

weighted cut︷︸︸︷
λig

2
i +

smoothness term︷ ︸︸ ︷
1

4

∑
eij∈E\{s,t}

(νi − νj)2

λi + λj
+

source/sink enforcement︷ ︸︸ ︷
1

4

(νs − νt − 1)2

λs + λt

s. t. λi ≥ 0 ∀i ∈ V.

(5.95)

Interpretation: The optimal value λ∗ is a weighted indicator of the saturated vertices (a
vertex vi is saturated if |Aᵀ|iF2 = g2

i where |Aᵀ|i indicates the ith row of |Aᵀ|):

λ∗(vi)
{
> 0 if |Aᵀ|iF2 = g(vi)

2,
= 0 otherwise. (5.96)

The variables νs and νt are not constrained to be set to 0 and 1, only their difference is con-
strained to be equal to one, however without loss of generality we can impose this constraint af-
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(a) (b) λ (c) ν (d) Threshold ν at .5

Figure 5.4: The dual problem to CCMF is a node-weighted minimum cut in which the variable
λ is a weighted indicator vector labeling boundary nodes and the variable ν is a nearly binary
vector indicating the source/sink regions. As a result, the contours of ν are slightly blurry.
This is due to the equilibrium effect between the two dual variables. In practice, as λ is nonzero
only in presence of a contour, ν is binary almost everywhere, except on a very thin line.

ter the fact. The term ν is at optimality a weighted indicator of the source/sink/saturated ver-
tices partition:

ν∗(vi) =


0 if vi ∈ S,
a number between (0) and (1) if |Aᵀ|iF2 = g(vi)

2,
1 if vi ∈ T.

The expression (5.93) of the CCMF dual shows that the problem is equivalent to finding
a minimum weighted cut defined on the nodes.

Finally, the “weighted cut” is recovered in (5.95), and the “smoothness term” is compatible
with large variations of ν at the boundary of objects because of a large denominator (λ) in
the contour area. An illustration of optimal λ and ν on an image is shown on Fig. 5.4.

5.4.1.3 Solving the CCMF problem

The formulation of the CCMF problem is convex, including the constraints set. We were
able to formulate a primal and a dual, so a reasonable way to solve this problem is to use
a primal-dual interior point method (PDIP). This is fairly unusual in imaging, since interior
point methods have a reputation of becoming slow and memory hungry as the dimensionality
of the problem increases.

However the systems to solve are large but very sparse, and our PDIP implementation in
Matlab was able to perform adequately, including solving segmentation problems for large 3D
images. For more details, please refer to Couprie et al. (2011c).

5.4.1.4 Results

We were able to show that CCMF perform well compared with various formulations of TV
and graph cuts for segmentation problems. Most importantly, it is indeed free of metrication
artifacts, and converges in very few iterations.

In Fig 5.5, we show that we obtained even better results than AT-CMF on the catenoid
test.
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(a) (b) (c)

Figure 5.5: The catenoid test problem: The source is constituted by two full circles and sink
by the remaining boundary of the image. (a) Surface computed analytically, (b) isosurface of
P obtained by AT-CMF, (c) isosurface of ν obtained by CCMF. The root mean square error
(RSME) has been computed to evaluate the precision of the results to the surface computed
analytically. The RSME for AT-CMF is 1.98 and for CCMF 0.75. The difference between
those results is due to the fact that the AT-CMF algorithm enforces exactly the source and sink
points, leading to discretization around the disks. In contrast, the boundary localized around
the seeds of ν is smooth, composed of grey levels. Thus the resulting isosurface computed by
CCMF is more precise.

One main advantage of the CCMF formulation is that it converges very quickly compared
with iterative solvers for TV or CMF, in the case of segmentation. Either require relatively
few iteration for denoising, but to achieve a strong binary partition in the presence of weak
edges may take many iterations and a long time. In 5.6, we show an example of segmentation
on an artificial problem. CCMF converges quickly and reliably, typically in a few tens of
iterations, even for difficult problems.

More results, including CCMF computed on a graph that is not a lattice, standard speed
tests and result comparisons can be found in Couprie et al. (2011c). Our algorithm is amenable
to parallelisation and GPU implementations, which would be a necessity for large problems.

This success with convex formulation on graphs lead us to consider solving more general
inverse problems in a similar fashion.

5.4.2 Dual-constrained regularization on graphs

So far we only have considered the segmentation problem. This is a specific inverse problem
seeking to restore (or detect) the contour of objects present in the image. More generally,
we can consider an image restoration problem, where the “true” data has been corrupted by
noise, blur, motion, etc. Although the two may seem quite different, in reality they can be
formulated in very similar ways. Specifically, a weighted TV model can be appropriate. Let
us consider the following formulation:

minimize
u

∫
Ω

(∫
Ω

wx,y(uy − ux)2dy
)1/2

dx+
1

2λ

∫
Ω

(ux − vx)2dx, (5.97)

where v is a degraded image, u the restored image, x and y arbitrary points of the domain
Ω, and wx,y an arbitrary non-negative weight defined on Ω2. As shown in Chan et al. (1999),
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: Segmentation of an artificial image with AT-CMF (top row) and CCMF (bottom
row). Top row (AT-CMF): (a) Image where the black and white discs are seeds. AT-CMF
result stopped in (b) after 100 iterations, (c) 1000 iterations, (d) 10000 iterations. Bottom
row (CCMF): (e) Image where the black and white discs are seeds, CCMF result ν after (f) 1
iterations, (g) ν after 15 iterations iterations and (h) threshold of the final ν.

this problem is equivalent to the following min-max problem:

minimize
u

(
max
||p||∞≤1

∫
Ω2

w1/2
x,y (uy − ux)px,ydy dx+

1

2λ

∫
Ω

(ux − vx)2dΩ,
)

(5.98)

where p is a two-variable function and

‖p‖∞ = sup
x∈Ω

(∫
Ω

p2
x,ydy

)1/2
.

In the discrete framework, this formulation becomes, following Bougleux et al. (2007) and
Gilboa and Osher (2007)

minimize
u∈Rn

∑
i∈J

( ∑
j∈Ni

wi,j(uj − ui)2
)1/2

+
1

2λ

n∑
i=1

(ui − vi)2 (5.99)

The dual formulation, which can be optimized by a projection algorithm (Gilboa and
Osher, 2007), and expressing the gradient operator with the adjacency matrix A is given by

minimize
u∈Rn

(
max
‖p‖∞≤1

pᵀ
(
(Au) · √w

)
+

1

2λ
‖u− v‖2

)
, (5.100)
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By introducing a vector F ∈ Rm with components Fi,j such that, for every i ∈ J and
j ∈ Ni, Fi,j = pi,j

√
wi,j , the problem can be reformulated as

minimize
u∈Rn

(
max
F∈C

FᵀAu+
1

2λ
‖u− v‖2

)
, (5.101)

where

C = {(F ∈ Rm | (∀i ∈ J)
∑
j∈Ni

F2
i,j

wi,j
≤ 1}. (5.102)

Finally, we extend the fidelity part by allowing (1) a linear degradation operator H, which
can correspond to a blur, motion, a wavelet decomposition (Malgouyres, 2002a) or even a to-
mography reconstruction operator (Chouzenoux et al., 2013b); (2) a more complex correlation
matrix Λ in the form of a positive definite matrix instead of a single Lagrangian scalar, and
(3) we consider a more general convex constraint set C.

minimize
u∈Rn

(
sup
F∈C

FᵀAu+
1

2
(Hu− v)ᵀΛ−1(Hu− v)

)
, (5.103)

where v ∈ Rq is the observed vector of data, H ∈ Rq×n is the linear degradation operator
and Λ is a weighting symmetric definite-positive matrix in Rq×q. We termed this the Dual-
Constrained Total Variation (DCTV) restoration model.

5.4.2.1 Example of interesting class of constraint sets

The proposed optimization approach allow us to address nonempty convex sets C that can be
decomposed as an intersection of closed convex subsets (Cr)1≤r≤s of Rm, the projections onto
which take closed forms. An example of a set C of interest is given by

C =
s⋂
r=1

Cr

(∀r ∈ {1, . . . , s}) Cr = {F ∈ Rm | (∀i ∈ Sr) ‖θ(i) · F‖α ≤ gi}. (5.104)

where (Sr)1≤r≤s is a partition of {1, . . . , n},
‖ · ‖α is the `α norm of Rm with α ∈ [1,+∞] and, for every i ∈ {1, . . . , n}, θ(i) ∈]0,+∞[m

is a vector of multiplicative constants for every couple of node (i′, j) with i′ ∈ J and j ∈ Ni′ .
The form of C in (5.104) includes (5.102) as a particular case where α = 2 and

(∀i ∈ {1, . . . , n}) (∀i′ ∈ J)(∀j ∈ Ni′) θ
(i)
i′,j =

{
1√
wi′,j

if i′ = i and j ∈ Ni′

0 otherwise

gi = 1. (5.105)

However, the proposed approach offers significantly more flexibility.
In this section, we are mainly interested in the case when for every i ∈ {1, . . . , n}, θ(i) is

the i-th line vector of |Aᵀ|. Specifically, C may be defined as

C = {F ∈ Rm | g·2 − |Aᵀ|F·2 ∈ [0,+∞[n}, (5.106)
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where g = (gi)1≤i≤n and, for every vector a, a·2 = a · a.
The constraint given in the convex set of (5.106) also appears in the Combinatorial Contin-

uous Maximum Flow (CCMF) problem of section 5.4.1.1 (Couprie et al., 2011c). The problem
studied here may be seen as an extension of the CCMF problem (applied to clustering problems
in graphs, such as image segmentation) to multi-label problems.

Concerning the choice of the node weight gi at the i-th node, a simple strategy consists of
considering a monotonically decreasing function of the data gradient. More specifically, given
positive reals ε and χ, we suggest using g defined as

(∀i ∈ {1, . . . , n}) gi = exp(−χ‖∇xi‖2) + ε, (5.107)

where x is some reference data defined on a graph, for instance image data, which corresponds
to some rough estimate of x, and

‖∇xi‖2 =

{
(
∑

j∈Ni(xi − xj)2)
1
2 if i ∈ J

0 otherwise
(5.108)

corresponds to the Euclidean norm of its discrete gradient ∇xi at node i. In the absence of
a contour, gi takes large values, so are the components of F corresponding to nonzero values
of θ(i), preventing large local variations of x in the minimization (5.103). Conversely, in the
presence of a contour, gi ' ε, and the components of F corresponding to nonzero values of
θ(i) are small, thus allowing large local variations of x. In image filtering applications, in
addition to intensities information, g may be used to penalize changes in other relevant image
quantities such as color or texture.

5.4.2.2 Proposed algorithms for DCTV

It is possible to solve Problem (5.103) efficiently by proximal methods (Combettes and Pesquet,
2010).

To do so, we define the support function σC of the closed convex constraint set C as

σC : Rm →]−∞,+∞] : a 7→ sup
F∈C

Fᵀa. (5.109)

This is a proper lower-semicontinuous convex function, the conjuguate of which is the indicator
function of C,

ıC : F 7→
{

0 if F ∈ C,
+∞ otherwise.

(5.110)

This leads us to consider the following optimization problem:

min
u
σC(Au) +

1

2
(Hu− v)ᵀΛ−1(Hu− v) +

η

2
‖Ku‖2, (5.111)

where η ∈]0,+∞[ and K ∈ Rn×n is the projection matrix onto the nullspace of H, specifically,
K = I − Hᵀ(HHᵀ)−1H. When H is injective (rank H = n), the last term vanishes and
(5.111) is strictly equivalent to (5.103). The term x 7→ η‖Ku‖2/2 thus aims at introducing
an additional regularization when H is not injective, so that the objective function remains
strictly convex.

The following holds:
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Property 1 Problem (5.111) admits a unique solution û. The dual Fenchel-Rockafellar form
of the problem is

min
F
ϕ(F) + ıC(F), (5.112)

where ϕ : F 7→ 1
2FᵀAΓAᵀF − FᵀAΓHᵀΛ−1f and Γ = (HᵀΛ−1H + ηK)−1. The optimal

solution to the primal problem (5.111) is deduced from any optimal solution F̂ of the dual
problem by the relation

û = Γ
(
HᵀΛ−1v −AᵀF̂

)
. (5.113)

Not every projection algorithm will be suitable to solve this problem, since the projection
onto C is not explicit in general. Also, the operator AΛAᵀ is singular in general. In order
to numerically solve (5.112), we note that C =

⋂s
r=1Cr, so that ıC can be decomposed into

the sum of the indicator functions of the convex subsets (Cr)1≤r≤s. Hence, the problem is
equivalent to solving

minimize
F∈Rm

s∑
r=1

ıCr(F) + ϕ(F). (5.114)

Parallel Proximal Algorithm (PPXA) The above sum of (s + 1) convex functions can
be efficiently optimized by resorting to the Parallel ProXimal Algorithm (PPXA) proposed
by Combettes and Pesquet (2008).

As shown in Algorithm 5, this requires computing in parallel projections onto each set Cr
with r ∈ {1, . . . , s}, which are defined ∀F ∈ Rm as PCr(F) = argmin

Φ∈Cr
‖Φ− F‖. Note that the

convergence of the sequence (Fk)k generated by this algorithm to a solution F̂ of (5.112) is
guaranteed, which allows us to deduce a solution to (5.111) by using Relation (5.113).

Algorithm 5: Parallel proximal algorithm solving (5.114)
Fix γ > 0 and ν ∈]0, 2[. Set k = 0.
Choose y1,0 = y2,0 = . . . = ys+1,0 ∈ Rm and F0.
repeat

for r = 1, . . . , s+ 1 do in parallel

πr,k =

{
PCr(yr,k) if r ≤ s
(γAΓAᵀ + I)−1(γAΓHᵀΛ−1v + ys+1,k) otherwise

zk = 2
s+1(π1,k + · · ·+ πs+1,k)− Fk

for r = 1, . . . , s+ 1 do in parallel
yr,k+1 = yr,k + ν(zk − pr,k)

Fk+1 = Fk + ν
2 (zk − Fk)

k = k + 1
until convergence

Note that even for simple problems, the projection onto C may not be explicit. For instance
in the case of a 4-connected lattice, this projection must be decomposed. Note also that the
computation of πs+1,k requires a matrix inversion. In the case where H and Λ are (or can
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be well approximated by) circulant-block circulant matrices, and the graph is regular, this
step can be performed efficiently, for example by following De Mazancourt and Gerlic (1983);
Fischer and Modersitzki (1999).

An alternative formulation is desirable in cases we do not want to solve any linear system
at all. For this we may propose using a primal-dual scheme such as the one proposed by
Chambolle and Pock (see Algorithm 4). This is essential when the graph is not regular, for
instance for non-local regularization. Note however that if the graph is regular, then our
PPXA formulation is usually much faster in spite of the matrix inversion. For more details,
please refer to our much more detailed article (Couprie et al., 2011d).

5.4.2.3 Results

Here we only show a subset of the more interesting results achievable with our proposed
approach

Non-local denoising On Fig. 5.7, we show some pure denoising results. Rather than using
locally connected graphs, non-local strategies (Buades et al., 2005; Bresson, 2009) have been
shown to achieve denoising improvements. A non-local strategy may naturally be employed
in the DCTV framework. The weights between non-neighbor nodes are computed following
the main idea of Buades et al. (2005): for each pixel p of the image, the squared sum of
differences (SSD) between the intensities in a block around p and all other blocks in a large
neighborhood around that block is computed. Then, edges are added between p and the nodes
producing the best matchs, with weights corresponding to the normalized SSD scores. Since
the Laplacian of this non-local graph is no longer circulant block circulant, we propose to
employ the a primal-dual scheme in this case. Figure 5.7 presents a non local DCTV result
obtained using this strategy compared with a non local TV result. About 15 iterations are
necessary for primal-dual scheme to produce this result, taking about two seconds using a C
parallel implementation on a 2.5GHz 8-core Xeon system used previously. The projections
on the different (9 in the example of Figure 5.7) convex sets are performed in parallel. By
comparison, the specific non local TV implementation by Bresson (2009) takes four iterations
to converge in about one second. Although more flexible, our implementation is therefore
competitive in this case.

Deblurring We now give some quantitative comparison results for joint denoising and de-
blurring tasks.

We compare the DCTV results to Wiener based deconvolution using the Matlab function
“deconvwrn”. The comparison also includes the hybrid TV/wavelet regularization method
of Combettes and Pesquet (2008). We report in Fig. 5.8 the result of the restoration of
images corrupted with additive white zero-mean Gaussian noise with variance σ2 = 5, and
σ2 = 10, and convolved with uniform blur kernels of size 5 × 5 and 7 × 7. We observe that
DCTV unsurprisingly outperforms the standard Wiener filter. More importantly, DCTV is
competitive with a state-of-the-art method proposed by Combettes and Pesquet (2008), both
quantitatively in term of SNR, and qualitatively, without presence of checkerboard artifacts
observed for the Hybrid TV method in Figure 5.8. Furthermore, the results are obtained twice
as fast, in the same number of iterations, using a Matlab implementations for both methods.
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(a) Original image (b) Noisy SNR=14.47dB

(c) Nonlocal TV SNR=20.76dB (d) Nonlocal DCTV SNR=20.78dB

Original Noisy NonLocal TV NonLocal DCTV

Figure 5.7: Local and nonlocal denoising (Gaussian noise of variance σ2 = 20 ). The nonlocal
weights are computed using Bresson (2009). Regularization parameters used to obtain the best
results: (e) λ = 0.048 (f) λ = 0.093.

Mesh denoising Since the dual-constrained TV-based formulation is defined on arbitrary
graphs, u is not limited to represent only image pixel values. In Fig. 5.9, we present an
example of mesh denoising, where ū is a vector composed of the spatial coordinates ūX , ūY
and ūZ of the mesh nodes. In this experiment, we added a randomly oriented noise vector with
zero-mean white Gaussian magnitudes to the original node coordinates of a mesh. This results
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(a) Original image (b) Degraded SNR=24.3dB (c) Wiener SNR=21.2dB

(d) Hybrid TV SNR=26.8dB] (e) DCTV SNR=27.7dB

Original

Hybrid TV

DCTV

Figure 5.8: Denoising and deblurring an MRI image corrupted with synthetic Gaussian 5× 5

blur and Gaussian noise (σ2 = 10).
We observe in the TV hybrid result the presence of checkerboard artifacts due to the use of discrete
filters for approximating the gradient. DCTV reduces the staircase effect of TV while preserving more
details. Parameter used: for the Hybrid TV with regularization parameters (Combettes and Pesquet,
2008) α = 0 and β = 0.025, and for DCTV with λ = 0.005 and η = 0.04.

in noisy mesh nodes of coordinates vX , vY and vZ . The degradation model is the following:

v =

vXvY
vZ

 =

ūXūY
ūZ

+ σ2

bXbY
bZ

 , (5.115)

where bX , bY , bZ represent uncorrelated vectors of additive noises with unit magnitude vari-
ance.

This application shows that the DCTV framework is also well suited for regularizing this
type of data. We compare our denoising result to a typical mesh smoothing technique, and
show that DCTV outperforms Laplacian smoothing.
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(a) Original mesh (b) Noisy mesh (c) Laplacian regu-
larization

(d) DCTV regular-
ization

RMSE = 0.161 RMSE = 0.142 RMSE = 0.139

Figure 5.9: Example of mesh denoising using DCTV on the spatial coordinates of the nodes.
We use the Root Square Mean Error to measure an average distance to the original mesh. (c)
Laplacian smoothing (d) The M+SFBF algorithm was used to optimize DCTV with λ = 0.25.
The Root Mean Square Error measures a distance between the result and the original mesh.

5.5 Extensions

We have extended existing variational restoration models by generalizing the constraint on the
projection variable of the dual TV formulation. This new approach shows improved results
compared with the weighted TV approach in image restoration applications. The advantage of
our DCTV formulation over unconstrained formulations is that it allows us to take into account
both edges and node weights, as well as more general constraints on the flow variable. As shown
in our experiments, this behaviour results in better contrast preservation in addition to SNR
improvements. Secondly, our dual formulation allows us to employ fast optimization strategies
without requiring approximations. Also, the versatility of DCTV makes it appropriate in a
large variety of contexts.

More generally, the proposed proximal algorithms make it possible to efficiently solve
convex minimization problems involving the support function of an intersection of convex sets
as a penalty term. It is also worth emphasizing that this approach can be applied to any
graph data structures, in particular those frequently employed in 3D modeling.

In this manuscript, we have not presented a series of extensions that we have worked on:

• More advanced noise models. Implicitly, our data fidelity terms assume white additive
Gaussian noise. This is appropriate for a variety of contexts, but it is possible to achieve
better results in cases where the noise is more difficult to handle. Recently, we have
presented some interesting results in the presence of the much more flexible Poisson-
Gauss noise model. This was the result of the PhD work of Anna Jezierska (Jezierska
et al., 2012; Jezierska, 2013).

• GPU implementations. Because these restoration tasks can be time consuming, and they
are frequently highly parallelizable, taking the time to accelerate them can be fruitful.
This was the topic of the PhD work of László Marak (Marak, 2012).

• Because the operator H can be any linear operator, it has immediate applications to
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image reconstruction, such as MRI or X-Ray tomography. We have begun work with
tomography operators using these and similar techniques (Chouzenoux et al., 2013b).

• Non-convex regularization: some of these operators extend to the non-convex
case (Jezierska et al., 2011; Chouzenoux et al., 2011, 2013a). So far we have mostly
worked with smooth regularization terms, but non-smooth ones will be investigated in
the near future.

5.6 Conclusion and future work

We have surveyed recent work on flow-based image optimization methods in the last two
chapters. We have described the purely discrete case, a solution to continuous case involving
flow simulation and finite differences, and finally the discrete calculus case. All three cases
have interesting properties:

• The discrete case (graph cut) is the simplest problem, equivalent to a linear program,
that efficient specific algorithms can solve. The continuous case (Continuous Max Flows)
and discrete calculus cases (Combinatorial Continuous Maximum Flows) are more com-
plex. Their solution is isotropic not biased by the grid. Their corresponding problem is
still convex, but solving them requires significantly more sophisticated tools.

• The AT-CMF formulation provides efficient algorithm, which is parallel and particularly
efficient in 3D. However, its properties are only beginning to be understood. Convergence
can be slow and under its PDE formulation, is not mathematically guaranteed, in spite
of good practical results. The fact that it can be interpreted as a projected gradient
algorithm does provide some convergence properties.

• In contrast, CCMF and by extension DCTV are more tightly defined mathematically.
Convergence is guaranteed. The best algorithm so far for CCMF is based on a primal-
dual interior-point method. It exhibit quite reasonable results in 2D, but in 3D the
problem quickly becomes too dense and solving it with a direct solver requires too much
memory in practice.

• DCTV extends the formulation of flow-based constraints to image and more generally
graph-based restoration tasks. With it comes the flexibility of graph formulations, as well
as the effectiveness of projection-based algorithms, including primal-dual approaches to
avoid inverting linear systems when they become too dense and/or irregular.

At the end of this long chapter, we see that studying these problems requires considering
a vast array of methods, all with their particularities, cases where they are efficient and cases
where they are not. This is essentially the state of the art in optimization methods for imaging
today. We have contributed to advancing the state of the art in terms of what is achievable
today, but much remains to be done for these techniques to become easier to handle, and to
apply them to a larger family of real problems.

One area we would like to extend these methods is the blind deconvolution case, where
the PSF or blur operator is not known but must be discovered along with the restored image.
This is a non-convex problem with many practical applications.

We would also like to study the case where the object to be restored or segmented is thin
and has a particular connected structure, for instance blood vessel networks or aerial trees in
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the lung. This is also a problem that is challenging to formulate and solve. There is a growing
interest in this area.
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Chapter 6

General conclusion and future work

It would seem natural to conclude on this body of work with some personal remarks, and also
outline future projects. In this section I will switch away from the academic “we”.

6.1 Past work

In this document I have tried to put into perspective a significant portion of what I have done
in image analysis research over the last 20 years. I am not sure I have succeeded in producing
a digestible, let alone interesting document, so I must thank you, the reader, for making it to
that point1.

In presenting work related to thin objects and more recent work in optimization, I have
skipped over lots of work, perhaps with smaller impact than what I have presented. One of
the joys of working in imaging is the possibility of seeing one’s work applied to many different
fields. It is also a great source of distraction, and so contrary to many of my colleagues, I
unfortunately cannot claim to have a unified theme to my research. This has made writing
this document more difficult and perhaps less interesting to read to any single person.

Science does not, perhaps similarly to a morphological path, proceed along a straightfor-
ward predictable way. I personally came to science via some detours, and even though I’ve
immensely enjoyed making some contributions, it seem to have taken a long time for me to
become reasonably proficient at it, at least in a way that I’m not completely ashamed of.

It has been interesting to me to look backward and realize that the very first problem
I looked at in my scientific career, the problem of segmenting thin objects, had been so
important. I do not think I have solved it. I am under the impression that a lot of work is
still needed.

I continually feel the need to contribute to areas of image processing / image analysis that
have some interesting applications, which means that most of my research has been project-
driven. It would seem natural to look at the prospective projects to see what is to come. Of
course I can only present what I have in mind at the present time, not what will actually
happen.

1Unless you are reading this first of course...
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6.2 Current planned work

Since this manuscript is supposed to present work worthy of an “habilitation”, this means I
have every intention to continue working in the area of image processing/image analysis and
so on. This is a selection of topics I’m planning to work on in the near future:

6.2.1 Segmentation and medical imaging

A general purpose segmentation method still does not exist. With new student Eloïse Grossiort
and with long-term collaborators Laurent Najman and Nicolas Passat, we will be investigating
segmenting and measuring the volume of cancer lesions in Positron Emission Tomography.
This is a collaboration with Michel Meignan and Emmanuel Itti at Hôpital Henri-Mondor,
and will involve the company Keosys, a French SME developing medical imaging software.

6.2.2 Joint segmentation, reconstruction and restoration

Image restoration is a major application of inverse problems. Our approaches, both convex and
non-convex, have a lot of potential in the field of tomography. With Saint-Gobain Recherche
we are exploring the possibility of scaling current algorithms to the enormous sizes (typically
2048 × 2048 × 2048 voxels) handled by practitioners working in synchrotron facilities such
as the European Synchrotron Radiation Facility (ESRF). Our optimization approaches have
a lot of potential for handling cases that are difficult for back-propagation or even so-called
algebraic, iterative methods. Among those are complex noise statistics and continuous acqui-
sition leading to wedge-type convolutions. Non-convex regularization terms and non-Gaussian
fidelity terms are going to be a necessity to succeed.

6.2.3 Discrete transforms

Perhaps tangentially related to other works, I’m currently involved with Yukiko Kenmochi and
Nicolas Passat in the supervision of Phuc Ngo (Ngo et al., 2012), We are studying the com-
binatorial aspects of discrete transforms, in particular the possibility of defining incremental
transforms changing as few pixels at a time, in order to define a discrete, continuous path in
transform space. The combinatorial aspect yields very large size problems, but the computa-
tion is relatively straightforward. We are working towards adding topological constraints and
proposing conditions for transformed objects to remain topologically invariant under discrete
rigid transforms.

6.2.4 Vivabrain

The VIVABRAIN project is an ANR project recently accepted, involving applied mathemati-
cians, image analysts, neurologists and the company Kitware, who produces the open-source
projects VTK and ITK, respectively a visualization toolkit and an imaging (sorry, “insight”)
toolkit, both widely used in medical imaging.

The objective is to propose a complete pipeline for the segmentation, delineation and topo-
logical correction of brain blood vessels, leading to the simulation of blood flows in anatomically
correct blood networks. In turn these simulations will allow us to produce phantoms that will
be used to assess the quality of 3d image filtering and segmentation methods. All the software
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and models will be open-source. Validated portions will eventually become part of VTK and
ITK, which should be very interesting.

This projects involves Université Paris Est, Université de Reims, Université de Strasbourg,
the Institut National Polytechnique de Grenoble and Kitware. 5 PhD students including 3
funded by this ANR project will work on this project, which has started in January 2013.

6.3 Unplanned future work

Prediction is very difficult, especially about the future2, however I hope to continue working in
imaging-related projects. One topic is to approach thin object filtering and segmentation from
an optimization point of view. Some proposals already exist, particularly involving non-local
and wavelet operators, but I feel more work is needed, particularly in 3D. I will continue to
be interested in efficient algorithms. One interesting way explored by Markus Unger in his
thesis (Unger, 2012) is to incorporate some ideas from discrete optimization like swap moves
in continuous optimization algorithms, to dramatically speed up convergence. However this
is not applicable to all contexts. With Ania Jezierska we have been working on some of these
aspects and we hope to develop them in the near future.

Another area of investigation is to pursue the idea of incorporating some curvature infor-
mation in variational models.

Overall, it appears that only a minority of researchers seem to be convinced that both
discrete and continuous approaches bring interesting aspects and solutions to a particular
problem. The discrete calculus framework, recently popularized by Grady and Polimeni (2010)
is one way both aspects can be combined, but it is surely not the only way. I hope to continue
contributing both to continuous and discrete approaches in the future.

2Niels Bohr, 1885-1962.
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Part III

Appendix





Content of the appendix

This appendix contains the following documents:

1. My CV and list of publications;

2. A short description of 2 industry-related projects; and

3. 5 significant publications
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Appendix A

CV of Hugues Talbot

Details:

Date of Birth: 11 Octobre 1966
Location: Parthenay, Deux-Sèvres, France
Nationalities: French and Australian (acquired in 2001)
Family: Maried, 2 children (09/2000 & 02/2006)

Education:

1993 PhD from the École des Mines de Paris. Dissertation on “Morphological anal-
ysis of man-made vitreous fibres”. Co-supervised by professors Jean Serra, Do-
minique Jeulin (ENSMP) and Linn W. Hobbs (Massachusetts Institute of Tech-
nology), with highest honours.

1990 Master’s degree, Université Paris-VI, Artificial intelligence and pattern recogni-
tion, with honours.

1989 Engineering degree, majoring in computer science, Ecole Centrale de Paris.

Prizes and scholarships:

2006 DuPont prize for the SolarScan project, with Polartechnics Ltd
2005 Australian society of engineers awards for the Solarscan project
2004 Research prize, CSIRO-MIS.
1990-1993 CIFRE PhD scholarship, with Isover Saint Gobain.
1984-1989 Higher education scholarship from the French ministry of education.
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Professional experience:

2004-today Associate professor (with tenure), ESIEE, Laboratoire d’Informatique Gaspard-
Monge (LIGM), Algorithms, Architecture, Analysis and Image Synthesis(A3SI)
team, France.

1994-2004 Principal Research Scientist, CSIRO Mathematical and Information Sciences
Biotech Imaging Group (Sydney, Australia).

1990-1994 Research engineer, Isover Saint Gobain (Fontainebleau and Rantigny, France).
1991-1992 Visiting Scientist and Research Associate, Massachusetts Institute of Technol-

ogy, (Cambridge, Mass., USA).
1989 Software Developer, Gattégno Conseil, (Sceau, France).
1988-1989 Consultant, Automatisme et Avenir Informatique, (Châtenay-Malabry, France).

Other activities:
2001-present Associate editor of the journal Image analysis and stereology.
2004 Associate lecturer at Sydney University, ELEC-4302. Image processing and

image analysis.
2002-2004 Secretary of the Australian Pattern Recognition Society (APRS).
2002-present Member and secretary of the steering committee of the International Society

for Mathematical Morphology.

Langages :

Anglais bilingual
German working knowledge

Skills

Image processing, image analysis

• Mathematical morphology; segmentation; partial differential equations; texture analysis;
medical imaging; computer vision; motion analysis; stereovision, linear, convex and
combinatorial optimization; linear and non-linear filtering.

Supervision

• Current PhD candidates:

1. Ali Kanj, co-supervised with Jean-Christophe Pesquet, Université Paris-Est Marne-
la-Vallée, on a CIFRE scholarship with Sublab Inc, – due end of 2016

2. Odyssé Merveille, co-supervised with Nicolas Passat, Université de Reims, on an
ANR VIVABRAIN scholarship, – due to graduate end of 2016;

3. Éloise Grossiord, co-supervised with Laurent Najman, LIGM, ESIEE, on a CIFRE
scholarship with Keosys Inc, – due end of 2016;

4. Olivia Miraucourt, co-supervised with Stéphanie Salmon, laboratoire de mathé-
matiques, Université de Reims, Champagne-Ardennes region scholarship, on blood
flow simulations in brain vascular networks – due end of 2015;
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5. Imen Melki, co-supervised with Laurent Najman and Jean Cousty, LIGM, ESIEE,
on a CIFRE scholarship with General Electric Healthcare – due end of 2014 ;

• Past students, now all doctors :

6. Phuc NGO, co-supervised with Michel Couprie and Yukiko Kenmochi, A3SI, re-
search ministry scholarship, on discrete transformations for optimal registration –
graduated 18th October 2013, now post-doc at CEA;

7. Ania Jezierska, co-supervised with Jean-Christophe Pesquet and Caroline Chaux,
Univ.-Marne-la-Vallée, ANR DIAMOND 2009 scholarship, on image restoration
for confocal macroscopy, graduated 13th May 2013, now post-doc at Université
Paris-Est;

8. Nicolas Combaret, co-supervised with Dominique Bernard, CNRS. Aquitaine Re-
gion scholarship, on the study of materials in X-ray microtomography – graduated
12th December 2012, now research engineer at FEI vizualisation science group
(http://www.vsg3d.com).

9. Lásló Marak, co-supervised with Laurent Najman, A3SI, research ministry schol-
arship, on fast and globally optimal segmentation methods for 3D data - defended
on 28th March 2012, now research engineer at Real Eyes Inc, Budapest ;

10. Camille Couprie, co-supervised avec Laurent Najman, A3SI, and Leo Grady,
Siemens Corporate Research, Princeton. Defense ministry (DGA) scholarship 2008,
on optimal discrete and continuous filtering and segmentation methods, applied to
motion segmentation and biometry – defended on 10th Octobre 2011. Camille is
now a research engineer at IFP-EN (Institut Français du Pétrole-Energies Nou-
velles). Camille’s thesis received three prestigious awards: the industrial AEDS
best multisciplinary thesis 2012, the Société Informatique de France accessit (2nd
prize) for the Gilles Kahn award 2012, and the defence ministry DGA prize 2013 ;

11. Olena Tankyevych, co-supervised with Gilles Bertrand, A3SI et Petr Dokladal,
ENSMP. CNRS-DGI 2007 scholarship, on the segmentation of thin objects in 3D
applied to medical imaging – defended on 19th Octobre 2010, now a Maître de
Conférence at Université Paris-Est Créteil;

12. Harold Phélippeau, co-supervised with Mohamed Akil, A3SI. CIFRE scholarship
with Philips and NxP France, on the improvement of image quality for digital
photography – defended on 3rd April 2009, now research engineer at Noesys France.

13. Benjamin Appleton, Australian education and CSIRO joint scholarship, on segmen-
tation methods by globally optimal methods, received 2005, now research engineer
at Google Australia.

14. Fiona Evans, Australian education and CSIRO joint scholarship, on segmentation
methods using EM-type statistical methods, received 2005, now research engineer
in the public sector, Perth, Australia.

• Other supervisions : many 3rd to 5th university year students, typically 3-6 months,
between 1995 and present. Apology for not stating all the names here.

http://www.vsg3d.com
http://www.realeyesit.com/
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Teaching

Duties at ESIEE represent about 300h of actual teaching a year, spit between lecturing,
tutorials and practical sessions. Specific duties include:

• Member of the initial and core group of academics responsible for creating and running
the Institut Supérieur des Bio-Sciences (ISBS), since its debut in 2004. This institute
delivers an engineering diploma after 3 years of study, corresponding to the 3rd to 5th
year of university. The institute is habilitated by the French engineering title commis-
sion. The diploma is delivered by the Université Paris-Est Créteil. 24 students graduate
each year. In particular, I supervise the last year of study, particularly the imaging
major, internships, and the numerical sciences courses.

• Courses : at ESIEE and ISBS I teach mathematical morphology, image analysis, math-
ematical optimization, programming, operating systems, graph theory, computer lan-
guages and compiling.

• Many academic supervision of internships and applied projects.

Computer science skills

• Languages : C,C++,S/Splus/R,Fortran,Python,lex+yacc,LATEX, various scripts.

• Environments : Linux/Unix, Windows, MacOS, RTOS.

• Expertise in : operating systems, GUIs, real-time and parallel programming.

R&D projects

This list is non-exhaustive.

• Between 1990-1996, project “mesure of man-made insulation fibres”, with Isover Saint-
Gobain. Research engineering with co-supervision of 4 technicians.

• Between 1994-2004, project “automated image-based diagnosis of skin cancer” with SME
Polartechnics Limited (Australia). R&D and principal research duties in imaging. Li-
aison between engineers and medical doctors. Budget of about AU$ 40k/year. The
project resulted in a monitoring and diagnosis medical instrument that received several
prizes and patents, the Solarscan, which was sold worldwide.

• Between 2000-2004, project “development of an automated fluorescence microscope for
high-content screening and cellomics”, with SME Axon Limited (USA). Principal archi-
tect for the image analysis library used in the resulting instrument: the imageXpress
5000, which was a technical and financial success. Line manager for two engineers. Bud-
get of about AU$ 80k/an. This project ultimately resulted in a significant valuation for
Axon Instruments, prior to acquisition by Molecular Devices in 2004. The instrument
remained unchanged on MD’s catalogue until 2010. See appendix C for some details.

• Between 2005-present. Contributions to the following ANR (Agence Nationale de la
Recherche) projects, including proposal writing, academic, research and administrative
duties:
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1. SURF 2005 (as principal investigator) with ENPC, CEREMADE, ECP et ESIEE,
computation of continuous and discrete minimal surfaces, 400k¤;

2. MICROFISS 2007 with CNRS, Université de Lille et ESIEE, study of concrete
aging via X-Ray microtomography, 300k¤;

3. DIAMOND 2009 with INRA, INRIA, Université de Haute Alsace, Institut Pasteur
et Institut Gaspard Monge: image restoration for confocal MACROscopy, 650k¤;

4. KIDICO 2010 (ESIEE head investigator) avec Université de Strasbourg et Univer-
sité de Clermond-Ferrand: discrete geometry, morphology and discrete calculus,
350k¤.

5. VIVABRAIN 2012 (ESIEE head investigator) with Université de Strasbourg, In-
stitut National Polytechnique de Grenoble, Université de Reims, and Kitware, Inc:
segmentation and blood flow simulation in cerebral blood vessels. 980k¤.

• Initiating, conducting and managing small industrial project too numerous to be listed
here (5-30k¤), with Powercor Australia, Atlab Australia, Sanofi France, EDF, Lafarge,
Noveltis, Emphron Australia...
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[4] L. Najman and H. Talbot, editors. Morphologie mathématique 1 : approches déterministes.
Hermes, Paris, 2008. ISBN 978-2746218413.

[5] L. Najman and H. Talbot, editors. Mathematical Morphology : from theory to applications.
ISTE-Wiley, London, UK, September 2010. ISBN 978-1848212152.

[6] H. Talbot and L. Najman, editors. Morphologie mathématique 2 : estimation, choix et mise
en œuvre. Traité Signal et Image. Hermes, September 2010. ISBN 978-2746225930.
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Analysis. In G. Dougherty, editor, Medical Image Processing : Techniques and Applications,
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[18] O. Tankyevych, H. Talbot, N. Passat, M. Musacchio and M. Lagneau. Angiographic Image
Analysis. In G. Dougherty, editor, Medical Image Processing : Techniques and Applications,
pages 115–145. Springer, 2011. ISBN 978-1441997692.

Journal Articles
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Matériaux, 1993.

[20] H. Talbot and D. Jeulin. Estimation of Fibre Length and Diameter Distribution from SEM
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[21] H. Talbot, D. Jeulin and D. Hanton. Image analysis of insulation mineral fibres. Microscopy,
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[23] E. Breen, R. Jones and H. Talbot. The Morphological Approach to Industrial Image Analysis
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[27] L. Bischof, M. Buckley, R. Lagerstrom, C. Sun, H. Talbot, D. Wang and P. Vallotton.
Image analysis of neurite branching : High-content screening at high speed. AMERICAN
BIOTECHNOLOGY LABORATORY, 23(10) :22, 2005.

[28] B. Appleton and H. Talbot. Recursive Filtering of Images with Symmetric Extension. Signal
Processing, 85 :1546–1556, 2005.

[29] B. Appleton and H. Talbot. Globally optimal geodesic active contours. Journal of Mathe-
matical Imaging and Vision, (23) :67–86, 2005.

[30] H. Heijmans, M. Buckley and H. Talbot. Path openings and closings. Journal of Mathema-
tical Imaging and Vision, 22 :107–119, 2005.

[31] S. Menzies, L. Bischof, H. Talbot, A. Gutenev, M. Avramidis, L. Wong, S. K. Lo, G. Mac-
kellar, V. Skladnev, W. McCarthy, J. Kelly, B. Cranney, P. Lye, H. Rabinovitz, M. Oliviero,
A. Blum, A. Virol, B. DeAmbrosis, R. McCleod, H. Koga, C. Grin, R. Braun and R. Johr.
The Performance of SolarScan : An Automated Dermoscopy Image Analysis Instrument for
the Diagnosis of Primary Melanoma. Archives of Dermatology, 141(11) :1388–1396, Novem-
ber 2005.

[32] B. Appleton and H. Talbot. Globally Minimal Surfaces by Continuous Maximal Flows. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(1) :106–118, 2006.
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[37] J. Chaussard, M. Couprie and H. Talbot. Robust skeletonization using the discrete lambda-
medial axis. Pattern Recognition Letters, 32(9) :1384–1394, July 2010.
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phology. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its Appli-
cations to Image and Signal Processing, volume 11 of Computational Imaging and Vision,
pages 27–34, Amsterdam, June 1998. International Society for Mathematical Morphology,
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[62] L. Bischof, H. Talbot, E. Breen, D. Lovell, D. Chan, G. Stone, S. Menzies, A. Gutenev and
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[76] O. Tankyevych, H. Talbot and P. Dokládal. Curvilinear morpho-Hessian filter. In proceedings
of the International Symposium on Biomedical Imaging (ISBI), pages 1011–1014, 2008.

[77] G. Lobo-Pappa, D. Menotti, H. Talbot and M. Meignan. Towards Automated Lymphoma
Prognosis based on PET Images. pages 279–284, Cancún, Mexico, October 2008. Interna-
tional IEEE Workshop on Machine Learning for Signal Processing (MLSP).

[78] L. Marak, H. Talbot, O. Lambert and J.-C. Taveau. Segmentation techniques for the analysis
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Appendix C

Industrial contributions

This part contains some relevant industrial contributions.

C.1 Axon Instruments imageXpress 5000

The first is a partial brochure of the instrument ImageXpress 5000, which I helped develop
between 2000 and 2004. I was in charge of the entire image analysis library used in the
context of this project. All the assays depended on it. This instrument was sold between 2003
and 2010. The full brochure is at http://htbc.stanford.edu/equipment/ImageXpress_
Brochure.pdf.

http://htbc.stanford.edu/equipment/ImageXpress_Brochure.pdf
http://htbc.stanford.edu/equipment/ImageXpress_Brochure.pdf
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CELLULAR IMAGING AND ANALYSIS FOR
SCREENING

AUTOMATED ACQUISITION

AUTOMATED ANALYSIS

HIGH RESOLUTION

Automated Cellular Imaging and Analysis System



Why choose ImageXpress?
Instrumentation

ImageXpress is fast. Scanning an entire 384-well
plate at full resolution (1280 × 1024 pixels), with
two fluorescence images per well, takes about 20

minutes. ImageXpress achieves this level of
performance because the entire system—from the
custom-designed optical components to the efficient
software user interface—is designed and built for
screening. Axon’s optical, mechanical and
electronics engineers have created a fully-automated
inverted epifluorescence imaging system with the
features you need:

● efficient, uniform illumination for brief
exposure times and maximal throughput

● robust, high-speed laser autofocus
● rapid selection of up to 10 excitation and

emission filters and up to 4 dichroic
beamsplitters

● reliable, high-speed, precision mechanics for
continuous operation

● uncompromised image quality, with
diffraction-limited imaging optics and high-
resolution cooled CCD imaging.

Software
ImageXpress includes a complete software solution
for screening—at no extra cost. All phases of your
workflow are included, from interactive control of
the instrument during assay development, to
automated plate scanning, data storage and analysis.
Powerful visualization tools are included that link
the extracted data in spreadsheets and custom
graphs to the actual objects in images for quality
control.  Our software engineers have built a system
with features every bit as impressive as the
hardware:

● powerful, intuitive graphical user interface
● scalable, high-performance, client-server

database for image storage, retrieval and
archiving

● full scripting capability for maximally flexible
automation

● sophisticated image analysis algorithms for
automated analysis

● refreshingly, the ImageXpress software suite is
included in the base system price.

The ImageXpress system has the power and speed to
run your current assays efficiently.  With its open-
system architecture and full scripting capability,
ImageXpress software provides unmatched flexibility
to speed your assay development team in creating
your next generation of high-information content
fluorescent cellular assays.

Support
Axon Instruments stands behind ImageXpress with
responsive, free, telephone and e-mail technical
support, two days of training at the time of
installation, software updates, on-site preventive
maintenance and field service for the first year.  An
optional extended service agreement is also
available.

Finally, the ImageXpress system is reasonably priced.
Read on for further details about the system, and
contact us to arrange a demonstration.

A Cellular Imaging System Designed for
Automated, High-Resolution Screening
The ImageXpress optical system was designed to
increase throughput for screening without
compromising image quality.  It uses a full-spectrum
high-power xenon arc lamp, custom light guide, and
Abbé illumination optics to deliver efficient, uniform
illumination to the sample, and keep exposure times
to a minimum.  

Reliable components for continuous operation
The system uses high-quality, infinity-corrected
Nikon objective lenses, mounted in a motorized
turret (holds up to 6 objectives).  The motorized
excitation and emission filter wheels (10 positions
each) and motorized dichroic beamsplitter wheel (4
positions) accept standard filter sets for maximum 
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The ImageXpressTM 5000A automated cellular imaging and analysis
system is an integrated hardware and software system designed
specifically for rapid acquisition and analysis of fluorescence
images for high throughput cell-based screening.



flexibility.  The precision motorized stages (X-Y stage
for plate motion and Z stage for focusing) are
designed for rapid movement and trouble-free,
continuous operation.  Encoders on the X-Y and Z
stages ensure accurate, consistent positioning. All
motion control operates asynchronously, ensuring
fast setup for each image acquisition and therefore
increased throughput.

High-resolution imaging of all standard 
plate formats
Images of the cells (Figure 1) are digitized by a
megapixel cooled CCD camera designed and
manufactured by Axon Instruments specifically for
this instrument.  The system is designed for scanning
multiwell microplates (96-, 384-, or 1536-well
formats), but can accommodate any sample that will 
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fit within the footprint of a microplate (e.g., standard
microscope slides or petri dishes, in an appropriate
holder).

High-speed laser autofocus
Because microplates are not optically flat, the
ImageXpress microscope uses a high-speed laser
autofocus mechanism to focus on the bottom of each
well.  The user can additionally specify offsets from
this surface (e.g., for focal shift of the objective with
emission wavelength or for cells grown on top of a
feeder layer). The laser-based autofocus has several
advantages over image-based autofocus:

● laser-based autofocus is much faster
● virtually no significant bleaching of the sample

Figure 1 Pseudocolor composite image of triple-labeled cells acquired with ImageXpress.  Shown are bovine pulmonary artery epithelial cells stained
with DAPI (cell nuclei, blue channel), BODIPY®-FL phallacidin (F-actin, green channel) and MitoTracker® Red CMXRos (mitochondria, red channel).
From a FluoCells® prepared slide, Molecular Probes, Eugene, OR.



Sophisticated cellular image analysis toolbox
Automated image analysis tools include:

● Flat-field and background correction
algorithms

● Real-time cell counting algorithm
● Cell nucleus detection and measurement
● Cytoplasmic fluorescence measurements 
● Neurite detection and measurement

➤ linear feature detection
➤ length measurement
➤ neurite tree decomposition (identification

of individual neurite segments, branch
points)

➤ association of neurites with cell bodies
➤ complexity measurement.

Available image feature measurements include:
● object pixel statistics: average intensity,

median, variance, etc.
● area
● perimeter
● best-fit ellipse
● angle of major axis
● bounding box
● center of mass

● convex hull
● texture characterization.

The scripting interface gives you the flexibility to
create any number of derived measurements, for
example:

● form factor
● aspect ratio
● convexity
● equivalent circle diameter.

Open architecture and full scripting capability
mean extensibility
ImageXpress software is an open system: we provide
complete documentation of the scripting interface
(including the image analysis functions) so that you
can create your own specialized scripts, whether for
acquisition, analysis or a combination of both.  In
addition, we have an ongoing collaboration with the
internationally-recognized CSIRO (Commonwealth
Science and Industry Research Organization,
Australia) Mathematical and Information Sciences
image analysis group to continue extending the
image analysis functionality of the program.  Finally,
assistance is available for developing custom scripts
for your assays, on a contract basis.

7

Figure 7 ImageXpress features a sophisticated cellular image analysis toolbox including neurite detection and measurement.  On the left is an image of
primary neural cultures stained for tubulin.  On the right is the same image with an overlay of the skeletonized neurites automatically detected by
ImageXpress.



Powerful visualization tools connect analysis
results to images
Numerical image analysis results are presented in
spreadsheet format, with each row representing an
object in an image, and each column representing a
measured feature or property  of that object.  The
ImageXpress console (Figure 8) gives you three
linked views of the data: 

1. a spreadsheet of analysis results

2. graph windows for creating scatterplots and
histograms

3. the actual objects in the images.

The combination of image, spreadsheet and
graphical views is a powerful tool for visualizing,
classifying, sorting, saving and exporting your results.
With the results spreadsheet you can:

● Sort the data on any column
or combination of columns

● Select columns for scatterplot
or histogram graphs

● Select or exclude results
based on threshold criteria
that you establish

● Export your results to any
spreadsheet or database program

8

Figure 8  Powerful linked results views connect the analyzed image features with the results spreadsheet and data points in graphs.  The graph shows
results from an apoptosis vs. mitosis assay (see Figure 9 for a description of the staining). Each point in the scatterplot represents a cell.  The measured
annexin response RTOT_FITC) is plotted against the measured mitotic indicator response (RN_Cy5). The ImageXpress automated classification
algorithm has been used to color-code cells by response: apoptotic cells are orange, mitotic cells blue, and unresponsive cells are green. Note that the
color coding is reflected in all three data views.
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Features
An optomechanical system designed to increase
throughput for screening

● High-efficiency, custom imaging optics
● High-speed laser autofocus
● Image-based autofocus for unusual imaging

situations
● Powerful xenon light source
● Efficient, uniform illumination to minimize

exposure times
● Fast, precise X-Y stage
● Asynchronous control of all components

increases throughput
● High-resolution (1280 × 1024 pixels) cooled

CCD imaging
● Available binning modes decrease exposure

time and increase throughput
● Uncompromised image quality
● Optional robotic plate handling.

Software that is powerful, flexible and scalable, but
still easy-to-use

● Intuitive graphical user interface
● One-click interactive instrument controls for

assay development
● Modular client-server software architecture

provides maximal flexibility, scalability
● Fully scriptable: any software function can be

scripted for walk-away automation
● Acquisition and Analysis Script Wizards

automate script writing
● Images automatically annotated with complete

acquisition information
● Any number of user-specified annotations can

be added
● Annotated images automatically stored to

database
● Network-enabled database allows images to

be stored on a central server
● Retrieve images with configurable tree query

or database query dialog
● Export images to standard TIFF files for

publication or use in other programs
● Complete biological image analysis toolbox
● Automated classification of objects

● Analysis algorithms developed in collaboration
with CSIRO Image Analysis Group.

Service and Support
● Installation and two-days of on-site training

included
● Additional on-site or web-based training

available (call for details)
● Custom script programming services available

(call for details)
● The same quality, PhD-level technical support

you’ve come to expect from Axon Instruments
● One year warranty and on-site service contract

included
● Optional extended on-site service contract

available.

● Fluorescence assays probe a huge range of
cellular functions, including:

● apoptosis
● cell viability
● cell classification and counting
● neurite outgrowth
● cytoskeletal rearrangements
● subcellular localization
● molecular co-localization
● intracellular trafficking
● receptor translocation

● Cell-based assays can identify toxic
compounds earlier in the discovery cycle.

● High-resolution imaging enables
investigations of heterogeneity of response
among cell types.

With the ImageXpress system, these cellular
functions can be measured and analyzed with
maximum efficiency.  The ImageXpress system
was designed expressly for screening, and
combines optimized custom optics, precision
mechanics, powerful but easy-to-use control
software, sophisticated image assays provided
at no extra charge, and a practically limitless
database for storage and retrieval of images.
The ImageXpress system’s open software
interface and full scripting capability deliver
unmatched flexibility for creating customized
assays.  
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C.2 Polartechnics Solarscan

The second document is an independent and objective assessment of the state of the Polartech-
nics Solarscan industrial project, on which I worked between 1994 and 2004, by the Australian
government. This assessment was conducted in 2005, shortly after I left Australia.
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PRIORITISING SUMMARY 
REGISTER ID:  000136 

NAME OF TECHNOLOGY: SOLARSCAN® 

PURPOSE AND TARGET GROUP:  MELANOMA DETECTION AND MONITORING SYSTEM FOR 
ROUTINE SKIN CHECKS  

STAGE OF DEVELOPMENT (IN AUSTRALIA): 
� Yet to emerge ⌧ Established  
� Experimental � Established but changed indication 

 or modification of technique 
� Investigational � Should be taken out of use 
� Nearly established  

AUSTRALIAN THERAPEUTIC GOODS ADMINISTRATION APPROVAL 
� Yes ARTG number 
⌧ No � Not applicable 

INTERNATIONAL UTILISATION:  
LEVEL OF USE COUNTRY 

Trials Underway or 
Completed 

Limited Use Widely Diffused 

Australia  9  

IMPACT SUMMARY: 
Polartechnics Ltd provides SolarScan® with the aim of detecting melanoma and monitoring skin 
lesions. The technology is currently available through several general practice or dermatology clinics 
for people requiring skin lesion monitoring and/or detection of melanoma within Australia. 

BACKGROUND 
Dermoscopy (surface microscopy) is the clinical technique used to examine skin lesions. It involves 
using a hand-held magnifying instrument (10 x magnification), usually with liquid at the skin-
instrument interface, to examine pigmented lesions arising on the skin surface. This technique allows 
the observer to look not only onto but also into the superficial skin layers, and thus permits a more 
detailed inspection of pigmented skin lesions (Crotty and Menzies 2004; Kittler et al 2002). 
Dermoscopy assists the clinician to determine whether a skin lesion requires excision, biopsy, 
monitoring or can be safely left in situ. It is possible that it increases the accuracy of melanoma 
detection when compared to standard visual inspection (Crotty and Menzies 2004).  
 
The SolarScan® device was developed by Polartechnics Ltd., CSIRO and the Sydney Melanoma Unit. 
It consists of a remote head colour video camera that produces high resolution (24-bit, 760 x 570-
pixel) images. The lesion image is digitised for processing. The device uses surface epiluminescence 
microscopy, which allows for x40 magnification (Figure 1) (Polartechnics 2004). 
 
The SolarScan® takes digitised images of lesions and extracts the lesion characteristics, which are 
then compared to a database of benign and malignant lesions. 
 
The SolarScan® can detect melanomas less than 3mm deep which may allow for early detection and 
treatment. The technology is also designed to monitor any changes in lesions over time. 
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Figure 1. Solarscan (Printed with permission Polartechnics) 

CLINICAL NEED AND BURDEN OF DISEASE 
In Australia there were 8,885 new cases of skin melanoma recorded in the year 2001, a rate of 45.8 
per 100, 000 (AIHW 2004a). In 2001, melanoma was the fourth most common cancer in Australia and 
accounted for 10% of all new cancer cases (AIHW 2004).  
 
Incidence data for cancers of the skin, apart from melanoma, are not collected on a routine basis by 
cancer registries. These common cancers are not legally notifiable and are therefore not routinely 
reported. Estimates of the frequency of treated skin cancers, ie basal cell carcinoma and squamous cell 
carcinoma, are derived from data that have been collected in national household surveys in 1985, 
1990, 1995 and 2002 (NCCI 2003). A 2002 national survey found 374,000 people had been diagnosed 
with either squamous or basal cell carcinoma in Australia compared to 270,000 in 1995 (Cancer 
Council Victoria 2004). 

DIFFUSION 
There are currently 40 SolarScan® machines installed in general practice and/or dermatology clinics in 
Australia (personal communication Polartechnics). 

COMPARATORS 
The comparators for skin lesion inspection and monitoring are visual inspection by the skin clinician 
or general practitioner using, as mentioned previously, a handheld surface microscope (dermoscope). 

EFFECTIVENESS AND SAFETY ISSUES 
See complete volume of Prioritising Summaries for definitions of Levels of Evidence. 
At the time of preparing this summary, the manufacturer was in the process of submitting a paper for 
publication describing a trial of the SolarScan® and its diagnostic accuracy compared to dermoscopy 
experts and general practitioners (personal communication, Polartechnics). 
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The study by Menzies et al (2001) (level III-3 diagnostic evidence) demonstrated the effectiveness of 
SolarScan® in early detection of clinically "featureless" melanoma. The measurement outcome was 
the specificity of melanoma diagnosis for short-term digital surface microscopic monitoring of 
suspicious or changing atypical melanocytic lesions.  318 consecutive lesions from 245 patients (aged 
4 – 81 years) were monitored during a 2.5 to 4.5 month period. 
 
Of the 318 lesions, 257 (81%) remained unchanged and 61 (19%) showed morphologic changes. Of 
the 61 lesions that changed, 7 were found to be early melanoma (11% of all changed lesions, 2% of 
total lesions): 2 invasive lesions and 5 in situ. The authors report that none of the melanomas 
developed any classic surface microscopic features of melanoma on examination with a handheld 
surface microscope and could be identified only by morphologic change. The specificity of the 
SolarScan® was 83% when compared to pathology results of the excised lesions. 
 
There are no studies, as yet, that assess the impact of possible early melanoma diagnosis with the 
SolarScan®, compared to visual inspection or dermoscopy on the health outcomes (ie survival) of 
patients. 

COST IMPACT  
There are several MBS item numbers for the removal of basal and squamous cell carcinoma (item 
numbers 31255 – 31295) with fees ranging from $190.00 - $240.00 each and for the removal of 
malignant melanoma (item numbers 31300 – 31335) at a cost ranging from $224.00 - $315.00 (MBS 
2004). The current cost of the SolarScan® device is approximately $30,000. 
 
The total number of public hospital separations in Australia for malignant melanoma or other 
malignant neoplasm of the skin was 82,707 during the year 2002-03 (AR-DRG numbers C43 and 
C44). In addition the number of public hospital separations for melanocytic naevi and benign 
neoplasms of the skin (AR-DRG numbers D22 and D23) were 10,837 and 5,332 for the same time 
period. 
 
There are currently high rates of skin lesion excisions; in particular, there are high numbers of benign 
lesions excised compared to malignant lesions. The high excision rates occur because it is common 
for pigmented skin lesions such as naevi and seborrhoeic keratoses to appear similar to melanoma. It 
has been shown that there are approximately 11-29 benign excisions per malignant excision and up to 
36 excisions per malignant excision when seborrhoeic keratoses are included (English et al 2004). 
 
If the SolarScan® device demonstrates more accurate diagnosis than visual inspection or hand held 
surface microscope (currently not available), it may potentially reduce the number of unnecessary 
surgical procedures for the excision of suspect melanomas and therefore pathology costs.  

ETHICAL, CULTURAL OR RELIGIOUS CONSIDERATIONS 
No issues were identified/raised in the sources examined. 

OTHER ISSUES  
No issues were identified/raised in the sources examined. 

CONCLUSION: 
There is the potential for this technology to benefit a large number of patients, based on the high 
burden of skin cancer and the cost of detecting and treating melanoma and other skin cancers in the 
Australian population. However, the safety and effectiveness of this technology cannot be determined 
until further studies with the SolarScan® are published. 

HEALTH PACT ACTION: 
Technology is already diffusing into the Australian health system and will not impact significantly in 
terms of policy or cost burden. Archive. 
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Directional Morphological Filtering
Pierre Soille and Hugues Talbot

AbstractÐWe show that a translation invariant implementation of min/max filters along a line segment of slope in the form of an

irreducible fraction dy=dx can be achieved at the cost of 2� k min/max comparisons per image pixel, where k � max�jdxj; jdyj�.
Therefore, for a given slope, the computation time is constant and independent of the length of the line segment. We then present the

notion of periodic moving histogram algorithm. This allows for a similar performance to be achieved in the more general case of rank

filters and rank-based morphological filters. Applications to the filtering of thin nets and computation of both granulometries and

orientation fields are detailed. Finally, two extensions are developed. The first deals with the decomposition of discrete disks and

arbitrarily oriented discrete rectangles, while the second concerns min/max filters along gray tone periodic line segments.

Index TermsÐImage analysis, mathematical morphology, rank filters, directional filters, periodic line, discrete geometry,

granulometry, orientation field, radial decomposition.

æ

1 INTRODUCTION

SIMILAR to the perception of the orientation of line
segments by the human brain [1], [2], computer image

processing of oriented image structures often requires a
bank of directional filters or template masks, each being
sensitive to a specific range of orientations [3], [4], [5], [6],
[7], [8]. In this context, recent advances in the fast
implementation of morphological filters along discrete lines
at arbitrary angles [9] have opened avenues for new image
analysis applications [10], [11], [12], [13]. However, if one
needs to obtain results invariant to translations of the image
frame, the algorithm proposed in [9] is not suitable because
the shape of the structuring element (SE) varies slightly
from one pixel position to another. This effect is not due to
image border conditions but to the fact that the structuring
element is defined by considering n consecutive pixels
along the considered discrete connected line. Therefore, the
shape depends on the position of the structuring element
along the line (except for lines matching one of the principal
directions of the image grid).

In this paper, we address this problem and demonstrate
that a fast translation invariant (TI) implementation can be
achieved at the cost of a few extra computations and still
independently of the length of the SE. Therefore, it is much
more efficient than the raw TI algorithm which has a linear
computational complexity. In addition, we show that a
similar performance can be obtained for the more general
class of rank filters.

The paper is organized as follows: Section 2 describes the
problem and illustrates it on a real example. Strategies
allowing for a translation invariant implementation for both
min/max and rank directional filters are proposed in

Section 3. Performance evaluation and comparison with
other approaches are carried out in Section 4. Applications
to the filtering of thin networks and the computation of
linear granulometries and orientation fields are presented
in Section 5. Before concluding, extensions to line segment
cascades and gray-tone line segments of constant slope are
presented in Section 6.

2 PROBLEM DESCRIPTION

An efficient algorithm for computing erosions and dilations
along discrete Bresenham lines [14] at arbitrary orientations
has been proposed in [15], [9]. The processing of a given line
is based on the recursive procedure detailed in [16], [17] and
requiring only three min/max comparisons per pixel,
whatever the length of the SE (see further improvements
in the case of independent, identically distributed 1D signals
[18]). However, as already noticed in [9], for orientations
which do not correspond to one of the principal directions
of the digitisation grid, the shape of the line segment varies
slightly from one pixel to another. For instance, Fig. 1 shows
that, when computing min/max filters along a discrete
Bresenham line of slope ÿ1=3, the shape of the SE varies
along the line, and this variation is periodic with a
periodicity equal to three. It follows that the output of
filters computed along a discrete Bresenham line are not
translation invariant.

Since we are dealing with images digitized on a square
grid, we can restrict our analysis to line slopes in the form of
an irreducible fraction dy=dx (i.e., dx and dy are integers
with no common divisors). By convention, it is convenient
to include the forms 0=1 and 1=0 for referring to horizontal
and vertical lines, respectively. Now, for a Bresenham line
of slope in the form of an irreducible fraction dy=dx, there
are max�jdxj; jdyj� different line segments defined along the
discrete line. This number corresponds to the periodicity
k � max�jdxj; jdyj� of the elementary pattern occurring
along the Bresenham line. In the sequel, we denote by
L�i;�dx;dy� the connected line segment obtained by consider-
ing � successive pixels of a Bresenham line of slope dy=dx,
starting from the ith pixel of the line (i 2 f1; . . . ; kg). For
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example, Fig. 1b shows the three line segments of length
equal to nine pixels for a slope of ÿ1=3: L91;�3;ÿ1� (top left
SE), L92;�3;ÿ1� (top right SE), and L93;�3;ÿ1� (bottom SE).

A real example illustrating the non-TI property of the
algorithm described in [9] is given in Fig. 2. We define a
two-dimensional (2D) gray-scale image f as a function
which maps a discrete grid of 2D pixel coordinates to a
finite chain of integers. The input gray-scale image (Fig. 2a)
shows a plant leaf. The detection of the leaf veins for a given
range of orientations can be achieved with a series of
directional openings. This is a preprocessing step for the
automatic detection and separation [19] of the plants as seen
from an autonomous vehicle navigating in a field [20], [21],
[22]. For example, the opening  by a line segment of given
slope and length will remove all veins except those having

this orientation and at least this length. However, because
the veins consist of a network of thin, mostly one pixel-
thick, bright objects, the output of the non-TI implementa-
tion of the opening varies significantly when shifting the
image frame, as illustrated in Figs. 2b, 2c, 2d, 2e, and 2f. In
this example, there are five possible outputs because the
periodicity of a Bresenham line of slope ÿ1=5 equals five.
For those pixel positions where the structuring element was
only partially fitting the image frame, we have assumed
that pixels outside the image definition domain are all set to
zero (this is highlighted in Fig. 3 where all intermediate
steps leading to an opening are displayed).

In general, there are kpossible outputs for a neighborhood
image operator 	 by a line segment of length � pixels applied
along a Bresenham line of slope dy=dx and sweeping the
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Fig. 1. Line segment patterns along a discrete Bresenham line. (a) A discrete Bresenham line of slope ÿ1=3. The line has been drawn from the top

left pixel (i.e., ªoriginº of the line). (b) The three line segment SEs occurring along the discrete line (here, for a length of nine pixels).

Fig. 2. Opening  by a line segment of 15 pixels along Bresenham lines of slope ÿ1=5. (a) Input image f: A 66� 56 image of a cauliflower leaf

(cropped region of an outdoor scene [19]). (b) BL151
;�5;ÿ1��f�, (c) BL152

;�5;ÿ1��f�, (d) BL153
;�5;ÿ1��f�, (e) BL154

;�5;ÿ1��f�, and (f) BL155
;�5;ÿ1��f� are the five

possible outputs using the recursive algorithm described in [9].
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whole image definition domain. We denote them by
	BL�i ;�dx;dy�, where i 2 f1; . . . ; kg and k � max�jdxj; jdyj�.

3 PROPOSED TRANSLATION INVARIANT (TI)
ALGORITHMS

After introducing few background notions, we show that
the recursive non-TI algorithm for min/max filters [9] as
well as the so-called moving histogram algorithm [23], [24]
for rank filters can be adapted so as to lead to efficient
TI implementations.

3.1 Background Notions

In [25], we have shown that the convex hull transformation

can be defined in terms of an intersection (point-wise
minimum ^) of half-plane closings. More precisely, denot-
ing by � the closing transformation, �� a closed half-plane
having a given slope � � arctan�dy=dx�, and ��� the reflected
half-plane, the convex hull transformation CH of a gray-
scale image f is defined as follows:

CH�f� �
^
�

�����f� ^ �����f��: �1�

As demonstrated in [26], the translation-invariant imple-
mentation of half-plane closings1 can be achieved by

processing the pixels in the order they are reached when
progressively translating each Euclidean half-plane �� so as
to sweep the whole image definition domain. By doing so,
the pixels reached at any given step correspond to those
falling along the periodic line [28] having the same slope as
the half-plane. However, since we aim at computing min/
max filters along a connected discrete line segment, it is not

enough to apply them along periodic lines. Two different
strategies for circumventing this problem are investigated
in Sections 3.2 and 3.3 (the first for min/max and the second
for rank filters).

3.2 Recursive TI Algorithms

The adaptation of the recursive non-TI algorithm so as to
lead to recursive TI min/max filters is developed in
Section 3.2.1. Section 3.2.2 shows that, if we are interested
in computing directional openings and closings, appro-
priate combinations of a series of non-TI openings or
closings directly lead to TI openings and closings.

3.2.1 Erosions and Dilations

We define the slope of the SE in the form of an irreducible
fraction dy=dx. We assume that the length � (in pixels) of the
connected SE equals n times the periodicity k of the
corresponding discrete Bresenham line, i.e., � � nk and
k � max�jdxj; jdyj�. The underlying periodic line segment is
denoted by Pn;~v and defined as follows:

Pn;~v �
[nÿ1

i�0

i~v; �2�

where n � 1 is the number of points in the periodic line
segment and ~v � �dx; dy� is a constant vector separating all

successive points along the periodic line segment.2 We then

apply the following two step algorithm:

1. Compute the min/max filters with the periodic line
segment Pn;�dx;dy�.

2. Select an arbitrary line segment Lki;�dx;dy� of length k
among all k possible occurring along the Bresenham
discrete line of slope dy=dx and uses it to compute
the min/max filters of the image produced by the
first step. Note that, although it is convenient to
consider one of the k possible eight-connected
discrete patterns occurring along the Bresenham
discrete line, any connected line joining �0; 0� to
�dx; dy�, but excluding this latter pixel, could be
considered instead.

Hence, the recursive TI strategy relies upon the following

SE decomposition:

Lnki;�dx;dy� � Lki;�dx;dy� � Pn;�dx;dy�; �3�
where� denotes Minkowski addition [29] and i 2 f1; . . . ; kg.
Denoting dilation by � and erosion by ", the following

relationships hold:

�Lnki;�dx;dy� � �Lki;�dx;dy��Pn;�dx;dy�; �4�
"Lnki;�dx;dy� � "Lki;�dx;dy�"Pn;�dx;dy�: �5�

Figs. 3b, 3c, 3d, and 3e detail the successive steps for

computing the recursive TI opening by L154;�5;ÿ1� of the

image shown in Fig. 3a:

L154 ;�5;ÿ1� � f
z}|{Fig: 3a

�|�����������{z�����������}
Fig: 3e

� � �L54 ;�5;ÿ1� �� �P3;�5;ÿ1� �"L54 ;�5;ÿ1� �"P3;�5;ÿ1� �f�
z������}|������{Fig: 3b

�|����������������{z����������������}
Fig: 3c

�

|������������������������{z������������������������}
Fig: 3d

�:

As emphasized in [9], the min/max filter with a periodic

SE Pn;�dx;dy� requires three min/max comparisons per pixel

whatever the values of n and the slope dy=dx. The brute

force (raw) approach for computing the min/max filter

with Lki;�dx;dy� requires kÿ 1 min/max comparisons per

pixel. Less than k additional computations can be obtained

in situations where a scanning order of the image pixels

producing a high degree of overlap between two successive

positions of Lki;�dx;dy� can be found. Therefore, the maximum

total number of 2� k min/max operations per pixel for a

TI implementation is independent of the length of the SE

and varies according to the periodicity k of the underlying

periodic line segment.

3.2.2 Openings and Closings

Alternatively, when computing openings (or closings), the

non-TI recursive implementation of min/max filters can be

combined so as to lead to a TI implementation. Indeed,

because the plain line segments L�i;�dx;dy� are defined along
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1. The ANSI C code for the non-TI implementation is given in [27].

2. Note that periodic lines were originally defined [28] as follows:
P�;~v � [i��i�0 i~v. Here, we have adapted the definition of periodic lines so that
� equals the number of pixels of the periodic line (rather than �� 1 in the
original definition) in accordance with the parameter � used for Bresenham
connected line segments L.
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Bresenham lines, it can be observed that the following

equation applies:

8 i 2f1; . . . ; kg; BL�i ;�dx;dy��f��x�
2 fL�1

;�dx;dy��f��x�; . . . ; L�k ;�dx;dy��f��x�g:

It follows that the union (i.e., point-wise maximum _ for

discrete gray-scale images) of all k possible non-TI openings

is identical to the union of the openings by the k possible

line segments (the same result holds for closings � by

replacing the point-wise maximum with the point-wise

minimum ^):

_i�k
i�1

BL�i ;�dx;dy� �
_i�k
i�1

L�i ;�dx;dy�; �6�
î�k

i�1

�BL�i ;�dx;dy� �
î�k

i�1

�L�i ;�dx;dy�: �7�

This is illustrated in Fig. 4. Figs. 4b, 4c, 4d, 4e, and 4f show

the TI openings with the five SEs defined along a

Bresenham line of slope ÿ1=5. Their union shown in

Fig. 4g is identical to the union of the five non-TI openings

shown in Figs. 2b, 2c, 2d, 2e, and 2f (see Fig. 4h).

Matheron [30] demonstrated that any union of openings

is itself an opening in the sense that it shares all the algebraic

properties of a morphological opening (i.e., idempotence,

increasingness, and antiextensivity). The union of openings

(6) is therefore an algebraic opening (the same applies for the

intersection of closings by duality with respect to comple-

mentation). Note that contrary to the recursive TI imple-

mentation of erosions and dilations ((4) and (5)), the length �

in (6) and (7) does not need to be a multiple of k. Regarding

computational cost, the union of non-TI openings (right term

in (6)) requires 6k min/max comparisons per pixel. This is

more expensive than the 2k� 4 comparisons required for a

given L�i;�dx;dy� but it yields the union of the openings with

all k SEs L�i;�dx;dy� directly.

3.3 Periodic Moving Histogram TI Algorithms

We first present the principle of this technique for rank

filters (Section 3.3.1) and then show that it is at the basis of

valuable morphological rank-based filters (Section 3.3.2).

3.3.1 Rank Filters

The recursive TI strategy for directional min/max filters

(Section 3.2.1) concentrates on SEs whose length is a

multiple of the periodicity defined by their slope. Min/

max filters by line segment SEs of arbitrary lengths require

another strategy stemming from the moving histogram

technique, originally proposed in [24], for computing

median filters in square windows and later extended to

rank filters [31] and erosions/dilations by arbitrary shaped

SEs [32].
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Fig. 3. Recursive TI opening by L154 ;�5;ÿ1� (i.e., ------------------------------------) of the image shown in Fig. 2a: Successive steps based on the decomposition of erosions

and dilations into periodic and plain SEs ((4) and (5)). (a) Input image. (b) Erosion of (a) by P3;�5;ÿ1�. (c) Erosion of (b) by L54 ;�5;ÿ1�. (d) Dilation of (c) by
�P3;�5;ÿ1�. (e) Dilation of (d) by �L54;�5;ÿ1�.
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The key idea behind the moving histogram technique is

that the frequency distribution (histogram) of the values of

the pixels falling within a SE can be used to determine the

minimum or maximum values of the image within this SE.

When processing the next pixel, the histogram is updated3

by taking into account the pixels that come out of the SE

and those that come in. For example, in the trivial case of a

horizontal line segment, there is only one pixel coming in

and out whatever the length of the line segment when

translating it along the horizontal direction.
As pointed out in [27, p. 82], the scanning order of the

image pixels should be chosen so as to minimize the number
of pixels coming in and out. For a SE in the form of a

connected line segment L�;�dx;dy� of arbitrary slope dy=dx and

length �, we introduce the notion of a periodic image scan.
Given a Euclidean line of slope dy=dx progressively

sweeping the image plane, the periodic image scan consists
of scanning the image pixels falling on the Euclidean line

each time it intersects image pixels. By doing so, there are
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Fig. 4. (a) Input image f. Opening of the input image by the five possible SEs occurring along a discrete Bresenham line of slope ÿ1=5: (b) Opening

by L151 ;�5;ÿ1�: (---------------------------------------
), (c) Opening by L152 ;�5;ÿ1�: (---------------------------------------

), (d) opening by L153 ;�5;ÿ1�: (---------------------------------------
), (e) opening by L154 ;�5;ÿ1�: (------------------------------------), and (f) opening

by L155 ;�5;ÿ1�: (---------------------------------------
). (g) Union of all five openings (i.e., Figs. 4b, 4c, 4d, 4e, and 4f): _i�5

i�1L15i
;�5;ÿ1��f�. (h) Union of the five non-TI openings shown

in Figs. 2b, 2c, 2d, 2e, and 2f: _i�5
i�1BL15i

;�5;ÿ1��f� is identical to the union of the five TI openings shown in (g), see (6). Therefore, the arithmetic

difference between (g) and (h): _i�5
i�1L15i

;�5;ÿ1��f� ÿ _i�5
i�1BL15i

;�5;ÿ1��f� is a void image as illustrated in (i).

3. Not only is the histogram updated, but the values of the pixels coming
in and out are checked to see whether they are greater or lower than the
previously computed min/max (or arbitrary rank) values so as to avoid
sorting the whole histogram again to find the new min/max (or arbitrary
rank) values.
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exactly k pixels coming in and out between two successive

scanned pixels whatever the length of the SE. In practice,

the periodic scan can be embedded within the sweeping of
the image plane by a discrete Bresenham line [9]. Indeed, it

can be observed [26] that a Bresenham line is itself exactly

swept by k Euclidean lines of slope dy=dx.
An example is detailed in Fig. 5. Fig. 5a represents a

discrete Bresenham line of slope ÿ1=3 and the three

Euclidean lines sweeping all its pixels. Note that each two

successive pixels falling on a given Euclidean line are
k � 3 pixels apart. Fig. 5b shows the corresponding periodic

scanning order. The histogram is initialized at the start of

each Euclidean line, i.e., indices 1, 8, and 14. In Fig. 5c, a

connected line SE defined over the Bresenham line is

displayed, namely, L112;�3;ÿ1� (its origin being marked by the

black disk). Fig. 5d shows this SE sliding from index 8 to
index 9: Black pixels are common to each position, the three

pixels hatched with vertical lines are coming out, and those

hatched with horizontal lines are coming in. Notice that the

number of pixels coming in and out equals k whatever the

length of the SE. This figure also illustrates that the periodic

scanning maximizes the overlapping degree between two
successive positions of the SE. For example, a forward scan

of the image pixels leads to five pixels coming in and out.

Moreover, this number increases with the length of the SE.

In general, for a SE length in the form of a multiple n of the

periodicity k, there would be either nmin�jdxj; jdyj� or

nmin�jdxj; jdyj� � 1 pixels coming in and out for the
scanning order maximizing the number of overlapping

pixels, either line-wise or column-wise, depending on the

slope of the SE and excluding the trivial case where the

SE slope equals one of the principal directions of the grid.

Finally, notice that the total number of Euclidean lines
necessary for sweeping the image plane is equal to
k�inc� cst� dcr�, where inc, cst, and dcr refer to the length
of the increasing, constant, and decreasing regions displayed
in [9, Fig. 2, p. 463]. Consequently, the histogram must be
initialized k�inc� cst� dcr� times.

3.3.2 Rank-Based Morphological Filters

Apart from its suitability for line segment SEs of arbitrary
length, the moving histogram strategy has the advantage of
being designed for the computation of rank filters [33] of
arbitrary rank rather than the sole min and max ranks as for
the recursive TI strategy developed in Section 3.2. Besides,
rank filters are themselves the basis of very useful, yet little
known, morphological filters [34], [35] called rank-max
openings [36], [37].

Given an arbitrary flat structuring element B whose
cardinality card�B� equals n pixels, the rank-max opening
of parameter r is equivalent to the union of the morpho-
logical openings by the structuring elements Bi included in
B and containing r pixels. We denote by B;r the resulting
algebraic opening:

B;r �
_
i

fBi
j Bi � B ^ card�Bi� � rg; �8�

where 1 � r � n � card�B�. Notice that the smaller r is, the
less active is the corresponding rank-max opening. More
precisely, the following ordering relationship holds:
B;n � B � B;nÿ1 � � � � � B;2 � B;1 � I, where I denotes
the identity transform. Fig. 6 shows the output of both a
rank-max directional opening and the corresponding
morphological opening. As expected from (6), the rank-
max opening is less sensitive to the presence of small gaps
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Fig. 5. Periodic moving histogram scheme. (a) A discrete Bresenham line of slope ÿ1=3 and the three Euclidean lines sweeping all its pixels. (b) The

periodic scanning order. (c) The connected line SE L112 ;�3;ÿ1�, its origin being marked by the black disk. (d) SE sliding from index 8 to index 9. (See

text for a detailed explanation).
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in the corresponding direction (gaps up to nÿ r pixels are
allowed along the considered direction).

From a computational point of view, it can be seen that
the upper bound for the number of distinct SEs Bi in (8)
equals n!=r!�nÿ r�!. This number is too large for most real
applications. Fortunately, it can be shown [38, pp. 201-202]
that the rank-max opening is equivalent to the intersection
between the input image and the dilation by �B of its rank
filter � using B as the mask and nÿ r� 1 as the rank:4

B;r � I ^ � �B�B;nÿr�1: �9�
Hence,aTI implementationofadirectionalrank-maxopening
by an arbitrary line segment L�;�dx;dy� and parameter r can be
implemented at the cost of two rank TI directional filters
detailed in Section 3.3.1: The first being for the rank �ÿ r� 1

and the second for the rank n, i.e., a dilation:

L�;�dx;dy�;r � I ^ � �L�;�dx;dy�;� �L�;�dx;dy�;�ÿr�1: �10�
By duality with respect to complementation, the following
equation applies to rank-min (or simply parametric) closings:

�L�;�dx;dy�;r � I _ � �L�;�dx;dy�;1 �L�;�dx;dy�;r: �11�

A detailed discussion about rank-max filters and their

relationships with other filters is provided in [40]. The

practical interest of rank-max openings (and the dual rank-

min closings) is illustrated in [36] for the processing of

digitised X-ray angiographic images. More recently, rank-

max openings with line segments have been used in [41],

[42] for the extraction of the laid and chain lines in paper

watermarks and [12] for the detection of the local orienta-

tion of thin elongated objects in noisy images using a bank

of rank-max opening and rank-min closing filters. With the

concept of periodic image scan introduced in Section 3.3, an

efficient translation invariant implementation of directional

rank-max openings (10) and rank-min closings (11) is

available. Real applications are presented in Section 5.

4 PERFORMANCE EVALUATION

In this section, we compare algorithms for computing

morphological or rank filters with line segments in arbitrary

directions. We consider three criteria: computational

complexity (given an image of fixed size), memory usage,

and translation invariance.

. Raw TI min/max filter. The complexity isO���, where
� denotes the number of pixels of the line segment
(�ÿ 1 min/max comparisons per pixel for a min/max
filter). An extra image having the same size as the
original image is required for the output image.

. Recursivenon-TImin/maxfilter[9].Thecomplexityis
O�1� (three min/max comparisons per pixel for a min/
max filter). All computations can be done in place, i.e.,
no extra image is necessary for storing the results (just
two extra line buffers are necessary, see [9]).

. Recursive TI min/max filter. The complexity is also
in O�1� but the number of min/max comparisons
depends on the slope of the line segment (this
number equals 2� k comparisons per pixel for a
min/max filter). The min/max with the periodic SE
Pn;�dx;dy� can be performed in place and the following
min/max filter with the plain SE Lki;�dx;dy� requires
an extra image for storing the final result (3).
Alternatively, TI openings or closings can also be
obtained by unioning or intersecting k recursive
non-TI openings or closings. The complexity is still
O�1� but the number of min/max comparisons per
pixel equals 6k for the resulting TI algebraic opening
(6) or closing (7).

. Raw TI rank filter. The complexity is O���, where �
denotes the number of pixels of the line segment.
Indeed, since discrete values in a restricted range
need to be sorted, the distributive sorting technique
[43] which has O�n� complexity, where n denotes the
number of elements to sort, can be considered. One
extra image is required for storing the result.

. Moving histogram along Bresenham lines rank
filter. The complexity of this non-TI implementation
is O�1� since there is one pixel coming in and out
whatever the length of the Bresenham line segment
(we neglect the inc� cst� dcr sorting steps for
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Fig. 6. Comparison between the output of a rank-max (parametric) directional opening and the corresponding morphological opening. (a) Input

image sample f from a woolen fabric. (b) Morphological opening by the SE L351 ;�5;8� which corresponds to the rank-max opening with r set to the

cardinal number of the SE, i.e., 35: L351 ;�5;8�;35�f� � L351 ;�5;8�
�f�. (c) Rank-max opening with r set to 32, i.e., allowing for gaps of up to three pixels:

L351 ;�5;8� ;32�f�.

4. Wilson [39] independently introduced the related concept of shape
inference transform which is defined as a rank filter followed by a dilation
with the reflected SE (i.e., the intersection between the identity transform
and the shape inference transform leads to the rank-max opening).
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initializing the histogram arrays). In addition, the
total number of operations is independent of the
chosen slope. The processing time is data dependent
as already reported in [24] for the computation of the
median within a square window using a moving
histogram. However, this influence is negligible in
practice.

. Periodic moving histogram TI rank filter. The
complexity is O�1�, neglecting the k�inc� cst� dcr�
sorting steps for initializing the histogram arrays. As
with the recursive TI min/max filters, the computa-
tion time increases with k: There are kpixels coming in
and out between two successive positions of the
periodic image scan. An extra image for storing the
results is required. The number of histogram bins
depends on the number of gray-scale values of
the input image. As for the moving histogram
non-TI implementation, the processing time is slightly
data dependent.

In Fig. 7, a plot of CPU time versus SE length highlights

the computational complexity of all six algorithms. The

processed image is a 1; 024� 1; 024 input gray-scale image

representing a two-fractional Brownian motion of dimen-

sion 2.5 generated by the Fourier filtering method imple-

menting the pseudocode given in [44, p. 108] and with a

seed value equal to 1. The generated image has been

converted to unsigned char data type with values in the

range �0; 254� leaving the value 255 free for handling image

borders in the moving histogram implementation. Table 1

summarizes the merits and drawbacks of each algorithm. In

practice, the implementation choice must be driven by the

application constraints (trade-off between speed and

translation invariance). Also, it is important to realize that,

for small SE lengths, raw algorithms (i.e., O��� complexity)

may be faster than the corresponding algorithms with O�1�
complexity, the break-even point depending on the slope of

the SE (since it defines the periodicity k). When determining

the break-even points for two given implementations, one

should not forget that the length of a SE must be greater

than k because a discrete slope dx=dy is defined for line

segments having at least k� 1 pixels (k � max�jdxj; jdyj�). In

practice, we consider a SE length equal to at least twice the

periodicity of the underlying discrete line. For example,

Fig. 8 allows us to determine the break-even points between

raw and periodic moving histogram rank algorithms for

increasing values of k. For the raw TI algorithm, plots have

been produced for SE lengths equal to nk; n 2 f2; 3; 4g.
Note that for the algorithms based on moving histograms,

the CPU time is independent of the length of the SE.

Therefore, the break-even point moves in favor of the

periodic moving histogram algorithm when the length of

the SE increases. The moving histogram non-TI plot has also

been included to highlight that neither the periodicity nor

the length of the SE have an effect on the CPU time.
Finally, it is worth noting that the number of possible

slopes is finite but can be very large, the angular resolution

increasing with the length of the SE. More precisely, the

total number of distinct discrete slopes for dx and dy in the

integer range �ÿi; i� is given by 4 card�Fi� ÿ 4, where Fi is

the Farey sequence5 [45] of order i.

5 APPLICATIONS

We first emphasize the use of directional openings and

closings for image filtering and segmentation (Section 5.1).

We then concentrate on issues related to directional

granulometries (Section 5.2). Finally, we propose and

develop the concept of morphological orientation field

which allows for the computation of the local orientation of

the image structures at each pixel (Section 5.3).
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Fig. 7. Plot of CPU time versus length of the SE for a dilation with a slope
of 1=2 and a 1; 024� 1; 024 input gray-scale image of a fractional
Brownian motion with integer values in the range �0; 254�: comparison
between (top) raw TI, recursive non-TI, and recursive TI for min/max
filters, and (bottom) raw TI, moving histogram non-TI, and periodic
moving histogram TI rank filters. The programs were written in ANSI C
and run on an Intel P-II 450 MHz personal computer.

5. The Farey sequence Fi of order i � 1 is the ascending sequence of all
fractions p=q for which 0 � p=q � 1, q � i, and p and q are nonnegative
integers with no common divisors other than 1.
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5.1 Filtering and Segmentation

We believe that the proposed directional filters are useful in
a wide range of practical applications such as fingerprint
and fiber analysis, document interpretation (where thin
lines have to be tracked), industrial inspection (where
cracks, scratches, and other elongated defects have to be
detected), and satellite imagery for the detection of road
networks and lineaments. Low-level image filtering tasks
by directional morphological filters are illustrated in Fig. 9
on a binary image of fibers acquired by an electron probe
microanalyzer. Fig. 9 shows that the union of directional
TI openings of rank five by all discrete line segments of
15 pixels allows us to remove the noise and nonfibre objects
while preserving even those fibers containing gaps of up to
four pixels (and having at least a length of 11 pixels). A
TI implementation is important because fibers are so thin
that the output of the non-TI implementation varies
significantly when shifting the image definition domain.

A bank of directional openings and/or closings can also

be used for extracting long thin objects in an image. This

approach is illustrated in Fig. 10 for the extraction of bus-

like structures in a one meter resolution satellite image. The

first step of the methodology consists in filtering the input

image by removing all connected image structures smaller

than a bus. Assuming that a bus is a linear object of at least

12 pixels, this filtering is achieved by performing a union of

openings with all possible directional structuring elements

of length equal to 11 pixels. The output of this filter is used

as a marker image for a morphological reconstruction by

dilation of the input image (Fig. 10b). The same filter, but

with all possible directional structuring elements slightly

longer than buses (i.e., 15 pixels) is then considered

(Fig. 10c). By performing the difference between the second

and first filter, we obtain a strong response in regions where

linear structures in the range size of buses are present

(Fig. 10d). A mask of the detected buses is then obtained by

thresholding this image (Fig. 10e).
In addition to low-level directional image filtering tasks,

the proposed TI implementations allow for the computation
of directional granulometries and orientation fields. These
two higher-level image analysis tasks are detailed hereafter.

5.2 Directional Granulometries

The concept of granulometry [46], [47] is analogous to the
sifting of grains through screens of increasing mesh size. At
each step, the grains remaining in the sieve are those that
are larger than the mesh. The granulometry is depicted as a
diagram which plots the amount of remaining grains versus
the mesh size. The discrete derivative of this diagram is
often referred to as the pattern spectrum [48].

In mathematical terms, a granulometry is defined by a
transformation ÿ having a size parameter � and
satisfying the antiextensivity (ÿ � I), increasingness
(f � g) ÿ�f� � ÿ�g�), and absorption properties

ÿ�1
ÿ�2
� ÿ�2

ÿ�2
� ÿmax��1;�2�

ÿ �
:
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TABLE 1
Summary Table of Algorithms for Computing Min/Max Filters with a Line Segment of Length � (in Pixels) of

Slope in the Form of the Irreducible Fraction dy=dx and Periodicity k � max�jdxj; jdyj�

The raw algorithm refers to both min/max and rank filters. The memory usage is in number of image buffers necessary to run the algorithm.
a 2 pixels to process for updating histogram.
b 2k pixels to process for updating histogram.

Fig. 8. Break-even points between raw and periodic moving histograms
rank TI algorithms depending on the periodicity k of the underlying line
segment. The moving histogram non-TI algorithm plot has been
included for comparison purposes. The input 1; 024� 1; 024 image is
identical to that used for producing Fig. 7.
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Note that, for �1 � �2, the idempotence property is a
particular case of the absorption property. By definition,
the idempotence, antiextensivity, and increasingness proper-
ties characterize an opening transform. However, not all
openings with SEs of increasing size satisfy the absorption
property. For instance, it is not fulfilled when considering
line segments of increasing length (one pixel at a time) in
an arbitrary direction, even when considering the raw
TI approach. Indeed, the increase in length must occur
k pixels at a time, as already pointed out in [28]. However, by
considering the union of openings described in Section 3.2,
one can proceed one pixel at a time while satisfying all
axioms of a granulometry. The resulting directional granu-
lometry ÿ for a given slope dy=dx and size parameter � is then
defined as follows:

ÿ�;�dx;dy� �
_i�k
i�1

L�i;�dx;dy�: �12�

Early work concerning morphological directional gran-

ulometries for texture classification is due to [49]. Indeed,

they performed openings/closings with line segments of

variable length and along the principal directions of the

square grid. The texture signature was then defined as

the sum of the gray levels of the transformed image.

Equation (12) and the proposed TI algorithms allow for a

generalization of the procedure to arbitrary directions.
Note that, when considering rank-max directional open-

ings for building up granulometries, one has to be very

careful. Indeed, it can be shown that the absorption

property of a granulometry is not satisfied when using

partial line segments containing a fixed percentage of the

full line segment. However, when using the same r value

for the family of openings of increasing size, all axioms of a

granulometry are satisfied. The other side of the coin is that

the sensitivity to noise then increases with the length � of

the SE. This may hamper the sound interpretation of the

resulting granulometry.

5.3 Orientation Field

We propose to define the orientation at a given pixel x in an

image as the orientation of the line segment that minimizes

the difference between the gray-level value in the original

image at x and the gray-level value at the same location in

the image filtered by the considered line segment. There-

fore, we are interested in the local orientation of an

elongated image structure rather than the local direction

of the vector gradient as produced by Sobel-like operators.

Openings should be used for image structures that are

brighter than their background (i.e., ºpositiveª image

structures) and closings for image structures darker than

their background (i.e., ªnegativeº image structures). In

mathematical terms, we define the positive orientation at a

given image pixel x and for a given scale � as the

orientation of the directional morphological opening of

length � which modifies the least original image value at

position x. We denote the positive orientation by Dir�, the

negative orientation Dirÿ being defined by duality:

Dir�� �f��x� � f�i j L�;�i �f��x� � L�;�j �f��x�; 8 �i 6� �jg; �13�
Dirÿ� �f��x� � f�i j �L�;�i �f��x� � �L�;�j �f��x�; 8 �i 6� �jg: �14�

If all orientations output the same value, it means that there

is no orientation for the chosen structuring length. An

arbitrary orientation can then be selected because the

strength of the orientation (see below) will be zero.

However, for pixels belonging to wide (with respect to

the length � of the structuring element) oriented objects of

constant gray tone, several distinct orientations may output

the maximum value (we concentrate here on orientation by

openings Dir�; similar developments apply for the orienta-

tion by closings Dirÿ). Assuming that the range of

orientations at the maximum value is connected, we break

the tie by selecting the middle orientation. If the range is not

connected, it means that there are oriented structures

crossing each other. We then choose the main orientation

as the orientation of the middle of one of the connected

range of orientations producing the maximum value. If

required by the application under study, rather than

selecting a unique orientation, the positive (respectively,

negative) directional signature at a given pixel can be

analyzed by plotting the normalized opened (respectively,

closed) values versus the orientation of the line segment.

This signature can then be used to detect crossing lines, flat

zones, etc.
We also define the following quantities for each point x

of the input image f :
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Fig. 9. Filtering of images of fibers corrupted by electronic noise due to the acquisition device (microprobe). A union of directional rank-max openings

removes the noise and preserves most fibers. (a) 295� 164 image f of fibers. (b) Output image: _�L151 ;�
;11�f�.
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Max�� �f��x� � fL�;�i �f��x� j L�;�i �f��x�
� L�;�j �f��x�; 8 �i 6� �jg; �15�

Min�� �f��x� � fL�;�i �f��x� j L�;�i �f��x�
� L�;�j;��f��x�; 8 �i 6� �jg; �16�

Gdir�� �f��x� �Max�� �f��x� ÿMin�� �f��x�: �17�

Gdir�� can be interpreted as the strength of the positive

orientation: It will output a small value if there is no

predominant orientation for a structuring element length of

� pixels. Maxÿ� ;Minÿ� , and Gdirÿ� are defined by replacing

the opening with the closing in (15) and (16).
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Fig. 10. Extraction of bus-like structures appearing in a one meter resolution satellite image (IKONOS) using union of openings by line segments.

(a) Input satellite image (IKONOS) showing Piazza Venezia in Rome. (b) Union of openings by line segments slightly shorter than buses (followed by

reconstruction by dilation of original image). (c) Union of openings by line segments slightly longer than buses (followed by reconstruction by dilation

of original image). (d) Difference between image (b) and (c). (e) Global threshold of (d).
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When comparing the values ofGdir� andGdirÿ of a given

pixel, it is possible to detect whether it belongs to a positive or

negative image structure: positive, if Gdir� > Gdirÿ, nega-

tive, otherwise. We denote byGdir the point-wise maximum

between the images Gdir� and Gdirÿ:

Gdir � Gdir� _Gdirÿ:

The image of directions Dir is then defined as follows:

Dir��f��x� � Dir�� �f��x�; if Gdir��f��x� � Gdir�� �f��x�;
Dirÿ� �f��x�; otherwise:

�
�18�

A color representation of the local orientation information

is then simply achieved by equating the orientation
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Fig. 11. (a) An Input fingerprint f. (b) Dir��f�: Local orientation using openings (13), i.e., orientation of bright ridges. (c) Dirÿ�f�: Local orientation
using closings (13), i.e., orientation of dark ridges. (d) Dir�f�: Combination of both transformations (18) showing the local orientation of both dark
and bright oriented structures. The SE used in this experiment is a line segment of 21 pixels using the moving histogram TI implementation and a
rank of five for the corresponding rank-max openings and closings (i.e., r value of 17).
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information (i.e., either Dir�, Dirÿ, or Dir) to the hue and

the strength of the orientation information (i.e., either

Gdir�, Gdirÿ, or Gdir) to the lightness component of the

image, the colors being fully saturated in all cases. For

example, the color representations of all three types of local

orientation are illustrated in Fig. 11 on a fingerprint. A

comparative study with other techniques for computing

directional images of fingerprints such as the level curves

[50] used in [51] is outside the scope of this study.
A last example illustrating the better performance of

rank-max directional openings over plain directional open-

ings in situations where the input image is affected by some

type of noise is provided in Fig. 12. Fig. 12a displays a raw

image of multiphase materials acquired by an electron

probe microanalyzer. Since we are interested in measuring

the orientation of the bright fibers, we can restrict the

orientation analysis to the use of openings. Fig. 12b shows

the output using plain openings, while Fig. 12c with rank-

max openings using a value of 21 for r, i.e., a rank value of

five for the rightmost rank filter in (10). The latter image

provides more directional information because it allows for

gaps created by electronic noise during image acquisition.

6 EXTENSIONS

So far, we have focused on algorithms and applications

dealing with flat line segments. In this section, we show first

that two-dimensional structuring elements can be obtained

by cascading line segments. Second, we present some results

concerning the extension of the recursive algorithms for gray-

tone (nonflat) periodic line segments of constant gray slope.

6.1 Line Segment Cascades

Cascades leading to arbitrary oriented rectangles are first

proposed. Then, we describe a method for generating

discrete disks from cascades of periodic lines.

6.1.1 Leading to Arbitrary Rectangles

By cascading two erosions (respectively, dilations) with

vertical and horizontal line segments, one achieves erosions

(respectively, dilations) with square structuring elements:

utn � Ln;�1;0� � Ln;�0;1�; �19�
where utn is a square of width n pixels. It has long been

known that discrete diamond-shaped structuring elements

cannot be generated by cascading erosions (respectively,

dilations) with structuring elements at 45 and ÿ45 degrees.

Although logarithmic decompositions have been proposed

[52] for speeding up operations with diamond-shaped sets,

the following simple and efficient decomposition can be

used instead:

�n � Lnÿ1;�1;1� � Lnÿ1;�1;ÿ1� � �2; �20�
where �n is the diamond-shaped structuring element with a

side of n pixels (n � 2), i.e., �2 is the four-connected

neighborhood plus its central pixel. By definition, �1 is a

single pixel. An example is shown in Fig. 13. All these

decompositions substantially speed up operations for n

large enough (6 (respectively, 10) min/max comparisons

per pixel whatever the width n of the square (respectively,

diamond) when using the recursive algorithm instead of

O�n2� operations for the brute force algorithm). Note also

that cascades of erosions/dilations by �2 currently used for
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Fig. 12. Fiber orientation of a noisy image using directional openings: plain versus rank-max directional openings. (a) 300� 300 scanning
electron microprobe image of fibers. (b) Orientation field with directional plain openings: L251 ;�

. (c) Orientation field with directional rank-max
openings: L251 ;�;21

.

Fig. 13. Decomposition of a diamond-shaped structuring element with a

width of four pixels using (20).
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generating operations with diamond-shaped structuring

elements of larger size are not only less efficient than (20)

but also only lead to diamonds of odd width.

More generally, a discrete rectangle Rec of side lengths

in the form ak� 1 and bk� 1 and of arbitrary slope in the

form of an irreducible fraction dx=dy can be generated by

the following cascade:

Recak�1;bk�1;�dx;dy� �
Lki;�dx;dy� � Pa;�dx;dy� � Lki;�ÿdy;dx� � Pb;�ÿdy;dx� � �2;

�21�

where a and b are positive integers and k � max�jdxj; jdyj�.
In the following section, we concentrate on cascades

starting from periodic lines and leading to discrete disks.

6.1.2 Leading to Discrete Disks

In Euclidean morphology, Matheron [30, p. 94] has shown

that, for �1; �2; . . . �n distinct in �0; ��, k1; k2; . . . ; kn > 0, then

k1L�1
� k2L�2

� � � � � knL�n is a convex polygon of 2n sides

whose opposite edges are of length 2ki and have orientation

given by �i. Adams [53] used this principle for generating

disks (and spheres) of increasing size from cascades of

dilations by discrete Bresenham line segments. In [28], it has

been shown that cascades of periodic lines lead to better

results in the sense that the resulting disks are symmetric.

The approximation of a Euclidean disk (ball) B can be

written as follows: B � S~�;~v. However, no clue was given on

how to select the vector of sizes and the corresponding

vector of periodic lines. This can be achieved as follows:

Suppose we look for the best discrete approximation of a

Euclidean disk using cascades of line segments whose

Euclidean length equals l. We then consider all distinct

discrete slopes defined for this length and use the

corresponding periodic lines with the maximal number of

pixels so that the corresponding Euclidean line segment

does not exceed l. We denote by Bl the corresponding

approximation. For example, we have the following

cascades for the five first approximations:

B1 � P2;�1;0� � P2;�0;1�;

B ��
2
p � P2;�1;0� � P2;�0;1� � P2;�1;1� � P2;�1;ÿ1�;

B2 � P3;�1;0� � P3;�0;1� � P2;�1;1� � P2;�1;ÿ1�;

B ��
5
p � P3;�1;0� � P3;�0;1� � P2;�1;1� � P2;�1;ÿ1�

� P2;�2;1� � P2;�2;ÿ1� � P2;�1;2� � P2;�1;ÿ2�;

B2
��
2
p � P3;�1;0� � P3;�0;1� � P3;�1;1� � P3;�1;ÿ1�

� P2;�2;1� � P2;�2;ÿ1� � P2;�1;2� � P2;�1;ÿ2�:

Fig. 14 displays the eight first disks. Notice that, by

construction, these disks form a granulometry with size

parameter given by l. In contrast, radial decompositions using

Bresenham lines [53] cannot be used to generate a granulo-

metric function or do the disks obtained by thresholding the

Euclidean distance computed from a center pixel (the first

element would be �2 and the secondut3 but it is not opened by

the first, i.e., the absorption property is not satisfied).

6.2 Algorithm for Nonflat Line Segments of
Constant Gray-Tone Slope

The dilation of an image f with a gray-scale (also referred to

as volumic or nonflat) structuring element Bv is denoted by

�Bv
�f� and is defined as follows for each point x:

��Bv
�f���x� � max

b2Bv

ff�x� b� �Bv�b�g: �22�

The erosion is defined by duality with respect to set

complementation: �"Bv
�f���x� � minb2Bv

ff�x� b� ÿBv�b�g.
Gray-scale structuring elements should be used with

care because the corresponding erosions and dilations do

not commute with scalings of the pixel intensity values [54],
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Fig. 14. Radial decompositions of discrete disks of increasing size using cascades of dilations with periodic lines. Each disk is symmetric, convex

(see Section 3.1), and is opened by all disks of smaller size: Bi
�Bj� � Bj for all i � j (see text for the definition of each Bi).

Fig. 15. Gray-scale periodic structuring elements. (a) P3;�3;1�;ÿ1. (b)

P3;�1;1�;2. (c) P3;�2;ÿ1�;4.

Authorized licensed use limited to: Hugues Talbot. Downloaded on February 12, 2010 at 12:33 from IEEE Xplore.  Restrictions apply. 



[55]. Nevertheless, these structuring elements are useful for
some applications such as the rolling-ball algorithm and the
computation of shadows of an image seen as a topographic
surface [56].

We now show that the recursive procedure for comput-
ing min/max filters extends to gray-scale periodic structur-
ing elements, i.e., structuring elements whose domain of
definition is a periodic line and whose gray-scale values are
defined as the index of the point i in the periodic line
multiplied by a real number s defining the gray-scale slope:
P �i~v� � is; 8i 2 f0; 1; . . . ; nÿ 1g [57], [58] (see also related
developments in [59]). We denote by Pn;~v;s gray-scale
periodic structuring elements of gray-scale slope s. Exam-
ples of gray-scale periodic structuring elements are pre-
sented in Fig. 15.

The algorithm requires an additional buffer f 0. The values
of the input image are copied in this buffer which is
partitioned into blocks, as described in [9]. The periodic
structuring element is then positioned at the first pixel of each
block and the weights are added to each pixel of the block
whose intersection with the structuring element is nonempty.
The structuring element is then translated by one pixel to the
right and the procedure is repeated until a weight has been
added to all pixels of f 0 (there are kÿ 1 translations per block).
Once the values of the buffer f 0 have been calculated, the
buffers g and h are computed from the buffer f 0 using the
recursive procedure detailed in [9]. Finally, the resulting
value at each position equals the maximum value between the
value in the buffer h at the current position and the value in
the buffer g at the current position plus x� k�nÿ 1�.

However, in order to ensure that the same weights are used

for all positions, appropriate multiples of the slope smust be

added to g and subtracted from h beforehand. For clarity and

conciseness, we consider here the case of a connected periodic

line of n pixels (i.e., the periodicity k is equal to 1) with the

origin matching the first pixel of the periodic line (i.e., o � 0).

In this situation,x mod n times smust be removed fromh and

�nÿ 1� ÿ �x� nÿ 1� mod n times s must be added to g.

f 0�x� � f�x� � �x mod n�s

g�x� � f 0�x� if x mod n � 0;

max�g�xÿ 1�; f 0�x�� otherwise:

�
h�x� � f 0�x� if �x� 1� mod n � 0;

max�h�x� 1�; f 0�x�� otherwise:

�
r�x� � max�g�x� nÿ 1� � ��nÿ 1� ÿ �x� nÿ 1�mod n�s;

h�x� ÿ �x mod n�s�:
This algorithm adapts directly to nonunitary periodicities

(i.e., k > 1). An example is given in Fig. 16 for the

periodic line P3;�2;0�;s. For conciseness, we use a structur-

ing element of three pixels only. Since our algorithm

requires three max comparisons per pixel whatever the

number of pixels in the structuring element, speed gains

are obtained for longer structuring elements. In practice,

cascades of gray-scale line segments allow for the radial

decomposition of the hemispheres utilized in the rolling

ball algorithm as demonstrated in [53].
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Fig. 16. Recursive min/max filter with a gray-scale periodic structuring element P3;�2;0�;s (shaded origin). The structuring element is shown in (a) and

the schematic of the algorithm in (b).
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7 CONCLUSION AND PERSPECTIVES

The primary contribution of this paper was to show that
efficient algorithms for min/max and rank filters along line
segments are possible without sacrificing the translation
invariance property, while preserving the constant compu-
tational complexity of former non-TI algorithms. The
resulting superior performance in terms of invariance to
image translations is achieved at the cost of only a few extra
computations directly proportional to the periodicity
induced by the slope of the chosen SE.

Application examples have illustrated that the proposed
algorithms will be of interest for a wide range of problems
dealing with images containing oriented objects or textures
and in situations where translation invariance cannot be
compromised with speed. We are currently investigating the
use of orientation fields for texture segmentation/identifica-
tion and developing techniques for selecting the optimal
parameter values in the proposed directional transforma-
tions. The choice of the r value in the rank morphological
filters should be driven by the amount of noise corrupting the
local connectivity of the oriented image patterns. The
orientation resolution is constrained by the length of these
patterns and can be automatically determined from a multi-
scale approach, the scale being defined by the length � of the
line segments. Directional granulometries and the
corresponding pattern spectra will play a key role for
choosing the optimal scale.

All developments presented in this paper can be extended
to the processing of n-D images with line segments. The
principles are identical but the implementation is more
intricate especially with respect to the handling of the image
boundaries. This issue has already been pointed out in [60] for
the processing of 3D images along periodic lines.
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Abstract. This paper lays the theoretical foundations to path openings and closings.
The traditional morphological filter used for the analysis of linear structures in images is the union of openings

(or the intersection of closings) by linear segments. However structures in images are rarely strictly straight, and as
a result a more flexible approach is needed.

An extension to the idea of using straight line segments as structuring elements is to use constrained paths, i.e.
discrete, one-pixel thick successions of pixels oriented in a particular direction, but in general forming curved lines
rather than perfectly straight lines. However the number of such paths is prohibitive and the resulting algorithm by
simple composition is inefficient.

In this paper we propose a way to compute openings and closings over large numbers of constrained, oriented
paths in an efficient manner, suitable for building filters with applications to the analysis of oriented features, such
as for example texture.

Keywords: oriented features, algebraic morphological filters, flexible linear morphological filters

1. Introduction

Practitioners of mathematical morphology are famil-
iar with the importance of the structuring element
in morphological and algebraic openings and clos-
ings. In spite of the infinite variety of available
structuring elements, very few kinds of structuring
elements are used in practice outside of a few spe-
cialized applications. The unit ball structuring ele-
ments of the discrete grid (e.g.: diamond, square and
hexagon) define a first family of common structur-
ing elements, useful for basic filtering, granulometries,
etc.

∗This paper was written at CSIRO MIS while on leave from CWI.
†Author to whom all correspondence should be addressed.

Probably the second most used structuring element
family is generated by some instance of the discrete
line segment, which is used when linear and oriented
structures are present in an application [8]. This limited
choice can be at least partly blamed on the dearth of
truly efficient algorithms for more arbitrary structuring
elements [9].

However most structures in real-world images are
not perfectly straight, and therefore using line seg-
ments as structuring elements in openings and clos-
ings can be inadequate in the common situation where
there exist narrow, locally oriented features in an im-
age of interest. In this case one might be interested in
using structuring elements that are themselves narrow
and oriented, but not perfectly straight. Unfortunately
generating useful morphological filters in the usual way
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Figure 1. b1, b2, b3 are successors of a and a1, a2, a3 are the pre-
decessors of b.

by composition leads to computationally expensive and
impractical algorithms.

An earlier method for path-based filtering using mor-
phological ideas was devised by Vincent [10] and pro-
vided the inspiration for the early work on path open-
ings and closings. However Vincent’s filter is based on
local sums of pixels values whereas the path openings
and closings described in this paper are based on local
minima and maxima. Vincent’s filter therefore behaves
more like an oriented smoothing, and does not consti-
tute a morphological filter.

In this paper we introduce the concept of path open-
ings and closings, i.e. morphological filters that use
families of structuring elements consisting of variously
constrained paths, for which there exists algorithms as
efficient as those using the usual families of straight
line segments.

Path openings were originally proposed in [1] in
an algorithmic, practical but theoretically incomplete
manner. Here we are more concerned with laying down
the theoretical foundations of these useful filters.

2. Adjacencies, Dilations and Paths

2.1. Adjacencies

Let E be a given set of points representing pixel lo-
cations. Define a directed graph on these points via a

Figure 2. Directed graphs.

binary adjacency relation ‘ �→’. Specifically, x �→ y
means that that there is an edge going from x to y.
If x �→ y, we call y a successor of x and x a prede-
cessor of y. These concepts are illustrated in Fig. 1.
Here b1, b2, b3 are successors of a and a1, a2, a3 are
the predecessors of b.

The relation ‘ �→’ is, in general, neither reflexive nor
symmetric.1 We show some examples in Fig. 2.

Note that in the first three examples in Fig. 2, the
adjacency relation is periodic away from the borders.
The fact that we can choose any adjacency as a starting
point enables us to handle the border in a consistent
and flexible manner. Note also the following major dif-
ference between the adjacency relation in Fig. 2(a) and
(c) and the one in (b). In (a) and (c), the graph structure
is translation invariant with respect to any translation
(again away from the borders), whereas in (b), this is
only true if translation takes place over an even number
of rows. Rephrased in terms of the dilation (see next
subsection), this means that the structuring element is
different at odd and at even rows. We will briefly ad-
dress the issue of choosing the adjacency relation in
Section 9.

2.2. Dilations

Using the adjacency relation we have, for each point x ,
a set of its successors with respect to ‘ �→’. Denote this
by δ({x}). That is,

δ({x}) = {y ∈ E : x �→ y}.

This can be generalised to arbitrary subsets X of E as
follows:

δ(X ) = {y ∈ E : x �→ y for some x ∈ X} .

In other words, δ(X ) comprises all points which have
a predecessor in X . In similar fashion we define the set
δ̆(X ) as the set of points which have a successor in X .



Path Openings and Closings 109

The operators δ and δ̆ have the property that
δ(∪i Xi ) = ∪iδ(Xi ) for any sets Xi . This is the defin-
ing algebraic property of a dilation. Hence we refer to
these operators as dilations.

Here we have first provided the adjacency relation
‘ �→’ and defined the dilation in terms of ‘�→’. It is
straightforward to see that we might as well start with
any dilation δ onP(E) and define the adjacency relation
as

x �→ y if y ∈ δ({x}).

Both approaches are equivalent and it is a matter of
taste which one is taken.

2.3. Paths

The L-tuple a = (a1, a2, . . . , aL ) is called a path of
length L if ak �→ ak+1, or equivalently, if

ak+1 ∈ δ({ak}) , for k = 1, 2, . . . , L − 1.

Henceforth we refer to such a path as a δ-path of length
L . It is evident that a = (a1, a2, . . . , aL ) is δ-path if
and only if the reverse path ă = (aL , aL−1, . . . , a1) is a
δ̆-path and obviously, both paths have the same length
L . We denote the set of all δ-paths of length L by �L

and the set of all δ̆-paths of length L by �̆L . Given a
path a in E , we denote by σ (a) the set of its elements:

σ (a1, a2, . . . , aL ) = {a1, a2, . . . , aL} .

The set of δ-paths of length L contained in a subset X
of E is denoted by �L (X ), i.e.,

�L (X ) = {a ∈ �L : σ (a) ⊆ X}

and the δ̆-paths of length L in X by �̆L (X ).

3. Path Opening

We define the set aL (X ) as the union of all δ-paths of
length L contained in X :

αL (X ) =
⋃

{σ (a) : a ∈ �L (X )} .

It is not difficult to establish that the operator αL

has the algebraic properties of an opening, specifically

increasingness, anti-extensivity and idempotence, and
we call it the path opening.

Moreover in the cases of the usual periodic adja-
cencies, αL is the supremum of morphological open-
ings by a certain class of structuring elements, and the
number of structuring elements in this class grows ex-
ponentially with L . For example, for an unbounded
domain and the adjacency shown in Fig. 1(a), there
are 3L−1 paths of length L beginning from any point.
None of these is a translation of another, and hence
as structuring elements for morphological openings
or closings they are distinct. The path opening aL

can be shown to be the supremum of morphological
openings by all of these 3L−1 structuring elements.
In Section 4 we demonstrate how this opening may
be computed with cost which grows linearly with L ,
even though the number of structuring elements im-
plicitly involved grows exponentially with L . This is
analogous to dynamic programming algorithms for
shortest-paths in which the minimal path from an ex-
ponential collection of paths is computed in linear
time.

We can define the reciprocal path opening ᾰL (X ) in
a similar way. Since a ∈ �L (X ) iff ă ∈ �̆L (X ) and
σ (a) = σ (ă) we get immediately that

αL = ᾰL .

It is obvious that α1 = id. We can show that that

αL+1 ≤ αL for L ≥ 1.

To prove this, assume that x ∈ αL+1(X ). Thus there
is a δ-path (a1, a2, . . . , αL+1) of length L + 1 which
contains x and lies inside X . But then both δ-paths
(a1, a2, . . . , aL ) and (a2, a3, . . . , aL+1) of length L lie
inside X and at least one of them must contain the point
x . This proves that x ∈ αL (X ), too. In Fig. 3 we show
an example of a path opening where L = 6.

4. Computation of the Path Opening

In this section we define “first-point sets”, ψk(X ) and
derive relationships between these and the opened
sets αL (X ) which allow feasible computation of path
openings.

4.1. Path Decomposition

By definition, x ∈ αL (X ) iff there exists a δ-path a ∈
�L (X ) that contains x , i.e., x = ak for some k between



110 Heijmans, Buckley and Talbol

Figure 3. A set X ⊆ E (black points at the left) and its opening a6(X ) (black points at the right). Unfilled points at the right have been
discarded. Adjacency graph is in light grey and identical to that of Fig. 2a.

1 and L . In that case we have

(a1, a2, . . . , ak−1, x) ∈ �k(X ) and
(1)

(x, ak+1, . . . , aL ) ∈ �L−k+1(X ).

The first condition can be rewritten as

(x, ak−1, ak−2, . . . , a1) ∈ �̆k(X ). (2)

We define the operator ψk as

ψk(X ) = {a1 : a ∈ �k(X )},

that is, ψk(X ) contains the first point of every δ-path of
length k in X . The operator ψ̆k is defined analogously.
Obviously, ψ1 = ψ̆1 = id.

Now the first condition in (1), which is equivalent
to (2), can be written as x ∈ ψ̆k(X ), and the second
condition can be written as x ∈ ψL−k+1(X ). Combined,
they give

x ∈ ψ̆k(X ) ∩ ψL−k+1(X ) for some k.

By taking the supremum over all the k, this is equiv-
alent to

αL (X ) ⊆
L⋃

k=1

(ψ̆k(X ) ∩ ψL−k+1(X ))

By definition of ψ̆k and ψk , the union of all of these
contains the union of all the paths of length L contained
in X . By definition of αL we have:

L⋃

k=1

(ψ̆k(X ) ∩ ψL−k+1(X )) ⊆ αL (X ).

Using the complete lattice notation, we have shown
that

aL =
L∨

k=1

(ψ̆k ∧ ψL−k+1). (3)

Note that a2 = id ∧ (δ ∨ δ̆), which is known in the
literature as the annular opening [2, 6].

Finally we note that the semi-group property

ψkψl = ψk+l−1

holds for all k, l ≥ 1. The proof of this is straightfor-
ward.

4.2. Recursive Structure of the Operators ψk

We will prove below that the following relations hold:

ψk+1 = id ∧ δ̆ψk and ψ̆k+1 = id ∧ δψ̆k . (4)

The decomposition of aL in (3) together with the it-
erative formulas in (4) provide an efficient algorithm
for the computation of the path opening aL . As shown
in Algorithm 1, we compute the path opening αL (X )
given the set X and dilation operators δ and δ̆. If we
have a finite domain E of size N then unions and in-
tersections can be computed in O(N ) operations. For
simple periodic adjacencies such as those in Fig. 2(a)–
(c), the dilations δ and δ̆ can also be computed in O(N )
operations. This gives a total cost for Algorithm 1 of
O(L N ) for both operations and memory.
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Algorithm 1 (Binary Path-Opening).

// Recursive computation of Yk = ψk(X ) and
// Y̆k = ψ̆k(X ) using Eq. (4)
Y1 = Y̆1 = X
for k = 1 to L − 1

Yk+1 = X ∩ δ̆(Yk)
Y̆k+1 = X ∩ δ(Y̆k)

end

// Construction of opening AL = αL (X ) using Eq. (3)
AL = ∅
for k = 1 to L

AL = AL ∪ (Yk ∩ Y̆L−1+k)
end

We will prove only the first identity in (4) as the sec-
ond is nothing but its reciprocal version. To prove ‘≤’
assume that x ∈ ψk+1(X ). This means that there exist
a2, . . . , ak+1 such that (x, a2, . . . , ak+1) ∈ �k+1(X ).
Now (a2, . . . , ak+1) ∈ �k(X ) and x ∈ δ̆({a2}). Since
a2 ∈ ψk(X ) this yields that x ∈ δ̆(ψk(X )), and we
conclude that x ∈ X ∩ δ̆(ψk(X )).

To prove ‘≥’, let x ∈ (id ∧ δ̆ψk)(X ), i.e., x ∈ X and
x ∈ δ̆({y}) with y ∈ ψk(X ). The latter means that there
exist a2, . . . , ak such that (y, a2, . . . , ak) ∈ �k(X ).
Now (x, y, a2, . . . , ak) ∈ �k+1(X ), which yields that
x ∈ ψk+1(X ).

The path opening αL depends strongly upon the di-
lation, or equivalently, the adjacency relation. This is
clearly seen in Fig. 4 where we have computed the
opening α5(X ) of a set X for three different adjacen-
cies. A union of openings is an opening [5], there-
fore we can, for example, take the union of the first
two openings in Fig. 4, i.e., two figures in the mid-
dle, to get an opening that allows both horizontal
and vertical oriented paths. Note however, that this is
not the same as combining both adjacencies into one
and computing the opening with respect to this new
adjacency.

Figure 4. A set X ⊆ E (left) and its opening α5(X ) for three different adjacencies.

5. Opening Transform

Often, we are interested in all openings αL (X ) of a set
X for a range of values of L rather than for a single
value only. For example, it is quite common that we do
not know beforehand which L to choose in a particular
application. In such cases it may be more efficient to
compute the so-called opening transform of the image.
Given a set X ⊆ E and an ordered family of openings
A = {αL}, the opening transform AX of X with respect
to A is a function mapping the domain E into Z+ =
{0, 1, 2, . . .} such that its threshold sets correspond with
the various openings αL (X ): see (6) below for an exact
formulation.

Throughout this section we assume that there exist
only finite acyclic paths. More precisely we assume that
there exists an integer N ≥ 1 such that δN ({x}) = ∅, for
every x ∈ E , i.e., δN (E) = ∅. Note, however, that this
assumption does not necessarily mean that E is finite.
Furthermore, we take N to be the smallest integer with
this property. Thus the maximal length of a path in E is
N . Define λ(x) as the maximal length of a δ-path with
begin-point x :

λ(x) = max{L ≥ 1 : ∃ a ∈ �L such that a1 = x}
= max{L ≥ 1 : x ∈ δ̆L−1(E)}.

Obviously, if x �→ y then λ(x) ≥ λ(y) + 1. Moreover,
it is not difficult to prove that

λ(x) = 1 + max{λ(y) : x �→ y},
where the maximum is taken to be zero if x has no
successors. Similarly λ̆(x) is the maximal length of a
path with endpoint x . Then

�(x) = λ(x) + λ̆(x) − 1, (5)

is the length of the longest path that contains x .
This is a direct consequence of Eqs. (1) and (2).
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Define the disjoint partition E1, E2, . . . , EN of E by

EL = {x ∈ E : λ(x) = L}.

Similarly ĔL is defined with λ̆ instead of λ. In the
figures at the left in Fig. 5 we depict this partition
for two different adjacency relations; here the ar-
rows indicate the relation x �→ y. Note that EL and
ĔL can be computed easily via a distance transform
algorithm.

Now we define a function FX : E → Z+ by means of
Algorithm 2 which resembles a geodesic propagation
algorithm.

Algorithm 2.

FX = 0 on E // Initialisation
for k = 1 to N

for x ∈ Ek ∩ X
FX (x) = 1 + max{FX (y) | y �→ x}

end
end

The second column of Fig. 5 shows the function FX

for a given image X (grey pixels). In a similar way we
can define F̆X by using the partition Ĕ1, Ĕ2, . . . , ĔN .

The following lemma shows that ψk(X ) can be ob-
tained by thresholding of FX .

Figure 5. Computation of the opening transform for two different adjacencies indicated by the arrows in the first column, which also shows
the partition of E . The second and third columns depict the functions FX and F̆X for the set X represented by the grey pixels. The right column
shows the opening transform AX and the opened set α5(X ) represented by the pixels with the thick boundaries.

Lemma 5.1. With the definitions given before we
have

ψk(X ) = {x ∈ E : FX (x) ≥ k} and

ψ̆k(X ) = {x ∈ E : F̆X (x) ≥ k},

for k = 1, 2, . . . , N.

Proof: Let x ∈ Ek and suppose that FX (x) = l.
Obviously, l ≤ k and there must exist a δ-path x =
a1, a2, . . . , al in �l(X ) such that ai ∈ Ek−i+1 and
FX (ai ) = l − i + 1. This implies that x ∈ ψl(X ).
Conversely, if x ∈ ψl(X ), then there is a path x =
a1, a2, . . . , al in �l(X ). Now if x ∈ Ek , where k ≥ l,
then ai ∈ Ek−i+1 and FX (ai ) = l − i + 1.

This lemma can be used to prove the following result.

Proposition 5.2. The function AX = FX + F̆X − 1 is
the opening transform of X, that is

αL (X ) = {x ∈ E : AX (x) ≥ L}, (6)

for every L ≥ 1 and X ⊆ E.

Proof: We use the expression for αL in (3) which says
that x ∈ αL (X ) implies that x ∈ ψk(X ) ∩ ψ̆ L−k+1(X )
for some k = 1, 2, . . . , L . Therefore, FX (x) ≥ k and
F̆X (x) ≥ L − k + 1, which yields that AX (x) ≥ L .



Path Openings and Closings 113

This proves ‘⊆’ in (6). The converse is proved
similarly.

In Fig. 5, the algorithm for the opening transform
is shown for two different adjacencies, namely (a) and
(c) in Fig. 2.

6. Border Issues

Throughout this section, E will be a finite rectangular
window within Z2, and the adjacency on E is the restric-
tion of a periodic adjacency on Z2 like in Fig. 2 (a)–(c).
The inward boundary of E , denoted by ∂ E , is the set
of points in E which have a predecessor outside E :

∂ E = {x ∈ E : ∃ y ∈ Ec such that y �→ x},

where Ec is the complement of E . The outward bound-
ary of E , denoted by ∂̆ E , is given by

∂̆ E = {x ∈ E : ∃ y ∈ Ec such that x �→ y},

There are various ways to deal with the border problem:

(a) We can simply ignore the existence of the borders
and treat paths that contain boundary points in the
same way as any other path. In fact, this is the
choice that we have implicitly made so far.

(b) The other extreme is to set the length of a path
that crosses the border to +∞, meaning that all
points on such a path are contained in every opening
αL (X ). In fact, this choice means that we extend X
outside E by adding all points in Ec.

(c) An intermediate option is to try to compensate for
the points cut off by restricting to a finite win-
dow: we replace the computed length L of a path
that has a begin-point in ∂ E or an endpoint in

Figure 6. Opening α6(X ) of set X (left) according to option (a) (middle) and (d) (right).

∂̆ E by h(L). One possible choice for h would
be h(L) = 2L . Such a choice could be justified
by the presumption that on average only half of
the path falls inside the window. Another possi-
bility is to add a fixed compensation to the length
of a border-crossing path, i.e., h(L) = L + L0.
Note, that one might use different compensation
functions for paths that start on ∂ E and end on
∂̆ E .

(d) A possibility which is easy to implement is to en-
large the window E with a border B of thickness
L0. Denote by α′

L the corresponding path opening
on P(E ′), where E ′ = E ∪ B denotes the enlarged
window. Thus we can compute α′

L according to the
algorithm given in the previous sections. Define the
opening αL on P(E) by

αL (X ) = α′
L (X ∪ B) ∩ E .

In Fig. 6 we show that in this case, two paths which
were originally disjoint may considered to be part
of the same path which lies partially outside the
window.

7. Incomplete Path Openings

7.1. Motivation

In practical applications, to increase the discriminatory
power of path openings one might need to increase
L . However as L increases so does the probability of
any path containing noise. To increase the robustness
and flexibility of path openings, it is useful to allow a
limited number of noise pixels to be ignored. This is
the basic idea behind rank-max openings [4], which
have been proven to work well in filtering applica-
tions [3], in particular with line structuring elements
[8].
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7.2. Framework

The path opening αL (X ) of a set X comprises the union
of all length-L paths contained inside X . We can relax
this condition by allowing up to k vertices to be outside
X . That is, we demand that at least L − k out of L
vertices of the path must lie inside X . This yields a
so-called incomplete path opening αk

L (X ). We present
a formal definition below.

Define �k
L (X ) as the collection of length-L paths in

E which contain at most k points outside X :

�k
L (X ) = {a ∈ �L : |σ (a) ∩ Xc| ≤ k}.

Note that this definition only makes sense for 0 ≤ k ≤
L , and that

�L (X ) = �0
L (X ) ⊆ �1

L (X ) ⊆ · · · ⊆ �L−1
L (X )

⊆ �L
L (X ) = �L .

For 0 ≤ k ≤ L − 1 define the incomplete path opening

αk
L (X ) =

⋃ {
σ (a) ∩ X : a ∈ �k

L (X )
}
.

It is obvious that

α0
L ≤ α1

L ≤ · · · ≤ αL−1
L ,

that α0
L = αL and

αL−1
L (X ) = {x ∈ X : �(x) ≥ L},

where �(x) was defined in (5). Putting

ĒL = {x ∈ E : �(x) ≥ L},

we get that

αL−1
L (X ) = X ∩ ĒL .

Furthermore, for 0 ≤ k ≤ L we define

ψk
L (X ) = {

a1 : a ∈ �k
L (X )

}
.

We have ψ0
L = ψL and

ψ L
L (X ) = {x ∈ E : λ̆(x) ≥ L} =

⋃

k≥L

Ĕk .

Note that ψk
L is defined for 0 ≤ k ≤ L while αk

L is
defined only for 0 ≤ k ≤ L − 1.

We will now express ψk+1
L+1 in terms of ψk+1

L and
ψk

L . Observe that x ∈ ψk+1
L+1(X ) if there exists a =

(a1, . . . , aL ) such that (x, a1, . . . , aL ) ∈ �L+1 and ei-
ther x ∈ X and a ∈ ψk+1

L (X ) or a ∈ ψk
L (X ). We have

shown that

ψk+1
L+1 = (

id ∧ δ̆ψk+1
L

) ∨ δ̆ψk
L . (7)

This equation holds for k = 0, 1, . . . , L −1. If we take
ψ−1

L to be the empty set, then the equation holds also
for k = −1, and in fact reduces to (4).

We now derive a more general form of (3). Consider
a point x ∈ αk

L (X ), where 0 ≤ k ≤ L − 1. Thus x ∈ X
and there is a path a ∈ �L with x ∈ σ (a) such that
|σ (a) ∩ Xc| ≤ k. Assume that al = x . Now a is the
concatenation of the sequences b = (a1, . . . , al−1, x)
and c = (x, al+1, . . . , aL ). Define j = |σ (b) ∩ Xc|
which implies |σ (c) ∩ Xc| ≤ k − j . We conclude that

x ∈ ψ̆
j
l (X ) ∩ ψ

k− j
L−l+1(X ).

Since the length of b is l and x ∈ X we have 0 ≤ j ≤
l − 1. Similarly since the length of c is L + 1 − l we
have 0 ≤ k − j ≤ L − l. Together these imply that
0 ≤ j ≤ k and

j + 1 ≤ l ≤ L + j − k

and we conclude that

αk
L = id ∧

k∨

j=0

L+ j−k∨

l= j+1

(
ψ̆

j
l ∧ ψ

k− j
L−l+1

)
(8)

for 0 ≤ k ≤ L−1. Observe that this expression reduces
to the one in (3) if k = 0.

The following is an algorithm for computation of
the incomplete path opening. The computational cost
for this algorithm is O(kL N ), with N the number of
elements in space E .

Algorithm 3 (Incomplete Binary Path-Opening).

// Initialisation of bottom rows ( j = 0) and diagonals
( j = l)

// of arrays Y j
l = ψ

j
l (X ) and Y̆ j

l = ψ̆
j
l (X ).

// Remainder of arrays Y j
l and Y̆ j

l .
// Using Eq. (7).
for j = 0 to k − 1
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for l = j to L + j − k − 1
Y j+1

l+1 = (
X ∩ δ̆Y j+1

l

) ∪ δ̆Y j
l

Y̆ j+1
l+1 = (

X ∩ δY̆ j+1
l

) ∪ δY̆ j
l

end
end
// Construction of incomplete opening Ak

L = αk
L (X )

// Using Eq. (8).
Ak

L = ∅
for j = 0 to k

for l = j + 1 to L + j − k
Ak

L = Ak
L ∪ (

Y j
l ∩ Y̆ k− j

L−l+1

)

end
end
Ak

L = Ak
L ∩ X

7.3. Illustration

Figure 7 is a real example of the use of incomplete
path openings in the binary case. In this image we
have a thin glass fibre observed under an electron
microscope with some noise present. A normal (i.e.

Figure 7. Glass fibre electron micrograph (a) and a threshold (b). Comparison between complete (c) and incomplete (d) path opening. With
the incomplete path opening more of the fibre is retained.

complete) path opening deletes most of the noise to-
gether with the middle part of the fibre. An incomplete
path opening with a small tolerance still deletes most
of the noise while keeping the middle part of the fibre
untouched.

The result of an incomplete path closing in the grey-
level case is shown on Fig. 8(e) and discussed in the
final section.

8. The Grey-Scale Case

In this section we extend the results developed in
the previous sections to the grey-scale case, with
the exception of the opening transform which is not
defined in the grey-scale case to the best of our
knowledge.

First we define the grey-scale analogue, �t
L (I ), of

the path collection �L (X ). This involves an additional
parameter t representing the grey-level of the path:

�t
L (I ) = {a ∈ �L : I (ak) ≥ t, k = 1, 2, . . . , L}
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Figure 8. Example of path closing compared with closing with segments and area closing.
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where
It is easy to see that

�t
L (I ) = �L (Xt (I ))

where

Xt (I ) = {x ∈ E : I (X ) ≥ t}

is the level set of I at value t . Let 	k be the flat extension
of ψk defined by means of the level set construction,
and let AL be the flat extension of αL .

For a domain E and range T define Fun(E, T ) = T E

to be the space of grey-level functions from E to T .

Proposition 8.1. The operator 	k and the opening
AL on Fun(E, T ) are, respectively, given by

	k(I )(x) = max{t ∈ T : (x, a2, . . . , ak) ∈ �t
k(I )

for some a2, . . . , ak ∈ E}
AL (I )(x) = max{t ∈ T : x ∈ σ (a)

for some a ∈ �t
L (I )}

From the theory on flat function operators [2] we
know that the expressions in (3) and (4) carry over
immediately to the function case. Therefore the grey-
scale opening AL (I ) of an image I may be computed by
an algorithm which is a straightforward generalisation
of Algorithm 1. Specifically, in Algorithm 1 we replace
X by I , ∅ by −∞, ∪ by ∨, ∩ by ∧ and the dilations δ

and δ̆ by their flat extensions.

9. Example

Figure 8 is an example of path closing compared with
other methods. We chose to illustrate with a clos-
ing rather than an opening because of the better con-
trast in the printing process, but the same conclu-
sions would apply to both. The parameter choices
for each operation cannot be made strictly identi-
cal, we chose them so that the outputs would be
comparable.

Figure 8(a) is the grey-level original 500 × 160 im-
age. This is an image of DNA (the long thin structure)
observed in a scanning electron microscope. The ob-
jective is to separate the DNA from the noisy back-
ground, and we use various closings as pre-processing
filters.

Figure 8(b) is the result of applying a closing by
intersection of 44 segments of length 23 pixels, each in
a different direction, approximately uniformly oriented
(subject to the digital grid). As can be seen, after the
application of this closing the background is mostly
suppressed, but so is some of the DNA.

Figure 8(c) is a path closing with path length of
33 pixels, the specific form of which is given below.
While this is longer than that of the straight segments
family in (b), the shape and contrast of the DNA is
well preserved, while the background is substantially
suppressed.

Figure 8(d) is an area closing with parameter 50
square pixels. The DNA is well preserved as in (c)
but the background is not as effectively filtered out.

Figure 8(e) is an incomplete path-closing with path
length 33 and tolerance 2. This allows more of the DNA
to be preserved, however the result is that some of the
noise close to the DNA is not filtered out.

As can be seen, the path closing (c) was able to better
preserve the shape of the object of interest than the
closing with segments, while removing more of the
unwanted background than the area closing, which was
the intended behaviour.

To produce the closing shown in Fig. 8(c), four clos-
ings were computed using the grey-scale form of Al-
gorithm 1. The pixelwise minimum of these was then
obtained, giving a final result which is still therefore
a closing. In the first two instances, the adjacency
graphs were those of Fig. 2(a) and (c)—that is, ad-
jacencies directed towards the north and north-east re-
spectively. The other two closings were those based
on similar adjacencies directed towards the east and
south-east.

The result of this combination was to choose a fam-
ily of paths such that at each point the entirety of the
path was contained in a 90 degree angle double-ended
cone, either vertically or diagonally. In some sense this
captures the idea of a family of oriented, but flexible
structuring elements. It is of course possible to modify
the adjacency graphs in order to constrain these paths
more or less.

10. Conclusions

In this paper we have explored the theory of path open-
ings and closings on binary and grey-level images. Path
openings are openings over a large number of con-
nected or disconnected paths, which extend the use-
ful notions of openings by unions of line segments by
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allowing the use of oriented, narrow but non-straight
segments as a family of structuring elements. Because
of the oriented nature of the family of structuring el-
ements used, the resulting operators are more con-
strained than area openings.

Path openings and closings essentially allow prac-
titioners to close the gap between openings by line
segments (which are constrained and anisotropic) and
area openings (which are unconstrained and isotropic).
The framework developed in this paper allows for paths
which behave more closely like one or the other, by
varying the adjacency relation.

We have developed a workable solution for such path
openings with low complexity, which makes the com-
putation of such paths practical.

Finally we have explored the questions of how to
deal with border effects, how to compute path opening
transforms (only in the binary case) and how to extend
path openings to incomplete paths, which could provide
a degree of robustness against noise.

Note

1. ‘Reflexive’ would mean that x �→ x for every x ∈ E . ‘Symmetric’
would mean that x �→ y iff y �→ x , for every x, y ∈ E .
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1 Introduction

Quantization is a fundamental task in digital image process-
ing and information theory [1]. It plays a prominent role in
early processing stages such as image digitization, and it is
essential in lossy coding. It bears close resemblance to high
level tasks such as denoising, segmentation, and data clas-
sification. In particular, quantizing a grey scale image in Q

levels can be viewed as a classification or segmentation of
the image in Q areas following an intensity homogeneity
criterion. Each segmented area then corresponds to a deci-
sion class of the quantizer.

A classical solution for designing an optimal quantizer of
a monochrome image is provided by the celebrated Lloyd-
Max (LM) algorithm [2, 3]. An extension to the general
vector case is the Linde–Buzo–Gray (LBG) algorithm [4].
The LBG algorithm proceeds iteratively by alternatively op-
timizing codevectors and decision classes so as to minimize
a flexible quantization error measure. It is known to present
good convergence properties in practice [5, 6]. However, one
drawback is the lack of spatial regularity of the quantized
image. Spatially smooth properties may be useful in low-
rate compression when using advanced coding algorithms
(e.g based on run length, differential or multi-resolution
techniques), especially in the context of medical and low
bit-rate video compression applications like compression of
confocal laser scanning microscopy image sequences [7] or
mobile television [8]. It may also be of interest for quantiz-
ing images featuring noise. In the latter case, quantization
can be viewed as a means for denoising discrete-valued im-
ages that are piecewise constant.

Since the LBG algorithm is closely related to K-means,
which are widely used in data classification, a possibility to
enforce spatial smoothness of the quantized image would be
to resort to fuzzy C-means clustering techniques and their
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extensions [9]. These algorithms are however based on lo-
cal measures of smoothness. Furthermore, an interesting ap-
proach was proposed by Alvarez et al. [10]. However, this
method is based on reaction-diffusion PDEs and it addresses
the quantization of grey-scale images, while our approach is
more general and applicable to multicomponent images.

In this paper, we propose a quantization method that en-
forces some global spatial smoothness. This is achieved by
introducing an adjustable regularization term in the mini-
mization criterion, in addition to a quantization error mea-
sure. Similarly to the LBG algorithm, the optimal design of
the quantizer is performed iteratively by alternating the min-
imization of a label field iP and of a codebook r . The lat-
ter minimization reduces to a convex optimization problem
whereas the former is carried out by efficient combinatorial
optimization techniques.

Section 2 describes the background of the work and in-
troduces the notation used throughout the paper. The consid-
ered regularization approach is formulated in Sect. 3. Sec-
tion 4 describes the proposed quantizer design algorithm.
Section 5 provides more details on the combinatorial opti-
mization step. Finally, some simulation results are provided
in Sect. 6 both for grey scale and color images to show the
effectiveness of the proposed quantization method before a
conclusion is drawn in Sect. 7.

2 Background

We consider the vector quantization of a multichannel image
f = (f (n,m))(n,m)∈V where V = {1, . . . ,N} × {1, . . . ,M}
is the image support and, for every (n,m) ∈ V,

f (n,m) = (
f1(n,m), . . . , fD(n,m)

)� ∈ RD. (1)

A similar notation will be used for the D-channel fields
defined throughout the paper. Example of such multivari-
ate data are complex-valued images (D = 2), color images
(D = 3), multispectral images (D usually less than 10), hy-
perspectral images (D usually more than 10), . . . . In the
following, the vector quantizer will operate on each D-
dimensional vector of pixel values. The case when D = 1
corresponds to a scalar quantization of a monochannel im-
age.

In order to define such a vector quantizer, we intro-
duce the following variables: Q is a stricly positive inte-
ger, P = (Dk)1≤k≤Q is a partition of V and r = (r1, . . . , rQ)

is a matrix belonging to a nonempty closed convex sub-
set C of RD×Q. The role of this constraint set will be
made more explicit in the next sections. The partition P
can be characterized by the label image (iP (n,m))(n,m)∈V ∈
{1, . . . ,Q}N×M , defined as: for every (n,m) ∈ V and k ∈
{1, . . . ,Q},
iP (n,m) = k ⇔ (n,m) ∈ Dk. (2)

A vector quantized image over Q codevectors r1, . . . , rQ

and associated with the partition P is then given by

qiP ,r = (riP (n,m))(n,m)∈V ∈ {r1, . . . , rQ}N×M. (3)

A numerical example is given below to better explain the
relation between variables Q, r , iP and qiP ,r , which play
a prominent role in the rest of the paper. For instance, if a
quantization over 2 bits of a 3 × 3 monochannel image is
performed, we have N = M = 3, D = 1, Q = 4, and we

may have r = (1,4,9,10) and iP =
[

1 2 3
1 4 1
3 2 3

]
, then qiP ,r =

[
1 4 9
1 10 1
9 4 9

]
. Note that the iP matrix values belong to the set

{1,2,3,4} which correspond to the set of labels and qiP ,r

matrix values belong to r .
An “optimally” quantized image qiP ,r of f is usually ob-

tained by looking for (iP , r) ∈ {1, . . . ,Q}N×M ×C solution
to the following problem:

minimize
(iP ,r)∈{1,...,Q}N×M×C

�(qiP ,r , f ) (4)

where �: (RD)N×M × (RD)N×M → ]−∞,+∞] is some
measure of the quantization error.

Standard choices for � are separable functions of the
form

(∀g = (g(n,m))(n,m)∈V ∈ (RD)N×M
)

�(g,f ) =
N∑

n=1

M∑

m=1

ϕn,m

(
g(n,m),f (n,m)

)
(5)

where, for every (n,m) ∈ {1, . . . ,N} × {1, . . . ,M},
ϕn,m: RD × RD → ]−∞,+∞]. For example, one can use:

– the matrix weighted quadratic norm

ϕn,m

(
g(n,m),f (n,m)

) = ∥∥g(n,m) − f (n,m)
∥∥2

�n,m
(6)

where �n,m ∈ RD×D is a symmetric definite positive ma-
trix and we have used the notation

(∀a ∈ RD) ‖a‖�n,m = (a��n,ma)1/2; (7)

– the weighted �p norm measure (p ∈ [1,+∞[)

ϕn,m

(
g(n,m),f (n,m)

)

=
D∑

d=1

ωd(n,m)|gd(n,m) − fd(n,m)|p (8)

where ωd(n,m) ∈ [0,+∞[. As a special case, a mean ab-
solute error criterion is found when p = 1.
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– the generalized Kullback-Leibler divergence

ϕn,m

(
g(n,m),f (n,m)

) =
D∑

d=1

κ
(
gd(n,m),fd(n,m)

)
(9)

where
(∀(u, v) ∈ R2)

κ(u, v) =

⎧
⎪⎨

⎪⎩

−v ln(u/v) + u − v

if (u, v) ∈ ]0,+∞[2,

u if u ∈ [0,+∞[ and v = 0,

+∞ otherwise.

(10)

Maximum error measures may also be useful, which are ex-
pressed as

(∀g = (g(n,m))(n,m)∈V ∈ (RD)N×M
)

�(g,f ) = max
1≤n≤N
1≤m≤M

ϕn,m

(
g(n,m),f (n,m)

)
(11)

where, for every (n,m) ∈ V, ϕn,m: RD ×RD → ]−∞,+∞].
For example, we can use the sup norm:

ϕn,m

(
g(n,m),f (n,m)

) = max
1≤d≤D

|gd(n,m) − fd(n,m)|.
(12)

In this context, a numerical solution to problem (4) when
C = RD×Q is provided by the LBG algorithm, the general
form of which is recalled below.

Algorithm 1 (LBG Algorithm)

Fix Q ∈ N∗ and r(0) ∈ RD×Q.
For � = 0,1, . . .⌊

i
(�)

P ∈ ArgminiP∈{1,...,Q}N×M �(qiP ,r(�) , f )

r(�+1) ∈ Argminr∈RD×Q�(q
i
(�)
P ,r

, f )

For separable and maximum error measures (see (5)
and (11)), the optimization of the label field at iteration
� then amounts to applying a nearest neighbour rule, i.e.
finding i

(�)

P such that, for every (n,m) ∈ V and, for every

k ∈ {1, . . . ,Q}, i
(�)

P (n,m) = k only if

(∀k′ ∈ {1, . . . ,Q})
ϕn,m

(
rk, f (n,m)

) ≤ ϕn,m

(
rk′ , f (n,m)

)
. (13)

Note that, in general, i(�)P (n,m) is not uniquely defined since
there may exist k′ ∈ {1, . . . ,Q} \ {k} such that
ϕn,m(rk, f (n,m)) = ϕn,m(rk′ , f (n,m)).

On the other hand, updating of the codebook at iteration �

is performed by computing the centroid of each region D(�)
k ,

k ∈ {1, . . . ,Q}. For the matrix weighted quadratic norm ((5)
and (6)), we thus obtain the classical center of mass of D(�)

k :

r
(�+1)
k =

( ∑

(n,m)∈D(�)
k

�n,m

)−1( ∑

(n,m)∈D(�)
k

�n,mf (n,m)
)
.

(14)

For the mean absolute value criterion ((5) and (8) with p = 1
and equal weights), r

(�+1)
k is the vector median of the pixel

values located in D(�)
k :

r
(�+1)
k = (

median
{
fd(n,m)

∣∣ (n,m) ∈ D(�)
k

})
1≤d≤D

. (15)

For the generalized Kullback-Leibler divergence ((5), (9)
and (10)), we get

r
(�+1)
k = 1

card D(�)
k

∑

(n,m)∈D(�)
k

f (n,m) (16)

provided that f ∈ ([0,+∞[D)N×M . For the sup norm ((11)
and (12)), we have

r
(�+1)
k =

(βd,k + γd,k

2

)

1≤d≤D
(17)

where βd,k = min{fd(n,m)|(n,m) ∈ D(�)
k } and γd,k =

max{fd(n,m)|(n,m) ∈ D(�)
k }.

When a closed form expression of r
(�+1)
k is not available,

one may resort to numerical optimization algorithms [11] to
compute centroids.

It can also be noticed that an alternative to the LBG al-
gorithm is the dynamic programming approach proposed in
[12] (see also [13, 14] for more recent extensions) which
features better global convergence properties. Generally, if
LBG used, the final solution is sub-optimal.

3 Considered Design Criterion

One drawback of the approach described in the previous sec-
tion is that it does not guarantee any spatial homogeneity of
the resulting quantized image. To alleviate this shortcoming,
we propose to solve the following problem:

minimize
(iP ,r)∈{1,...,Q}N×M×C

�(qiP ,r , f ) + ρ(iP ) (18)

where ρ: {1, . . . ,Q}N×M → ]−∞,+∞] is some penalty
function which is used to promote the spatial regularity of
the label image. Note that an alternative approach for ensur-
ing the smoothness of the quantized image would be to solve
a problem of the form

minimize
(iP ,r)∈{1,...,Q}N×M×C

�(qiP ,r , f ) + ρ̃(qiP ,r ) (19)



26 J Math Imaging Vis (2011) 41:23–38

where the regularization term ρ̃ is now a function from
(RD)N×M to ]−∞,+∞]. The latter problem appears how-
ever more difficult to solve than (18) since the regularization
term in (19) is a multivariate function depending both on iP
and r .

The existence of a solution to problem (18) is secured by
the following result:

Proposition 1 Assume that �(·, f ) is a lower-semiconti-
nuous function and that one of the following conditions
holds:

(i) �(·, f ) is coercive;1

(ii) C is bounded.

Then, problem (18) has a solution.

Proof Let iP be any given label field in {1, . . . ,Q}N×M .
According to (3), r �→ qiP ,r is a linear operator, and con-
sequently r �→ �(qiP ,r , f ) is a lower-semicontinuous func-
tion. As a direct consequence of Weierstrass theorem [15],
under Assumption (i) or (ii), there exists rP ∈ C such that

�(qiP ,rP , f ) = min
r∈C

�(qiP ,r , f ). (20)

Problem (18) can thus be reexpressed as

minimize
iP∈{1,...,Q}N×M

�(qiP ,rP , f ) + ρ(iP ). (21)

The latter minimization can be performed by a search among
a finite number of candidate values, so leading to an optimal
label field iP . Hence, (iP , qiP ,rP ) is a solution to problem
(18). �

Typical choices for ρ in (18) that can be made are the
following:

– isotropic variation functions

ρ(iP ) = μ

N−1∑

n=1

M−1∑

m=1

ψ(‖∇iP (n,m)‖), μ ≥ 0 (22)

where ∇iP (n,m) = (iP (n+1,m)− iP (n,m), iP (n,m+
1) − iP (n,m)) is the discrete gradient of iP at location
(n,m).

– anisotropic variation functions

ρ(iP ) = μ

(
N−1∑

n=1

M∑

m=1

ψ(|iP (n + 1,m) − iP (n,m)|)

+
N∑

n=1

M−1∑

m=1

ψ(|iP (n,m + 1) − iP (n,m)|)
)

,

μ ≥ 0. (23)

1This means that lim‖g‖→+∞ �(g,f ) = +∞.

In the above two examples, ψ is a function from [0,+∞[ to
]−∞,+∞]. When ψ is the identity function, the classical
isotropic or anisotropic total variations are obtained. A more
flexible form is given by the truncated linear function [16]
defined as

(∀x ∈ [0,+∞[) ψ(x) =
{

x if x < ζ ,
ζ otherwise

(24)

where ζ > 0 is the limiting constant. If ψ = (·)2, then a
Tikhonov-like regularization is performed. Another interest-
ing choice of ψ is the binary cost function (also named �0

criterion).

(∀x ∈ [0,+∞[) ψ(x) =
{

0 if x = 0,
1 otherwise.

(25)

When ψ is a (strictly) increasing function, higher local
differences of the label values entail a stronger penalization.
For this behaviour to be consistent with the quantized im-
age values, some ordering relation should typically exist be-
tween the codevectors. Hence, if D = 1, a natural choice is
to constrain the vector r to belong to the closed convex cone:

C = {
(s1, . . . , sQ) ∈ RQ

∣∣ s1 ≤ · · · ≤ sQ
}
. (26)

When D > 1, the definition of C becomes more debat-
able since there exists no total order on RD . A possibility
is to impose an artificial total order. In mathematical mor-
phology, authors have proposed various lexicographic order-
ings [17, 18] or bit-mixing [19] along space-filling (Peano-
like) curves.

A possible choice for C is the closed convex cone:

C = {
(s1, . . . , sQ) ∈ RD×Q

∣∣ θ(s1) ≤ · · · ≤ θ(sQ)
}

(27)

where

(∀u ∈ RD) θ(u) = η�u (28)

and η ∈ RD . For example, for color images, by an appropri-
ate choice of η ∈ R3 (possibly depending on the considered
color system [20]), the function θ may serve to extract the
luminance component of the codevectors.

More generally, the parameter vector η ∈ RD may be ob-
tained through a principal component analysis [21] of the
original multichannel data. Note that, when the binary func-
tion in (25) is employed, the magnitudes of the local differ-
ences of the label fields have no influence as soon as they are
nonzero. This means that ordering the codevectors does not
appear useful in this case, and that one can set C = RD×Q.

In addition to these considerations, when the regulariza-
tion constant μ in (22) or (23) takes large values, solving
(18) under the constraints modeled by (26) may lead to very
close or even equal values of codevectors. As a consequence,
the readibility of the quantized image may be affected. In
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some applications, it may therefore be beneficial to redefine
the constraint C in order to prevent this effect. When D = 1,
the closed convex set C can thus be given by

C = {
(s1, . . . , sQ) ∈ RQ

∣∣

(∀k ∈ {1, . . . ,Q − 1}) sk+1 − sk ≥ δ
}

(29)

where δ ≥ 0. Similarly, when D > 1, we propose to set

C = {
(s1, . . . , sQ) ∈ RD×Q

∣
∣

(∀k ∈ {1, . . . ,Q − 1}) θ(sk+1 − sk) ≥ δ
}

(30)

where δ ≥ 0 and θ is the function given by (28). Penaliza-
tion of quantization values for being too close to each other
was previously introduced in the energy model proposed by
Alvarez et al. [10].

4 Proposed Optimization Method

Even if �(·, f ) and ρ are convex functions, problem (18)
is a nonconvex optimization problem due to the fact that iP
belongs to a (nonconvex) set of discrete values. In order to
solve numerically this problem, we propose to use the fol-
lowing alternating optimization algorithm:

Algorithm 2 (Proposed algorithm)

Fix Q ∈ N∗ and r(0) ∈ C.
For � = 0,1, . . .⌊

i
(�)

P ∈ ArgminiP∈{1,...,Q}N×M �(qiP ,r(�) , f ) + ρ(iP )

r(�+1) ∈ Argminr∈C�(q
i
(�)
P ,r

, f )

It is worth noticing that this algorithm constitutes an
extension of the LBG algorithm (see Algorithm 1) which
would correspond to the case when ρ is the null function
and C = RD×Q. Similarly to the LBG algorithm, under
the assumptions of Proposition 1, Algorithm 2 generates
a sequence (i

(�)

P , r(�+1))�∈N such that (�(q
i
(�)
P ,r(�+1) , f ) +

ρ(i
(�)

P ))�∈N is a convergent decaying sequence. At each it-

eration �, the determination of i
(�)

P given r(�) is a combi-
natorial optimization problem for which there exist efficient
solutions for particular choices of � and ρ, as explained in
the next section.

In turn, if �(·, f ) is a convex function, the determina-
tion of r(�+1) given i

(�)

P is a constrained convex optimiza-
tion problem the solution of which can be determined nu-
merically. For any given iP ∈ {1, . . . ,Q}N×M , let LiP be
the linear operator defined as

LiP : RD×Q → (RD)N×M,

r �→ qiP ,r (31)

the adjoint of which is

L∗
iP : (RD)N×M → RD×Q,

g �→
( ∑

(n,m)∈D1

g(n,m), . . . ,
∑

(n,m)∈DQ

g(n,m)
)

(32)

(with the convention
∑

(n,m)∈∅ · = 0). Then,

L∗
iP LiP : RD×Q → RD×Q,

r �→ r Diag(card D1, . . . , card DQ). (33)

In addition, let � be the linear operator defined as

�: RD×Q → RQ−1, (34)

(s1, . . . , sQ) �→ (
θ(s2 − s1), . . . , θ(sQ − sQ−1)

)
(35)

where θ is given by (28) (with η = 1 when D = 1). The set
C defined in (29) or (30) is thus equal to �−1([δ,+∞[Q−1).
Hence, the problem of minimization of r �→ �(qiP ,r , f )

over C can be reexpressed as

minimize
r∈RD×Q

�(LiP r, f ) + ι[δ,+∞[Q−1(�r) (36)

where ιS denotes the indicator function of a set S, which is
zero on S and equal to +∞ on its complement. If we assume
that �(·, f ) belongs to �0((RD)N×M), the class of lower-
semicontinuous proper convex functions from (RD)N×M to
]−∞,+∞], (36) can be solved through existing convex op-
timization approaches [11, 22, 23]. One possible solution
is to employ the method proposed in [24] (hereafter called
PPXA+) which constitutes an extension of the parallel prox-
imal algorithm (PPXA) developed in [25] and of the simulta-
neous direction of multipliers method proposed in [26] (see
also [27–29]).

Algorithm 3 (PPXA+ for solving (36))

Initialization⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

(ω1,ω2,ω3) ∈ ]0,+∞[3

t (1,0) ∈ (RD)N×M, t(2,0) ∈ RQ−1, s(0) ∈ RD×Q

R = (ω1L
∗
iP LiP + ω2�

∗� + ω3I )−1

r(0) = R (ω1L
∗
iP t (1,0) + ω2�

∗t (2,0) + ω3s
(0))

For � = 0,1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

p(1,�) = prox 1
ω1

�(·,f )

(
t (1,�)

)

p(2,�) = P[δ,+∞[Q−1

(
t (2,�)

)

c(�) = R (ω1L
∗
iP p(1,�) + ω2�

∗p(2,�) + ω3s
(�))

λ� ∈ ]0,2[

t (1,�+1) = t (1,�) + λ�

(
LiP (2c(�) − r(�)) − p(1,�)

)

t (2,�+1) = t (2,�) + λ�

(
�(2c(�) − r(�)) − p(2,�)

)

s(�+1) = s(�) + λ�(2c(�) − r(�) − s(�))

r(�+1) = r(�) + λ�(c
(�) − r(�)).
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In the above algorithm, prox 1
ω1

�(·,f )
is the proximity op-

erator of ω−1
1 �(·, f ) [30] and P[δ,+∞[Q−1 is the projector

onto [δ,+∞[Q−1. Expressions of proximity operators for
usual convex functions are listed in [31]. The convergence
of the PPXA+ algorithm is guaranteed under weak assump-
tions.

Proposition 2 Assume that

(i) there exists λ ∈ ]0,2[ such that (∀� ∈ N) λ ≤ λ�+1 ≤ λ�.
(ii) There exists r ∈ RD×Q such that

LiP r ∈ ri dom�(·, f ) and �r ∈ ]δ,+∞[Q−1 (37)

where dom�(·, f ) is the domain of �(·, f ) and
ri dom�(·, f ) is its relative interior.

Then, the sequence (r(�))�∈N generated by Algorithm 3 con-
verges to a solution to problem (36).

Proof See [24]. �

5 Combinatorial Partitioning

We now consider two combinatorial optimization methods
for finding

iP̂ ∈ Argmin
iP∈{1,...,Q}N×M

�(qiP ,r , f ) + ρ(iP ) (38)

for a given value of r ∈ C. Here we seek to use standard
methods in combinatorial optimization which have proved
to be useful in applications to image processing. In this con-
text, a common form for regularization problems is the fol-
lowing:

minimize
iP∈{1,...,Q}N×M

�̃(iP , f ) + ρ(iP ), (39)

where �̃: {1, . . . ,Q}N×M × (RD)N×M → ]−∞,+∞] is a
data fidelity function, ρ a regularization function, f the ini-
tial image and iP the target discrete one. To formulate our
problem in this framework, we need to introduce the auxil-
iary function

χr : {1, . . . ,Q}N×M �→ {r1, . . . , rQ}N×M,

iP �→ qiP ,r .

Then, our problem becomes

minimize
iP∈{1,...,Q}N×M

�(χr (iP ), f ) + ρ(iP ). (40)

Note that χr is monotonic but nonlinear. Note further that
the set {r1, . . . , rQ} changes at each iteration of the complete

algorithm. However, during the regularization step, this set
is fixed.

In this section, we use graph-cut based algorithms, which
have proved to be effective in the context of smoothing, de-
noising and segmentation [32].

5.1 Method I: Convex Regularization Term

Here we describe a way to formulate the problem as a glob-
ally optimal graph cut, inspired by the approach of Ishikawa
et al. [33]. In this approach, we build a discrete graph that
will allow us to represent the quantized and regularized ver-
sion of our original image. Let us define the oriented, edge-
weighted graph G = (V,E) as follows:

(i) V = V×{1, . . . ,Q}∪ {s, t} the set of vertices quantized
over Q levels, where V is the image support as defined
in Sect. 2. We add two special vertices, the source s and
the sink t .

(ii) E = ED ∪ EC ∪ EP , the set of edges. In the following
we denote an oriented edge by [a, b], with a and b the
vertices it joins in the direction from a to b. We have:
(a) ED = ⋃

v∈V Ev
D the upward columns of the graph.

For all v ∈ V, let hv,k denote the node in column v

and row k. A single column associated with pixel v

is defined as

Ev
D = {[s, hv,1]

} ∪ {[hv,k, hv,k+1]
∣
∣

k ∈ {1, . . . ,Q − 1}} ∪ {
hv,Q, t

}
,

(b) EC = ⋃
v∈V Ev

C the downward columns of the
graph, with

Ev
C = {[hv,k, hv,k+1]

∣∣ k ∈ {1, . . . ,Q − 1}} ,

(c) and the penalty edges of the graph are thus defined
as

EP = {[hv,k, hw,k]
∣∣ {v,w} neighbours inV,

k ∈ {1, . . . ,Q}}.

The above graph is depicted in Fig. 1. In this figure, for
simplicity we assume each pixel has only two neighbours,
which allows us to represent the graph in a 2D planar lay-
out. For actual 2D images, there exist many more penalty
edges between all neighbours in V. The graph layout is then
non-planar, but remains similar. For 2D images, it is best to
see the arrangement of v vertices as in the original images,
with the column of penalty edges in an extra dimension.

If � is the separable function defined in (5) and ρ is the
anisotropic TV in (23) where ψ is the identity function, we
define the capacities (or weights) c of edges [a, b] ∈ E as
follows:
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Fig. 1 Construction of the Ishikawa-like optimization graph. Arrows
represent the edges E and circles the nodes in V . Horizontal edges are
in EP , the dotted upward vertical edges are in ED and the plain down-
ward vertical edges are in EC . Vertices s and t are respectively the
source and the sink. All pixels in the image from 1 to NM are rep-
resented in the columns. In actual 2D images, there exist many more
penalty edges EP than depicted here: all those between neighbours in V

(i) Links to the source have infinite capacity:

∀v ∈ V, c
([s, hv,1]

) = +∞.

(ii) Data fidelity term for any pixel v ∈ V is

∀k ∈ {1, . . . ,Q − 1},
c
([hv,k, hv,k+1]

) = ϕv

(
rk, f (v)

)
,

c
([hv,Q, t]) = ϕv

(
rQ,f (v)

)
.

(iii) The capacity of downward columns is infinite to con-
strain a single cut per column:

∀v ∈ V,∀k ∈ {1 . . .Q − 1},
c
([hv,k+1, hv,k]

) = +∞.

(iv) The regularization term along the penalty edges of the
graph is:

for every {v,w} neighbours in V,∀k ∈ {1, . . . ,Q},
c
([hv,k, hw,k]

) = μ

The above graph G has the same topology as the one pro-
posed by Ishikawa and it can be extended to any convex
function ψ [33]. The capacities of E are adjusted in such
a way that a cut of G corresponds to the solution of (40),
granted by the following result:

Proposition 3 If ρ is the anisotropic TV in (23) where ψ is
the identity function, then the min cut of G = (V,E) is the
globally optimal solution to (40).

Proof This result is derived from the construction of the
graph. First note that we build here a binary flow network
with one source and one sink. Following Ishikawa, relying
on the celebrated discrete maxflow/mincut theorem of Ford
and Fulkerson [34], any binary cut that separates s and t

along a series of edges, can be interpreted as a solution iP .
Indeed, the infinite capacity of the downward edges ensure
a single cut edge in each column of the graph, and the infi-
nite capacity of the upward [s, hv,1] edges for all v ensures
that, in all columns, this cut will be located above one of the
nodes corresponding to a level k ∈ {1, . . . ,Q}. We can there-
fore associate the cut in column v with the value of the level
immediately below the cut, and associate this with iP (v).
Recalling that all labels below the cut will have the same la-
bel as s, and all that above the cut the same label as t , the
value of iP at pixel v is the highest level l in column v of the
graph that is labelled like the source s. Here, by convention,
the source is labelled with 1 and the sink with 0. We can then
write iP (v) = max{k | hv,k = 1}.

Now, the computation of the maxflow/mincut on this
graph minimizes the energy of the cut, interpreted as the sum
of two terms:

(i) since the downward constraint edges ensure a single cut
edge along each column of the graph, this corresponds
to contribution of the data fidelity term ϕv(rQ,f (v)) to
the total energy.

(ii) Similarly, we note that each penalty edges in EP with
capacity μ can be cut at most once. Let u and v be two
neighbouring pixels in the graph. The cut along penalty
edges between iP (u) and iP (v) crosses exactly as many
penalty edges as there are quantization level differences
between u and v. We note that this correspond to a con-
tribution of μ|iP (u) − iP (v)| to the total energy.

Hence, the computation of the maxflow/mincut on this graph
solves (40) exactly, in the case of (23), when ψ is the iden-
tity. �

Remark 1

(i) It is also possible to solve this problem exactly in the
case when ψ is convex and not necessarily the identity,
by adding non-horizontal penalty edges [35], but we do
not consider this case here, as ψ = Id is favorable when
discontinuities exist in the original image.

(ii) In the case when the number of quantized levels Q is
small (say between 1 and 32), the Ishikawa framework
is very efficient.

(iii) As the dimensionality of the problem increases, so does
the number of penalty edges in the graph. The cut is
always an hypersurface of codimension 1.
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(iv) Ishikawa recommends solving the maxflow/mincut by
using a push-relabel algorithm, which makes perfect
sense as the dimensionality increases, because these al-
gorithms have an asymptotic complexity independent
of the number of edges.

5.2 Method II: Submodular Regularization Term

Since the method proposed in Sect. 5.1 works only for a con-
vex function ψ , we propose to solve the general problem de-
fined in (38) with the α-expansion algorithm [32], which has
been proven to be very effective for some non-convex func-
tions ψ such as the Potts model of (25). Though only a local
minimum is then guaranteed, the resulting energy will be
within a known factor of the global minimum energy [32].
Here we reintroduce the standard notation of α-expansions
as we need to specify the capacities on the corresponding
edges in the context of this article. Following Kolmogorov
et al. [36], we build a directed graph for each quantization
level, called α-expansion graph Gα = (V,E), defined as fol-
lows:

(i) V = V ∪ {α,α} is the set of vertices, with α and α two
special term nodes and V = {1, . . . ,NM} is the set of
image nodes;

(ii) E = EV ∪ EN is the set of edges, defined as follows:
(a) EV = ⋃

v∈V {[α,v], [v,α]} is the set of edges be-
tween special term nodes and image nodes;

(b) EN = ⋃
{u,v} neighbours is the set of edges between

neighbour and N is the set of neighbours pairs con-
taining only ordered pairs(u, v) ∈ V 2, i.e. such that
u < v.

(c) The capacity for all edges are given in Table 1.

Computing the max-flow/min-cost cut of Gα separates
vertices α and α in such a way that the α region can only
expand, hence the name of the algorithm. The value of the
function associating new values to iP , based on cut of Gα , is
called “α-move of iP” [16]. The algorithm is as follows:

Algorithm 4 (α-expansion algorithm)

Fix i
(0)

P
For � = 0,1, . . .⎢⎢⎢⎢
⎣

α̃(�) ∈ Argminα∈{1,...,Q}{�(χr (̂iP ), f ) + ρ(̂iP ) |
îP = α-move of i

(�)

P }
i
(�+1)

P = α̃(�)-move of i
(�)

P

Proposition 4 If (38) is submodular then it can be solved
with the α-expansion algorithm.

Proof It is shown in [36] that in order to employ the α-
expansion algorithm, (38) has to satisfy the following con-
ditions at iteration �:

(i) (38) has a binary representation of the form:

minimize
∑

u∈V

B
(�)
1 (b(nu,mu))

+
∑

{u,v} neighbours

B
(�)
2 (b(nu,mu), b(nv,mv)), (41)

where b is a binary field while B
(�)
1 and B

(�)
2 have binary

arguments.
(ii) The binary representation b is graph-representable,

which can be verified by testing if term B
(�)
2 satisfies

the submodular inequality:

B
(�)
2 (0,0) + B

(�)
2 (1,1) ≤ B

(�)
2 (1,0) + B

(�)
2 (0,1) . (42)

We now propose the following binary formulation of (38)
by defining:

B
(�)
1 (b(nu,mu)) = ϕnu,mu(r îP (nu,mu), f (nu,mu)) (43)

and

B
(�)
2 (b(nu,mu), b(nv,mv))

= ψ(|̂iP (nu,mu) − îP (nv,mv)|) (44)

where

îP (nu,mu) =
{

i
(�)

P (nu,mu) if b(nu,mu) = 0,
α if b(nu,mu) = 1.

(45)

More standard graph-cut formulations would only allow
us to optimize (39). These formulations would be problem-
atic because we would not be able to separate the two steps
in the inner loop of Algorithm 2, and therefore no conver-
gence property could be derived.

Assuming (38) submodular, then the terms of its binary
representation defined in (44) satisfy (42). Furthermore, it
is shown in [16] that for ψ defined as Potts model of (25)
or the truncated linear function in (24), and when ρ is
the anisotropic TV of (23), then this type of energy is in-
deed submodular. Consequently (38) can be solved with α-
expansions. �

Figure 2 provides an illustration of the notation for edge
weights in a simplified situation. In order to solve problem
(38) with the α-expansion algorithm, we propose to define
the capacities c of edges E in the graph Gα for all {u,v} pairs
of neighbours, as described in Table 1.

5.3 Other Methods

Other combinatorial optimization methods might also be
used. For instance, when minimizing isotropic TV as in
(22), one might want to use Chambolle’s algorithm [37].
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Fig. 2 Notations for the α-expansion graph, following Kolmogorov et
al. [36]. Here we took a simplified 2-pixel neighbourhood. The cost
(or capacity) between u and v is labelled as c([u,v]) for instance, and
so on for all edges. The expressions for the capacity for all edges are
given in Table 1

Table 1 Capacities for the α-expansion graph of Fig. 2

Edge Capacitya

c([u,α]) R(Ku) + ∑
(u,v)∈N R(Au,v − Cu,v) + ∑

(v,u)∈N Cv,u

c([α,u]) R(−Ku) + ∑
(u,v)∈N R(Cu,v − Au,v)

c([u,v]) ∑
(u,v)∈N (Bu,v + Cu,v − Au,v)

aThe following notation is used: R denotes the ramp function,
i.e. R(x) = 0 if x ∈ (−∞,0) and R(x) = x if x ∈ [0,+∞),
Ku = ϕnu,mu (riP (nu,mu), f (nu,mu)) − ϕnu,mu (rα, f (nu,mu)), Au,v =
ψ(|iP (nu,mu) − iP (nv,mv)|), Bu,v = ψ(|iP (nu,mu) − α|), Cu,v =
ψ(|α − iP (nv,mv)|)

Similarly to the Ishikawa framework, we would obtain the
global optimum in this case also. Moreover isotropic TV
minimization was recently discussed among others by Lell-
mann et al. [38], Trobin et al. [39] and Zach et al. [40]. One
other possibility is the use of α–β generalized range moves
algorithm, which is shown in [41] to be able to optimize
a wider range of combinatorial energies than α-expansion
method presented in Sect. 5.2. Furthermore, similar prop-
erties are held by the FastPD [42] and the PD3a [43] al-
gorithms, both introduced by Komodakis et al. Also worth
mentioning is the Darbon and Sigelle method for levelable
energies, introduced in [44], the Kolmogorov and Shioura
primal and primal-dual algorithms and Zalesky’s MSFM al-
gorithm [45], since they are all faster than Ishikawa’s ap-
proach, while still providing an exact solution for a sim-
ilar class of functions. Our method can be also improved
using higher order cliques, which already has been proven
to provide effective filtering results [46]. It might be also
possible to extend the quantization techniques proposed by
Chambolle and Darbon in [47]. Also of interest would be
to explore variants of anisotropic diffusion, and other com-
binatorial optimizers such as generalized Dirichlet solvers,
which are naturally multi-label [48] and could provide much
simpler algorithms.

6 Simulation Examples

In this section we present four experiments in order to
demonstrate the performance of our method in various sce-
narii. Both color and grey scale images are considered. For
grey scale images, our approach is confronted with the LM
method [3]. It is a fair comparison, since the same func-
tion � is used for both algorithms. Although sophisticated
initialization procedures [49–51] can be employed for LM
and our approach, the methods presented in the follow-
ing were simply initialized with either uniform or cumula-
tive histograms based decision levels. In the case of color
images, we compared our method with: (i) special case
of LBG algorithm with � defined as �2 norm (K-means),
(ii) median cut [52] and (iii) Wu’s method [53]. Ximagic
(http://www.ximagic.com) quantization package was used
to generate results of K-means, Wu and median cut algo-
rithms. Their performance is measured in terms of SNR be-
tween the original and quantized images and also by the
Shannon entropy of order (2,2) (that is the entropy over
image blocks of size 3 × 3). Note that, in all the following
experiments, regularization functions are used correspond-
ing to a 4-pixel neighbourhood (2 pixels in horizontal and 2
in vertical direction) in the employed graph cut techniques.
They were implemented with the help of the publicly avail-
able library described in [54]. When running experiments
using Algorithm 3, there are 4 parameters to set. We have
set ω1 = ω2 = ω3 = 1/3 and λ� was fixed and equaled 1.5.
The appropriate choice of parameter μ depends on the ratio
between maximum values of � and ρ codomain, the level
of noise in original image and prior knowledge about the
desired entropy of output images.

6.1 Low Resolution Quantization

First, we consider grey scale image quantization over Q = 8
levels. The combinatorial method described in Sect. 5.1 was
used to find the global optimum of convex criterion (18)
with function � defined as the �1 norm and function ρ de-
fined by (23) where ψ is the identity. It was applied to 8 bit
microscopy image of size 512 × 512 (from public domain,
http://www.remf.dartmouth.edu), the fragment of which is
shown in Fig. 3(a). Regularization parameter μ was hand-
optimized to 10. Both methods, LM and ours, were initial-
ized with uniform decision levels. In order to solve (36), Al-
gorithm 3 was used. The convex set C is defined by (29),
where δ = 12. As expected, our results provide the best spa-
tial smoothness among the considered methods, which is
confirmed by the entropy equal to 0.58 bpp, while in case
of LM it is equal to 0.84 bpp. In this example, it is shown
that, in case of quantization with high level reduction, our
method provides smaller entropy rate while maintaining the
desired fidelity.



32 J Math Imaging Vis (2011) 41:23–38

Fig. 3 Figures (a, b, c) illustrate a fragment of the original image, LM and our results, respectively. Note that LM retained acquisition vertical
artifacts, which are absent in our result
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In the second example, we show that a similar behav-
iour is obtained for different choices of �, regularity cri-
terion and combinatorial method. This time, the number of
quantization levels is Q = 32, function (18) is specified by
� defined as the squared �2 norm and ρ defined by (23)
where ψ is the binary cost-function (25). It is applied to the
color-image of size 256 × 256, which is shown in Fig. 4(a).
Figure 4(e) presents the results when μ is set to 25 and in
Fig. 4(f), when it is set to 50. The difference between the
two presented images (Fig. 4(e) and Fig. 4(f)) is not sig-
nificant but highlights the visual influence of parameter μ.
The criterion (18) was minimized by using the modified α-
expansion graph described in Sect. 5.2, which was initial-
ized with r(0) obtained by median cut algorithm. Image pix-
els were mapped into the XYZ image space [55]. Similarly
to the previous example, Fig. 4 shows that a better spatial
smoothness is obtained with the proposed approach. This
is also verified by inspecting the entropy value, which in
our case is equal to 1.06 bpp for μ = 25, and 1.00 bpp for
μ = 50, whereas in the case of Wu, K-means and Median-
cut the entropies are equal to 1.18 bpp, 1.14 bpp, 1.19 bpp,
respectively.

6.2 Quantization in the Presence of Noise

Next, we present the performance of our method in the pres-
ence of noise. Note that here function φ is chosen based on
two noise models, i.e. �2 for Gaussian and �1 for Lapla-
cian noise. Firstly, the problem of grey scale image quan-
tization over 16 levels is investigated. The image of size
256 × 256, shown in Fig. 5(b), is corrupted by zero-mean
i.i.d. Laplacian noise with standard deviation 9. Quantiza-
tion is performed using Algorithm 2. The method described
in Sect. 5.2 is used to minimize energy (18), where � is de-
fined as the �1 norm and ρ is given by (23) with ψ taken
as the truncated linear function (24), where the limiting con-
stant is set to ζ = 3. The associated regularization parame-
ter μ was experimentally chosen equal to 6. Both methods,
LM and ours, were initialized with cumulative histogram
based decision levels. Problem (36) was solved by using
Algorithm 3. The convex set C is defined by (29), where
δ = 1. The proposed approach shows satisfactory results
when dealing with Laplacian noise: (i) the visual effect of
the noise is reduced (see Fig. 5(d)), (ii) the SNR, which was
equal to 22.7 dB for the noisy image increases to 24.6 dB,
and (iii) the entropy is only 0.96 bpp. In case of LM (see
Fig. 5(c)), the SNR is equal 22.4 dB and the entropy is
1.41 bpp. In this example, we show that, in case of quan-
tization in the presence of noise, our method reconstructs
the original image, while performing image quantization.

Similar properties have been observed for D > 1. To il-
lustrate this fact, the quantization over 16 quantization lev-
els of a 300 × 300 color image is presented in Fig. 6. Zero-
mean Gaussian noise with standard deviation 20 was added

to the image presented in Fig. 6(a) (source: photo by Neon
JA, colored by Richard Bartz / Wikimedia Commons). This
image was transformed from the RGB space into a more
appropriate one, using the linear transformation defined by
the matrix of its PCA (Principal Component Analysis) com-
ponents. Then, the total order of quantization levels along
the principal component is chosen, which corresponds to
η� = [1 0 0 ]. The convex set C is defined by (29). Since
the probability of merging codevectors is negligible in three-
channel color space, the associated parameter δ was set to 0.
The resulting image (see Fig. 6(f)) was obtained by mini-
mizing energy (18), which was initialized with decision lev-
els computed by the median cut method. Function � was
defined by (6) and ρ by (23) where ψ is identity and μ is
equal to 250. The algorithm described in Sect. 5.1 was used
for computing i

(�)

P . One can observe that the noise has been
highly reduced in our result (Fig. 6(f)), while the K-means
method (Fig. 6(d)) preserved noise in the images. This is
also verified by SNR values which is equal to 13.8 dB for
our method and 10.6 dB, 10.4 dB and 9.8 dB for the K-
means, Wu and median-cut, respectively. The difference is
even greater in terms of entropy: our method led to 0.79 bpp
and the other ones to 1.48 bpp. Additionally, the quantiza-
tion result for the original image is presented. Our result
(Fig. 6(e)) was obtained with the same algorithm settings as
described above except μ, which here is equal to 30 and of
course the PCA parameters, which were computed from the
original image. Our method performs the required quantiza-
tion and provides an interesting tradeoff between precision
and smoothness, which is validated with an SNR of 18.5 dB
and an entropy of 0.9 bpp. In contrast, K-means (Fig. 6(c))
achieved a SNR = 20.2 dB and an entropy = 1.1 bpp.

6.3 Note about Computation Time

The time complexity of Algorithm 2 is equal to the product
of the complexity of each iteration and the complexity of the
number of iterations �. The bound on � is not known a priori.
Our observation suggests that it is a function of the weight
of smoothness term μ, number of quantization levels Q, and
the spatial entropy of original image f . Moreover, there may
be small differences in the number of iterations, depending
on the choice of the combinatorial optimization method. For
instance, the first problem described in Sect. 6.1, which was
solved with an Ishikawa-like graph, converges in 18 itera-
tions. In contrast, using the α-expansion algorithm (Algo-
rithm 4), it converges in only 16. In practice the number of it-
erations never seems to exceed 50 for grey-scale and 200 for
color images. By analyzing the inner loop of Algorithm 2,
one can observe that the complexity of step 1 is greater than
the one of step 2. Thus, the computation time of each it-
eration is strongly dominated by the cost of step 1, namely
finding i

(�)

P . Note that Algorithm 3 is run only if matrix r de-
rived from a centroid rule does not belong to C, so usually its
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Fig. 4 (a) is the original image, (b, c, d) the Wu, K-means and median-cut results respectively; (e, f) show our result for μ equal 25 and 50
respectively. Note that there are many isolated small regions in (b, c, d), while both (e) and (f) feature only smooth large regions, retaining global
aspect nonetheless
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Fig. 5 (a) original image, (b) noisy version, and (c, d) LM and our result, respectively

influence on the overall time complexity of Algorithm 2 is
small for grey-scale images. It becomes more important for
multi-channel images. Generally, the cost of combinatorial
graph-cut based methods depends on |V| and on the number
of quantization levels Q. More precisely, the relabeling al-
gorithm finds solution for single graphs in polynomial time
O(|V|3), where |V| is equal to Q × |V| for the method de-
scribed in Sect. 5.1 and to |V| for the method described in
Sect. 5.2. However, Algorithm 4 (in Sect. 5.2) requires solv-
ing many different graphs independently, so its computation
cost increases linearly with the number of quantization lev-
els Q. It is worth noting that some recently published ex-
tensions of the α-expansion algorithm are faster. In particu-
lar, Lempitsky et al. presented the LogCut and Fusion move
methods that lead to nearly logarithmic growth [56], e.g. for

Q = 256 the algorithm converges approximately 10 times
faster. A similar acceleration was obtained by the FastPD al-
gorithm introduced by Komodakis et al. [42] and analyzed
by Kolmogorov in [57]. Likewise, recently introduced pri-
mal and primal-dual algorithms by Kolmogorov et al. in [58]
may be an alternative for the method described in Sect. 5.1.
They offer a significant improvement in terms of time effi-
ciency. For instance, our first problem described in Sect. 6.1
solved with the method described in Sect. 5.1 takes 37 sec-
onds, while using Kolmogorov’s primal only algorithm, it
takes only 12 seconds. As an alternative to the methods
presented in Sect. 5, one may adopt these novel methods.
Constant progress in the efficiency of graph-cut algorithms
makes our approach increasingly competitive with the ones
that do not feature a smoothness constraint. Nonetheless,
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Fig. 6 (a) original image, (b) its noisy version, (c, e) and (d, f) K-means and our result for clear and noisy case, respectively
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Table 2 Iteration number and computation time for all examples pre-
sented in the paper. The values in the brackets for Ex2 concerns case
with μ = 50, and without brackets with μ = 25. The values in and
without brackets for Ex4 concerns case without and with noise, re-
spectively

Ex1 Ex2 Ex3 Ex4

No. of iter. 18 183 (113) 6 51 (42)

Time [s] 37 1618 (1015) 27 808 (625)

our method may take significantly more time than the use
of basic quantization methods (for details see Table 2). The
tests were performed single-threaded, on a computer with
a 2.5 GHz Intel Xeon processor, in the RedHat Enterprise
Linux 5.5 environment, using the GCC compiler version 4.1
in 64-bit mode.

7 Conclusion

In this paper, we have proposed a new quantization method
based on a two-step procedure intertwining a convex op-
timization algorithm for quantization level selection and
a combinatorial regularization procedure. Unlike classical
methods, the proposed approach allows us to enforce a
tunable spatial regularity in the quantized image. We have
also shown that both grey scale and color images can be
processed. As shown by our simulation results, the proposed
approach leads to promising results, in particular in the pres-
ence of noise. As future work, we plan to explore isotropic
regularization methods, to adapt and implement faster com-
binatorial algorithms and to take advantage of this method
in various applications such as image compression and mul-
tispectral/hyperspectral imaging.
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Globally Minimal Surfaces
by Continuous Maximal Flows

Ben Appleton and Hugues Talbot

Abstract—In this paper, we address the computation of globally minimal curves and surfaces for image segmentation and stereo

reconstruction. We present a solution, simulating a continuous maximal flow by a novel system of partial differential equations. Existing

methods are either grid-biased (graph-based methods) or suboptimal (active contours and surfaces). The solution simulates the flow of

an ideal fluid with isotropic velocity constraints. Velocity constraints are defined by a metric derived from image data. An auxiliary

potential function is introduced to create a system of partial differential equations. It is proven that the algorithm produces a globally

maximal continuous flow at convergence, and that the globally minimal surface may be obtained trivially from the auxiliary potential.

The bias of minimal surface methods toward small objects is also addressed. An efficient implementation is given for the flow

simulation. The globally minimal surface algorithm is applied to segmentation in 2D and 3D as well as to stereo matching. Results in

2D agree with an existing minimal contour algorithm for planar images. Results in 3D segmentation and stereo matching demonstrate

that the new algorithm is robust and free from grid bias.

Index Terms—Partial differential equations, graph-theoretic methods, edge and feature detection.

�

1 INTRODUCTION

GEOMETRIC optimization methods provide an exciting
approach to solving image analysis problems. They

have been applied with great success to image segmenta-
tion and to stereo reconstruction. They explicitly acknowl-
edge the uncertainty commonly present in the extraction of
geometric structures from images due to noise, occlusions,
and background clutter and can, in some cases, obtain
provably best estimates according to a measure of quality
appropriate to the application.

Broadly speaking, there are two classes of geometric
optimization techniques. One class is the active contour
methods, including snakes [1], level sets [2], [3], and geodesic
active contours and surfaces [4], [5]. Another class of
methods taking a very different approach is the graph-based
methods including shortest paths [6] and graph cuts [7].

Active contour methods model the evolution of a curve
or surface toward a structure of interest in an image. They
are usually based on a variational approach, performing a
gradient descent flow to locally minimize an energy
function whose minima ideally correspond to the objects
of interest in the image. Unfortunately, the energy functions
used in such models typically possess large numbers of
local minima due to noise and irrelevant objects and, as a
result, active contours are known to be highly dependent on
their initialization. A wide array of heuristics have been
proposed to assist in avoiding or overcoming these
irrelevant minima, including pressure forces designed to

overcome shallow minima [8], multiresolution approaches
designed to focus on objects which persist at high scales,
and methods which modify the gradient descent to favor
more significant contours [9]. Despite the advent of these
heuristics, active contours typically require manual inter-
vention which limits their application.

Graph-based methods are well-known in image analysis
and in stereo matching. Lloyd [10] and Ohta and Kanade
[11] were among the first to propose stereo matching by
shortest paths. Shortest paths remain competitive in current
stereo research as they form the core of a number of minimal
surface methods [12], [13]. Graph cuts have also been
applied to 3D reconstruction, sacrificing speed for improved
accuracy [14]. These methods are also used in image
segmentation. Bamford and Lovell [15] segmented cell
nucleii using a polar trellis centered on the nucleus. They
computed shortest paths using a Viterbi or dynamic
programming approach. Graph-based methods may obtain
optimal solutions to the associated minimization problem.
However, their use is restricted in practice because they
suffer from discretization artifacts. These typically result in a
preference for contours and surfaces to travel along the grid
directions. See [16] for a good introduction to these methods.

Ideally, geometric optimization methods used in image
analysis should be free of these problems, being both
isotropic and optimal. In recent years, several advances
have been made in the extension of optimal methods from
discrete graphs to continuous spaces. Dijkstra’s classic
shortest path algorithm [6] was extended in [17] and [18] to
compute minimal geodesics and continuous distance func-
tions. These have found broad application to optimal control,
wave propagation, and computer vision. The problem of
continuous graph cuts has also received some attention. Hu
[19] described a method for approximating continuous
minimal surfaces by a cut in a vertex weighted graph.
Boykov and Kolmogorov [20] recently proposed a method

106 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 1, JANUARY 2006

. B. Appleton is with Google, Inc., 1600 Amphitheatre Parkway, Mountain
View, CA 94043. E-mail: appleton@google.com.

. H. Talbot is with IGM-A2SI-ESIEE, BP 99-2 Bd Blaise-Pascal, 93162
Noisy-le-Grand Cedex, France. E-mail: talboth@esiee.fr.

Manuscript received 30 Sept. 2004; revised 29 Mar. 2005; accepted 26 Apr.
2005; published online 11 Nov. 2005.
Recommended for acceptance by G. Sapiro.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0518-0904.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



for computing edge weights which approximate continuous

graph cuts, toward the goal of computing globally minimal

surfaces for segmentation and stereo vision.
In this paper, we present an algorithm to compute

globally minimal curves, surfaces, and partitionings in
arbitrary Riemannian spaces. Section 2 introduces Geodesic
Active Contours and Surfaces. Section 3 introduces discrete
weighted graphs and continuous Riemannian spaces along
with a number of relationships between geometric optimi-
zation problems. Section 4 then presents an algorithm for
obtaining continuous maximal flows in arbitrary Rieman-
nian spaces with scalar metric. Also presented is a proof of
correctness and an efficient implementation. Section 5
presents a solution to the inherent bias of minimal surfaces
toward small objects. Section 6 presents the results of the
application of this new algorithm and Section 7 concludes.

2 GEODESIC ACTIVE CONTOURS AND SURFACES

Caselles et al. introduced Geodesic Active Contours [4] and

Geodesic Active Surfaces [5] for segmentation in 2D and

3D images. They are closed curves or surfaces which evolve

to minimize their weighted length or area:

E S½ � ¼
I
S

gðSÞdS: ð1Þ

E½S� is often termed the energy of the surface S. In

segmentation, g � " > 0 is a soft edge indicator function,

tending toward zero where local image features suggest the

presence of an object boundary. Caselles et al. [4] also

proposed the following form for the metric

g ¼ 1

1þ rG� ? Ij jp þ ": ð2Þ

jrG� ? Ij is the magnitude of the gradient at scale �. It is

usually raised to a power p ¼ 1 or 2. " is an arc length or

surface area penalty which effectively regularizes the

minimal surface. They also demonstrated that all local

minima are smooth surfaces for " > 0.
Geodesic Active Contours and Surfaces form an initial

surface via a gradient descent flow toward a local minima

of the energy functional. We may derive the gradient

descent flow by variational calculus, giving the Euler-

Lagrange equation:

@S

@�
¼ � g��rg � ~NN

� �
~NN: ð3Þ

Here, � is the evolution parameter or time, ~NN ¼ r�
jr�j is the

surface normal, and � ¼ r � ~NN is the mean curvature.
The evolution of this surface may be implemented using a

level set embedding due to [2]. For a function � : IRN ! IR

whose zero level set is S ¼ x �ðxÞ ¼ 0jf g, we may evolve � so

as to implement the gradient descent flow for S given in (3):

@�

@�
¼ r � g

r�
jr�j

� �
r�j j:

A more efficient, implicit update scheme has also been

presented in [21]. Unfortunately, as we pointed out earlier,

these gradient descent flows usually converge to local

minima with no guarantee on the optimality of the resulting
segmentation.

3 WEIGHTED GRAPHS AND RIEMANNIAN SPACES

A number of optimal methods have been proposed for
computer vision based on discrete graphs [15], [14] and,
later, continuous Riemannian spaces [22], [23]. Here, we
review the basic theory and definitions of these closely
related frameworks.

3.1 Minimal Paths and Geodesics

A graph G is a pair ðV ;EÞ consisting of a vertex set V and
an edge set E � V � V . Vertices may be interpreted as
points, while edges are lines connecting pairs of points. A
weighted graph includes vertex costs CV : V ! IR and edge
costs CE : E ! IR. In this paper, we consider only positive
cost functions.

A simple path P is defined as a sequence of unique
vertices, while a cycle has equal endpoints so as to form a
loop. The length L of a path P is the sum of vertex and edge
costs along the path

L P½ � ¼
X
v2P

CV ðvÞ þ
X
e2P

CEðeÞ:

The length of a cycle is defined analogously.
A path between two points s and t is a minimal or shortest

path if there exists no connected path of lower length. Such
paths may be computed using Dijkstra’s shortest path
algorithm [6], which first computes the distance of each
vertex from s before backtracking from t to s.

A Riemannian space R is the continuous equivalent of a
weighted graph. It consists of an N-manifold � and an
associated metric g : �! IR. Here, we consider only
positive scalar metrics g 2 IRþ. A simple curve in a
Riemannian space is a 1-manifold embedded in � which
does not pass through itself. A curve C with parameter � in
the range ½a; b� has length

L C½ � ¼
Z b

a

g C �ð Þð Þ @C
@�

����
����d�:

A simple curve between two points s and t is a minimal
geodesic if there exists no such curve of lower length.
Minimal geodesics may be computed using the Fast
Marching Method [18], which first computes a distance
function from s by wavefront propagation before back-
tracking by gradient descent from t to s.

3.2 Minimal Cuts and Minimal Surfaces

A partitioning of a graph G decomposes its vertex set into a
collection �G ¼ V1; V2; . . .f g of disjoint subsets:

[
Vi2�G

Vi ¼ V ; Vi \ Vj ¼ ; for i 6¼ j:

To each partition �G, we associate a cost Cð�GÞ, which is the
total cost of the edges whose endpoints lie in different
partitions:

C �Gð Þ ¼
X
e2E�

CE eð Þ:
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Here, the cut E� � E denotes the set of edges crossing the

partition. The s-t minimal cut problem seeks the partition-

ing of minimal cost such that the disjoint vertex sets s; t � V
lie in different partitions. A good introduction to algorithms

solving this problem is [16].
A partitioning of a Riemannian space R decomposes the

space into a collection �R ¼ �1;�2; . . .f g of compact subsets
whose pairwise intersection has zero Lebesgue measure:

[
�i2�R

�i ¼ �; Lð�i \ �jÞ ¼ 0 for i 6¼ j:

Similarly to the discrete case, to each partition �R, we
associate a cost Cð�RÞ, which is the integral of the metric g
over the partition surfaces @�i,

C �Rð Þ ¼ 1

2

X
�i2�R

I
@�i

gdð@�iÞ:

The potentially confusing term dð@�iÞ denotes an infinite-
simal component of the partition surface @�i. Fig. 1 depicts
a binary partitioning of the plane �. In this paper, we will
only consider binary partitionings.

In this continuous case, the s-t minimal cut problem
seeks the partition �R of minimal total cost such that the
point sets s; t � � fall in different partitions. To the authors’
best knowledge, this paper is the first to solve this problem
in continuous spaces with more than two dimensions.

3.3 Maximal Flows

3.3.1 Discrete Case

Let G be a graph with edge costs CE now reinterpreted as
capacities. A flow FG : E ! IR from a source set s � V to a
sink set t � V has the following properties:

. Conservation of flow: The total (signed) flow in and
out of any vertex is zero.

. Capacity constraint: The flow along any edge is less
than or equal to its capacity:

8e 2 E; F eð Þ 	 CE eð Þ:

An edge along which the flow is equal to the capacity is
described as saturated. Ford and Fulkerson [7] demonstrated
that the maximal s-t flow equals the minimal s-t cut, with the
flow saturated uniformly on the cut. Fig. 2 gives an example
of a capacitated graph and an s-t maximal flow through this
graph. In this example, s and t are single vertices.

Sedgewick [16] describes how to convert the problem of

computing a maximum flow between the sets s and t to an

equivalent problem of computing a maximum flow

between single vertices s0 and t0. First, we add to the

graph G two new vertices s0 and t0, which become the new

source and sink, respectively. Then, from s0 to each source

vertex in s, we add an edge of infinite capacity and, from

each sink vertex in t to t0, we do likewise. A maximum flow

from s0 to t0 directly corresponds to a maximum flow from s

to t in the original graph G. In this paper, we will make

implicit use of this direct correspondence between the two

viewpoints.
A second convenience which we adopt in this paper is to

add an implicit edge connecting t! s (equivalently, t0 ! s0)
with infinite capacity. This ensures that the flow is
conserved at every vertex in the graph, rather than treating
the source and sink vertices as special cases. With this
viewpoint, a maximal flow in a capacitated graph G then
maximizes the flow through the t! s edge. We denote this
flow by Fst and its maximization is the objective of the
maximal flow problem.

3.3.2 Continuous Case

Strang [24] and Iri [25] explored the theoretical extension of
maximal flows to continuous domains. A continuous flow
~FF is a vector field over a continuous domain. It has the
following properties:

. Conservation of flow: r � ~FF ¼ 0.

. Capacity constraint:
��~FF �� 	 g.

In the continous case, the source s and the sink t become
compact subsets of the continuous domain.

Let ~FF be any flow and S be any simple, closed, and

smooth surface containing the source s. Let ~NNS denote the

normal to the surface S. The net flow out of the source is

denoted Fst as in the discrete case. Then, combining the

two properties stated above, we obtain:

Fst ¼
I
S

~FF � ~NNSdS 	
I
S

gdS: ð4Þ

Therefore, all flows are bounded from above by all smooth,

simple, and closed surfaces separating the source and sink,

and all simple closed surfaces have weighted area bounded

from below by all flows from source to sink. In fact, Iri [25]

showed that, under very general continuity assumptions,

the maximal flow Fmax is strictly equal to the minimal
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Fig. 1. A binary partitioning of the space �. Note that the seeds and the

resulting partitions are not necessarily connected.

Fig. 2. An example of the minimal cut—maximal flow duality. (a) A

capacitated graph. Edge thickness corresponds to capacity. (b) An

s-t maximum flow. The set of saturated edges form a minimal cut.



surface Smin. For such a flow and surface, the flow saturates

the surface uniformly:

8x 2 Smin; Fmax xð Þ ¼ g xð Þ~NN xð Þ: ð5Þ

The minimal surface algorithm presented in this paper
makes explicit use of this duality.

The duality between maximal flows and minimal cuts
and surfaces has a simple interpretation. Any cut forms a
bottleneck for a flow, limiting the flow to be less than the
capacity of that cut. The maximal flow is limited by all
possible cuts and, therefore, must be less than or equal to
the cost of the minimal cut. These dualities state that the
maximal flow is indeed equal to the minimal cut and,
therefore, that a maximal flow saturates a minimal cut.

3.4 The Planar Case

For planar graphs and spaces, some special equivalences
exist between, on the one hand, minimal paths and
geodesics, and, on the other hand, minimal cuts and
surfaces. In the discrete case of a graph embedded in the
plane, a minimal cut in this primal graph is identical to a
shortest path in the dual graph whose vertices correspond to
the faces of the primal graph. Fig. 3 presents an example of
this planar duality between paths and cuts. A similar
duality has been noted in the continuous case between
geodesics which are manifolds of dimension 1 and minimal
surfaces which are manifolds of codimension 1 (and, hence,
also dimension 1).

These dualities are important in the design of planar
minimal cut algorithms because the computation of shortest
paths is more efficient compared to general maximal flow
methods. They are used in Weihe’s discrete maximal flow
algorithm [26] and in Mitchell’s continuous maximal flow
algorithm [27].

The authors have previously presented an algorithm for
2D image segmentation, Globally Optimal Geodesic Active
Contours (GOGAC), which can be interpreted under the
planar duality as a solution to the minimal surface problem
in 2D spaces. However, despite this connection, the GOGAC
algorithm is fundamentally based on the computation of

geodesics and cannot be extended beyond two dimensions.
The method presented in this paper is based on flows and
may therefore be applied to higher dimensional spaces.

3.5 Approximating Minimal Surfaces by Graph Cuts

A number of approaches have been proposed to compute
approximate minimal surfaces by transforming the problem
to a graph cut. These approaches obtain a polyhedral
surface of minimal weighted area, where the weighting is
derived from the metric of the original Riemannian space.

Hu [19] presented a formulation of the minimal cut
problem in a graph with vertex capacities rather than edge
capacities. Under this alternate formulation, a cut becomes a
set of vertices whose removal disconnects the source and
sink. The cost of a cut is the sum of the capacities of these
vertices. The continuous problem is modeled as a grid of
square vertices of side length h. The vertex capacities are
sampled directly from the metric of the continuous domain.
All vertices are connected within a radius r
 h. It was shown
that, in the limit as h! 0, r! 0, and h

r ! 0, the minimal cut
converges to a surface of minimal weighted area. As
presented, this method only approximates isotropic metrics.

In Boykov and Kolmogorov [20], an approximation to the
minimal surface problem using a graph with edge
capacities derived from the metric of the continuous
domain. Their approach is able to handle all convex
metrics. Edge capacities are derived from the metric of the
continuous domain using the Cauchy-Crofton formula from
integral geometry.

In both of these approximations, the theoretical conver-
gence of a minimal cut to a minimal surface depends upon
the degree of each vertex increasing toward infinity. In
practice, the number of directions that each segment of the
polyhedral approximation can take on is proportional to the
degree of each vertex. For an angular precision of ��, the
degree of each vertex is proportional to ð 1

��Þ
N in [19] and

ð 1
��Þ

N�1 in [20]. Consequently, the time and memory
required by these algorithms grows rapidly with the desired
angular resolution, particularly in higher dimensions.

4 MINIMAL SURFACES IN THREE OR MORE

DIMENSIONS

In this section, we present a nonlinear system of partial
differential equations (PDEs) to compute continuous max-
imal flows and, hence, obtain globally minimal surfaces.
This extends the previous presentation by the same authors
in [28], giving a detailed description of the implementation
on regular grids and deriving the necessary and sufficient
stability conditions.

The development of the following system of PDEs was
motivated by considering existing discrete maximum flow
algorithms. Two of the more popular maximum flow
algorithms are the augmenting-path algorithm of Ford
and Fulkerson and the preflow push algorithm of Goldberg
and Tarjan [16]. The augmenting-path algorithm maintains
a conservative flow at each step, repeatedly searching for
paths along which the flow may be increased. However, the
direct extension of this algorithm to continuous spaces
seems problematic. Not the least of these problems would
be the requirement for a nonlocal system, corresponding to
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Fig. 3. A planar graph (white) and its dual (black). The vertices of the
dual graph correspond to the faces of the primal graph. Edges connect
adjacent faces in the dual graph and correspond uniquely to edges in the
primal graph.



augmenting the flow along curves. This implies that it
would not be possible to obtain a partial differential
equation framework. Primarily, this is due to the conserva-
tion constraint which imposes infinite “stiffness” in the
flow, making it difficult to modify the flow locally.

On the other hand, the preflow push algorithm relaxes
the conservation constraint, allowing more flow into a
vertex than out of it. This algorithm introduces an
additional variable at each vertex which, in some sense,
ensures that the system converges toward an incompres-
sible flow. This is the approach we take in developing a
solution to the continuous maximal flow problem. We allow
the flow to have nonzero divergence during its evolution,
but introduce a scalar potential field which stores this
excess flow. The potential field is then used to drive the
flow to become incompressible at convergence.

4.1 A Continuous Maximal Flow Algorithm

The continuous maximal flow system developed in [28] is
described by the following system:

@P

@�
¼ �r � ~FF; ð6Þ

@ ~FF

@�
¼ �rP; ð7Þ

subject to

~FF
��� ��� 	 g: ð8Þ

P ¼ P ðx; �Þ : ð�; IRþÞ ! IR is a scalar potential field over the

domain � evolving over time � . ~FF ¼ ~FF ðx; �Þ : ð�; IRþÞ ! IRN

is the vector flow field, also over the N-dimensional domain
� and evolving over time � . For boundary conditions, we fix
the scalar field P at the source s and sink t: P ðxÞ ¼ 1 for
x 2 s and P ðxÞ ¼ 0 for x 2 t. These values are chosen
arbitrarily and without loss of generality. Initial conditions
may be chosen as P ¼ 0 except at the source and sink, and
~FF ¼ 0 everywhere. However, suitably selected initial con-
ditions may lead to faster convergence, as we will discuss
further in Section 4.4.

Equation (6) relaxes the conservation constraint, instead
storing excess flow in the potential field P . (7) couples the
flow ~FF to the potential P such that gradients in the
potential drive the flow. (6) and (7) form a simple system of
wave equations. They may be viewed as a linear model of
the dynamics of an idealized fluid with pressure P and
velocity ~FF , ignoring convection terms. (8) constitutes a hard
constraint on the magnitude of the flow velocity ~FF .

4.2 Properties of the Continuous Maximal Flow
Algorithm

4.2.1 Conservation of Potential P

Let PA ¼
R
A PdA denote the total integral of P in a given

region A not including s; t. Then, for smooth P and ~FF ,

@PA
@�
¼ �

I
@A

~FF � ~NN@Ad @Að Þ: ð9Þ

So, P is conserved in the interior of any sourceless region A
(any region not including the source s or sink t).

4.2.2 Monotonic Reduction of Energy 1
2 ðP 2 þ k~FFk2Þ

Consider the temporal rate of change of the total quantity of
1
2 ðP 2 þ k~FFk2Þ in a given region A not including s; t. For

smooth P and ~FF ,

@

@�

Z
A

1

2
P 2 þ k~FFk2
� �

dA ¼ �
I
@A

P ~FF � ~NN@Ad @Að Þ: ð10Þ

Note that we have momentarily ignored the magnitude
constraint (8). Consequently, 1

2 ðP 2 þ k~FFk2Þ is conserved in
the interior of any sourceless region A. Including the
magnitude constraint may only decrease k~FFk2 and, hence,
the energy 1

2 ðP 2 þ k~FFk2Þ must monotonically decrease in
the interior of a sourceless region. Since the energy is

positive, it must converge. To ensure smoothness and
convergence of P and ~FF independently, a dissipative term
can be added to the equations. In the discretised system,
this term is not necessary.

4.3 Correctness at Convergence

At convergence, any isosurface of P may be taken as the

globally minimal surface Smin separating s and t.

Proof. Setting temporal derivatives to zero at convergence,
we may restate the system (6), (7), (8):

r � ~FF ¼ 0

rP ¼ 0 if ~FF
��� ��� < g

rP ¼ ��~FF where � � 0 if ~FF
��� ��� ¼ g:

The first equation simply restates the conservation of

flow. The second equation is derived from (7), (8). It

states that, where ~FF is not saturated, P must be constant
and, where ~FF is saturated, rP must be such that ~FF

cannot change direction or decrease in magnitude.

Consequently, rP � ~FF 	 0, indicating that P is a (non-

strictly) monotonic function along the flow lines of ~FF . As
~FF is divergence-free, flow lines may only initiate at s and

terminate at t. Therefore, there are no local extrema in P .
Now, consider the closed region Ap ¼ x P ðxÞ � pjf g

obtained from P by the application of a threshold
0 < p < 1. Due to the monotonicity of P , this is a
connected region containing the source s. On the isosur-
face S ¼ @Ap, we have rP 6¼~00 by construction. There-
fore, the flow is uniformly saturated outward on this
surface and we obtain:

r � ~FFs ¼
I
S

~FF �NSdS ¼
I
S

gdS:

Hence, ~FF and S satisfy (5) for optimality. Therefore, at

convergence, any isosurface of P is a globally minimal
surface. In the usual case of a unique minimal surface,
Smin will be the only isosurface at convergence and,
hence, P will approach an indicator function for the
interior of Smin. tu

4.4 Implementation

Equations (6) and (7) are discretized on a staggered grid

using an explicit first-order scheme in time and space. The
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scalar field P is stored on grid points while the vector field
~FF is stored by component on grid edges, depicted in Fig. 4.

The system of equations is iterated sequentially with the

flow magnitude constraint (8) enforced after each timestep.

Here, for simplicity, we describe the update scheme for a

single iteration in two dimensions. The spatial grid step is set

to h ¼ 1. We first consider the linear portion of the update

scheme, implementing (6) and (7). We begin by defining the

notation that we will use to describe this discrete system. Let

n denote the iteration number and �� the timestep. Let Pn
i;j

denote the value of the potential at time n�� and gridpoint

ði; jÞ and let gi;j denote the value of the metric at the point

ði; jÞ. Let Fn
i�1

2;j;x
and Fn

i;j�1
2;y

represent the components of the

flow along the four edges incident on the point ði; jÞ at time

n�� . Then, we may give the explicit discretization of the

PDE system as:

Pnþ1
i;j ¼ Pn

i;j�

�� Fn
iþ1

2;j;x
� Fn

i�1
2;j;x
þ Fn

i;jþ1
2;y
� Fn

i;j�1
2;y

� �
;

ð11Þ

F 0
nþ1
iþ1

2;j;x
¼ Fn

iþ1
2;j;x
���ðPnþ1

iþ1;j � Pnþ1
i;j Þ

F 0
nþ1
i;jþ1

2;y
¼ Fn

i;jþ1
2;y
���ðPnþ1

i;jþ1 � Pnþ1
i;j Þ:

ð12Þ

The magnitude constraint is applied immediately follow-
ing the update of the flow velocity field by (12). Here, we
describe the application of the magnitude constraint at
point ði; jÞ for time ðnþ 1Þ�� , consisting of three stages:

1. Determine the maximal outward flow along each

axis:

Fnþ1
i;j;x

��� ���0 ¼ max �F 0nþ1
i�1

2;j;x
; 0; F 0

nþ1
iþ1

2;j;x

� �
;

Fnþ1
i;j;y

��� ���0 ¼ max �F 0nþ1
i;j�1

2;y
; 0; F 0

nþ1
i;jþ1

2;y

� �
:

2. Compare the absolute maximal outward velocity to

the metric gi;j: If

v0
nþ1
i;j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fnþ1
i;j;x

��� ���0� �2

þ Fnþ1
i;j;y

��� ���0� �2
r

> gi;j;

then

jFnþ1
i;j;x j ¼ jFnþ1

i;j;x j
0 gi;j

v0nþ1
i;j

; jFnþ1
i;j;y j ¼ jFnþ1

i;j;y j
0 gi;j

v0nþ1
i;j

:

3. Apply the magnitude constraint to each outward
velocity component:

Fnþ1
i�1

2;j;x
¼ max F 0

nþ1
i�1

2;j;x
; �jFnþ1

i;j;x j
� �

Fnþ1
iþ1

2;j;x
¼ min F 0

nþ1
iþ1

2;j;x
; jFnþ1

i;j;x j
� �

Fnþ1
i;j�1

2;y
¼ max F 0

nþ1
i;j�1

2;y
; �jFnþ1

i;j;y j
� �

Fnþ1
i;jþ1

2;y
¼ min F 0

nþ1
i;jþ1

2;y
; jFnþ1

i;j;y j
� �

:

Despite the complexity of its formal description, this update
scheme is simple enough that a single implementation is
used to handle input data of arbitrary dimension. This
explicit scheme is also simple to parallelize by domain
decomposition.

Several heuristics have been found to increase the speed
of convergence. The fields P and ~FF are rapidly initialized
using the preflow push discrete maximal flow algorithm
with both global and gap relabeling [16]. A multiscale
approach is also applied recursively for rapid convergence
at a fine grid resolution from a coarse grid initialization.
Computation may be avoided in the interior of the source s
and sink t, yielding great savings when they occupy a
significant portion of the space.

At convergence in the continuous system, in the usual
case of a single surface of globally minimal value, the
potential field P is theoretically perfectly binary with
value 1 within the volume bounded by the minimal surface,
and 0 outside. However, in the discrete implementation,
convergence is deemed to be attained if the sum of the
relative areas of potential jAP�1�	j and jAP		j is greater
than 
 percent. For example, 	 ¼ 0:03 and 
 ¼ 99. Once
convergence has been obtained, the minimal surface is
extracted from P as the isosurface of value 1

2 using a bilinear
interpolation.

4.5 Stability

In this section, we derive the maximum timestep for which
the update scheme described by (11) and (12) is stable. In
this analysis, we neglect the magnitude constraint as it may
only reduce the magnitudes of the variables of interest and,
hence, cause the system to tend toward stability. For
simplicity, we perform the derivation in the 2D case and
then give the general solution.

By an appropriate combination of (11) and (12), we may
obtain the discrete update equation solely for P :

Pnþ2
i;j � 2Pnþ1

i;j þ Pn
i;j ¼

��2 �4Pnþ1
i;j þ Pnþ1

iþ1;j þ Pnþ1
i�1;j þ Pnþ1

i;jþ1 þ Pnþ1
i;j�1

� �
:

ð13Þ

This is a discrete analogue to the wave equation @2P
@�2 ¼ r2P ,

which may be derived from (6) and (7).
Equation (13) describes a linear system and, so, is

amenable to spectral analysis. Specifically, consider the
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Fig. 4. The discrete representation of the numerical scheme presented

here. P is stored at grid vertices while ~FF is stored by component on grid

edges.



Z-transform over zx; zy; z� 2 CC with jzxj ¼ jzyj ¼ 1 for a
bounded field P :

P ðzx; zy; z� Þ ¼
X
i;j;n

Pn
i;jz

i
xz

j
yz
n
� : ð14Þ

For P 6¼ 0, substitution into (13) gives

z2
� � 2z� þ 1 ¼ ��2 �4þ zx þ z�1

x þ zy þ z�1
y

� �
: ð15Þ

For a stable and causal system, we require jz� j < 1. Now,
the right side of (15) takes values in the range ½�8ð��Þ2; 0�
over the entire spatial spectrum. The left side has range
ð�4; 0�. Therefore, in order that this equation have a
solution for all spatial frequency components, we require
that it have a solution when the right side equals �8ð��Þ2,
so �� < 1ffiffi

2
p . More generally, when the update is performed

in N dimensions, it is simple to show that �� < 1ffiffiffi
N
p as

before. The same argument may be applied to the
evolution of ~FF but is not pursued here for reasons of
space. This condition on the time step is therefore
necessary and sufficient to obtain a stable discrete
implementation.

5 METRIC WEIGHTING FUNCTIONS

Minimal surface methods have an inherent bias in favor of
small surfaces. In many applications, this is undesirable,
resulting in incorrect or even trivial solutions. In this
section, we present a technique to automatically remove
this bias.

5.1 Construction

Consider a metric that is uniformly constant throughout the
domain, g ¼ 1. This metric conveys no preference for any
particular point through which the partition surface should
pass. Intuitively, then, every point in the domain should
belong to some (globally) minimal surface. Unfortunately,
as the minimal surface problem is posed, this is not the case.
In order to improve the behavior of the solutions to this
problem, then, we replace the metric g by g0 ¼ gw,
introducing an appropriate weighting function w. This
weighting function will account for the geometry of the
sources and sinks, so that the minimal surface depends only
on the data as represented by g.

Appleton and Talbot [23] considered the special case of a
single point source p in a planar image. Here, it was
demonstrated that the introduction of the weighting function

wðxÞ ¼ 1
jx�pj resulted in a continuum of minimal surfaces,

the set of all circles centered on p. In N dimensions, it is

simple to see that the modified weighting function wðxÞ ¼
1

jx�pjN�1 will behave similarly, ensuring that each point in

the domain belongs to a minimal surface (a hypersphere

centered on p). These weighting functions may be extended

to other seed geometries. For a line source in three dim-

ensions, we obtain the weighting function wðxÞ ¼ 1
jx�pj ,

where p is the nearest point to x on the line. More generally,

for a set of seeds which form an M-dimensional manifold

embedded in N dimensions, we should expect a weighting

function that decays as 1
jx�pjN�M�1 in the neighborhood of the

manifold.

We wish to derive an unbiased flow ~FF from which we

may define the weighting function w ¼ k~FFk. This flow will

be produced by the source set s and absorbed by the sink

set t,

r � ~FF ¼ �; ð16Þ

where � is a distribution that is zero in the interior of the

domain, positive on the source set s and negative on the

sink set t, with total source weight
R
s �dV ¼ 1 and sink

weight
R
t �dV ¼ �1. There will naturally be many such

flows; here, we select a flow to minimize a measure of the

weighting function

E½w� ¼
Z
V

1

2
w2dV ¼

Z
V

1

2
k~FFk2dV :

In this way, we will ensure that the weighting function is

not arbitrarily large at any particular point in space, as it

could be, for example, for some flows with large rotational

components.

We may minimize the measureE½~FF � � E½w� by variational

calculus: Consider adding a minimization parameter � to

obtainw � wðx; �Þ. Then, we may compute the first variation

with respect to � to determine the local minima of E½~FF �:

�E½~FF �
��

¼
Z
V

~FF� � ~FFdV ¼ 0:

Here, we have set the first variation to 0 to obtain a local

minimum condition on E½w�. This minimization must be

carried out subject to the incompressibility constraint

expressed in (16). Taking the time derivative of the

constraint, we obtain the equivalent constraint r � ~FF� ¼ 0.

Therefore, ~FF� may be decomposed into cyclic components,

and ~FF is a local minimum of E½~FF � if it is locally minimal

with respect to all cyclic flows. Consider, then, ~FF� ¼ ~TTC , the

unit tangent vector over the tube formed from the set of all

points within a vanishing radius r of the smooth closed

curve C, with ~FF� ¼ 0 elsewhere. For ~FF a local minimum of

E½~FF �, we have

�E½~FF �
��

¼
Z
V

~FF� � ~FFdV

¼ AN�1ðrÞ
I
C

~FF� � ~TTCdC;

whereAN�1ðrÞ is the volume of theN � 1 dimensional sphere

of radius r. So, for �E½~FF �
�� ¼ 0, we find that the vector field is a

potential flow. Set ~FF� ¼ r�� , then, and replace the divergence

of the flow ~FF in (16) by the Laplacian of � to obtainr2� ¼ �.

We choose boundary conditions limjxj!1 r�ðxÞ ¼ 0 so that

the flow is zero at infinity. � is then determined up to the

addition of a constant which will not affect the weighting

function w ¼ jr�j.
Observe, now, that all isosurfaces S of � in the interior of

the domain have constant net flux
H
S r� � ~NNSdS ¼ 1. As

w ¼ jr�j, we then obtain
H
S wdS ¼ 1 over all isosurfaces of

�, with
H
S wdS � 1 for all closed surfaces S containing the

seeds. So, the isosurfaces of � form the set of minimal
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surfaces under the metric w. In general, we have r� 6¼ 0
almost everywhere; therefore, almost every point in the
domain belongs to some minimal weighted surface under
the metric w as desired.

5.2 Implementation

For the regular grids considered in this paper, the

weighting functions may be computed by convolving the

distribution � with the Green’s function � with the

property r2� ¼ �ðxÞ. In IR2, this is � ¼ 1
2 lnðjxjÞ, while,

in IR3, this is � ¼ � 1
4jxj [29]. This convolution may be

efficiently computed on discrete images using the Fast

Fourier Transform. The gradient of � may then be

numerically estimated in the discrete grid to obtain the

weighting function w.

Fig. 5 shows an example of a set of seed points and the

process of computing an appropriate weighting function.

The weighting function is highest in the neighborhood of

point sources and at the endpoints of line sources.

Fig. 6 depicts the application of metric weighting in the

segmentation of a microscope image of a protist, Chilomonas

Paramecium. Presented are segmentations using a simple

seed geometry and a complex seed geometry. The metric

weighting scheme proposed in this section produces similar

results on the two examples, demonstrating that it does not

significantly bias the segmentation.

6 RESULTS

In this section, we demonstrate the results of using globally
minimal surfaces for 2D and 3D medical image segmenta-
tion and for stereo matching. All results were obtained
using the metric weighting scheme introduced in Section 5,
except where otherwise noted. Timings were obtained on a
quad 2.2GHz AMD Opteron Processor 848 under the Linux
operating system. The algorithm presented here has been
implemented in C with no assembly optimizations. Timings
for minimum cuts have been obtained using the Boost
Graph Library implementation of the preflow-push algo-
rithm [30]. The preflow-push algorithm is generally
accepted as a fast general-purpose maximum flow algo-
rithm, although a faster image-specific maximum flow
algorithm presented in [31] has not been considered here.

6.1 Two-Dimensional Image Segmentation

Object boundaries are often difficult to detect along
transitions to adjacent objects with similar features. Seg-
mentation via minimal contours uses the regularization of
the segmentation contour to avoid leaking across such gaps.
The authors have previously developed an algorithm,
Globally Optimal Geodesic Active Contours (GOGAC)
[23], which efficiently computes globally minimal contours
in planar Riemannian spaces using the planar duality in
Section 3.4. Here, we apply discrete minimal cuts, GOGAC,
and the algorithm presented in this paper to segment a
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Fig. 5. Metric weighting example. (a) The seed geometry. Source points are depicted, while the sink points are the image boundary. (b) The function
� computed by convolution. (c) The metric weighting w computed from the numerical derivative of �.

Fig. 6. An example of the application of metric weighting. (a) A microscope image of a protist, Chilomonas Paramecium. (b) Segmentation using a
single internal seed. (c) Segmentation with complex seed geometry.



microscope image of a cluster of cells (Fig. 7a) and compare
the results. In spite of its apparent simplicity, this problem
demonstrates the challenge of delineating faint boundaries
between cells without leaking.

We compute a metric (Fig. 7b) from the microscope
image as described in (2), with default parameters: p ¼ 1,
" ¼ 0, and � ¼ 1. Low metric regions are dark, while high
metric regions are bright. The regions of low metric
correspond to the boundaries of the cells, except where
the cells overlap. The metric has been weighted according
to the method described in Section 5 (not displayed).

The segmentation of each cell is performed indepen-
dently in sequence for each method. The source sets are
depicted in Figs. 7b, 7c, and 7d, while the sink is the image
boundary. The discrete minimal cut produces a clear grid
bias and a poor segmentation. GOGAC and the continuous
maximal flow algorithm solve the same continuous optimi-
zation problem and are in close agreement. Note that the

continuous segmentations follow the perceived cell con-
tours despite the weakness of local cues.

The image depicted in Fig. 7a has dimensions 231� 221.
We reduce the amount of computation required by
expanding the sink to include only the cells of interest, a

region of size 150� 100.
The discrete minimal cuts required 0:41 seconds to

compute in total. GOGAC required 0:73 seconds to compute
in total. The continuous minimal surface algorithm pre-
sented here required 0:68 seconds in total to converge.

6.2 Three-Dimensional Image Segmentation

Here, we demonstrate the application of globally minimal
surfaces to a 3D segmentation problem. Fig. 8 depicts a
Computed Tomography scan of a chest in which the
two lungs are segmented. We compare the results from
the application of globally minimal surfaces to those
obtained using geodesic active surfaces and discrete
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Fig. 7. Segmentation of a cluster of cells in a microscope image. (a) The original image. (b) Discrete minimal cuts. (c) Globally Optimal Geodesic

Active Contours. (d) Globally minimal surfaces.



minimal cuts. The minimal cut and minimal surface
segmentations use the same input, i.e., the same weighted
metric, as well as the seeds. The sources are ellipsoids
inside each lung, while the sinks are the five volume
boundaries not including the uppermost face where the
lung is open. The geodesic active surfaces are unable to use
the weighted metric due to the large range of metric values
produced. Instead, they use the unweighted metric and are
initialized from large ellipsoids inside each lung. An
additional artificial inflation term was also used to drive
the level sets to fill the lungs. The two lungs are segmented
independently in all three methods.

The top row of Fig. 8 depicts corresponding 2D slices of
the original CT data, the metric derived from this data, and
the weighted metric for the right lung. The weighted metric
has been displayed on a logarithmic scale due to its large
range of values. The middle row of Fig. 8 shows correspond-
ing 2D slices of segmentations by each of the methods
considered here: geodesic active surfaces, minimal cuts, and
globally minimal surfaces. The bottom row of Fig. 8 provides
3D views of the sources as well as the segmentations
obtained by the different methods.

The geodesic active surfaces produce a poor segmentation.
At the top of the lung, the inflation term is too strong, causing
the surface to leak through the weak edges of the lung.
Elsewhere, the surface has failed to completely fill the lung.
This behavior is common in the application of active contour
methods and, as in this case, sometimes hard to avoid.

The discrete minimal cuts also produce inaccurate
segmentations. Observe the bias toward the grid directions,
which can be clearly seen as the flat boundaries in the

interior surfaces at the top of the lungs. By contrast, the
continuous minimal surface does not exhibit such direc-
tional bias, giving a faithful segmentation.

The CT data shown in Fig. 8 has dimensions
200� 160� 90. The Geodesic Active Surfaces required

279 seconds to converge to the final result. The discrete
minimal cuts required 44 seconds to compute using the
preflow push algorithm. The continuous minimal surface
algorithm required only 28:8 seconds using three scales.

The minimal surface algorithm uses a multiscale frame-
work to obtain a fast initialization from the solution at a
coarser scale. The fields P and ~FF are initialized using a
minimum cut at the coarsest scales. In this example, the

minimal surface segmentation is faster than the mini-
mum cut segmentation due to the multiscale framework.

6.3 Three-Dimensional Scene Reconstruction from
Stereo Images

The reconstruction of a 3D scene from two or more images

is often performed using an energy minimization approach
[13], [14]. Here, we adapt the framework of [14], replacing
their discrete graph cut by a globally minimal surface.

In stereo matching, a number of metrics have been
proposed for real and synthetic images. Here, we use the

zero-mean normalized cross correlation (ZNCC) window-
based matching score, which performs well on natural scenes
with lighting variation and specular reflections and may be
computed very efficiently [12]. We set g ¼ 1� ZNCC to

convert high matching scores to low metrics suitable for
minimization. Matching scores are computed using a
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Fig. 8. Segmentation of the lungs in a CT image of a chest. Top row: 2D slices of original data, metric, and weighted metric (log scale). Middle row:

2D slices of segmentations by geodesic active surfaces, minimal cuts, and globally minimal surfaces. Bottom row: 3D views of seeds and

segmentations by geodesic active surfaces, minimal cuts, and globally minimal surfaces.



5� 5 window. The stereo pair being analyzed has a disparity
range of ½�15; 0�. Following [14], the source and sink are
connected to the first and last layers of the disparity volume.
Both the discrete minimal cut and the globally minimal
surface are computed from the same metric.

The results of the stereo matching are depicted in Fig. 9.
These results are shown as disparity maps (depth maps) as
well as surface meshes. We observe that the discrete
minimal cut produces large flat regions due to the small
number of disparities and, hence, poor depth resolution of
discrete methods. Compared to the graph cut, we can see a
great deal more detail in the disparity map computed by the
globally minimal surface. This includes the surface texture
of the bushes as well as the third parking meter. In addition
to the improvement in depth resolution is the rotational
invariance of the continuous method. This can be seen on
the frame of the car, where the discrete method produces a
“rectangular” curve, while the minimal surface produces a
straight line.

The stereo image pair used here has dimensions 256� 240.
The discrete minimal cut required 11:3 seconds to compute.
The continuous minimal surface algorithm required only
8:3 seconds.

6.4 Accuracy

In the continuous theory, the system of PDEs presented
in (6), (7), and (8) was proven to obtain the globally
minimal surface at convergence. However, in order to
develop a practical algorithm, it was necessary to
discretize these equations. An explicit, first-order finite

difference discretization was presented in Section 4.4. It is
natural to question whether this discretization introduces
grid bias into the solution surfaces.

To address this question, we compare the surface
obtained by the proposed discretization with the analytic
solution on a simple problem in three dimensions, the
computation of a catenoid. Consider two circles of equal
radius R0 whose centers lie along the z-axis. These circles lie
in the planes z ¼ �H and z ¼ H, respectively. The minimal
surface which connects these two circles is a catenoid. An
illustration of such a nontrivial minimal surface is some-
times given using soap bubbles. The surface points of this
catenoid ðx; y; zÞ are described by:

x ¼ R0 cosh
z

R0

� �
cosð�Þ;

y ¼ R0 cosh
z

R0

� �
sinð�Þ;

where � 2 ½0; 2Þ and z 2 ½�H;H�. Here, R0 is selected to
meet the boundary condition R0 cosh H

R0

� 	
¼ R.

We set R ¼ 35 and H ¼ 15 and compare the analytic and
numeric solutions. The algorithm proposed in this paper is
discretized on a 120� 120� 31 grid with grid step h ¼ 1. For
the Euclidean metric, we set g ¼ 1 everywhere, without
metric weighting. For this problem, we may enforce the
circular boundary conditions by placing disk-shaped
sources of radius R on the vertical boundaries z ¼ H and
z ¼ �H, and sinks elsewhere on the volume boundary. The
results for this comparison are presented in Fig. 10. Fig. 10a
depicts the analytic solution. Figs. 10b and 10c depict the
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Fig. 9. Stereo matching from two views. (a) and (b) The original images. (c) Disparity map obtained by a discrete maximal flow. (d) Disparity map

obtained by a globally minimal surface. Note the improved detail.



numeric solution obtained from P , respectively, by thresh-

olding and by isosurface extraction. The isosurface and the

analytic solution are in clear agreement. By contrast, the

threshold result demonstrates that it is important to extract

isosurfaces in order to avoid discretisation artifacts. This

result is also the best that a discrete method such as a graph

cut could obtain without increasing the grid resolution.

Fig. 10d depicts a horizontal slice z ¼ 0 through the potential

function P computed by the new algorithm, overlayed with

the corresponding cross-section of the analytic solution (a

circle of radius R0). Fig. 10e depicts a vertical slice x ¼ 0

through P , overlayed with the corresponding cross-section

of the analytic solution (two catenaries). In both Figs. 10c

and 10d, the analytic solution closely coincides with the

isosurface P ¼ 1
2 .

In order to make a quantitative comparison, we

measured the average distance between the analytic surface

and the computed isosurface. The mean distance between

these surfaces was 0:09 while the root-mean-square distance

was 0:11. In this simple example then, the new algorithm

obtains a result which is accurate to approximately

10 percent of the grid step.

7 CONCLUSIONS

In this paper, we have developed a new algorithm to

compute globally minimal weighted surfaces for image

segmentation and stereo matching.

We obtain these surfaces using a nonlinear system of

partial differential equations which simulate an ideal fluid

flow. The velocity of the flow is constrained in magnitude by

a spatially varying metric, itself derived from the image or

images being analyzed. This simulation is performed using

a simple finite difference scheme with explicit update step.

To improve efficiency, a multiresolution scheme is used to

reduce computational costs and the solution is approxi-

mated at the coarsest scale by a discrete maximal flow.
A proof is given that, at convergence, the algorithm

produces a globally maximal flow. The minimal surface is

simply an isosurface of the auxiliary potential function. A

proof that the system converges is left to future work.
Results are given demonstrating the application of

globally minimal surfaces to 2D and 3D segmentation and

to stereo matching. Comparison to an existing optimal

geodesic active contour for 2D images demonstrates close

similarity. Comparisons for 3D segmentation and stereo

matching demonstrate that globally minimal surfaces over-

come the existing problems with graph-based approaches

and with active contours. On a simple test problem with

known analytic solution, the discrete implementation of this

algorithm was shown to be accurate to 10 percent of the

grid step size. The algorithm is also efficient when

compared to previous methods. These results suggest that

many existing applications using geodesic active surfaces or

graph cuts will benefit from the improved accuracy and

reliability of globally minimal surfaces.
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Fig. 10. The catenoid test problem. (a) The correct minimal surface, constructed analytically. (b) The discrete minimal surface obtained by
thresholding P 	 0:5. (c) The minimal surface obtained as the isosurface P ¼ 1

2 . (d) A horizontal slice through P . The correct cross-section is
overlayed in black. (e) A vertical slice through P . The correct cross-section is overlayed in black.
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Power Watershed: A Unifying Graph-Based
Optimization Framework

Camille Couprie, Student Member, IEEE, Leo Grady, Member, IEEE,

Laurent Najman, and Hugues Talbot, Member, IEEE

Abstract—In this work, we extend a common framework for graph-based image segmentation that includes the graph cuts, random

walker, and shortest path optimization algorithms. Viewing an image as a weighted graph, these algorithms can be expressed by

means of a common energy function with differing choices of a parameter q acting as an exponent on the differences between

neighboring nodes. Introducing a new parameter p that fixes a power for the edge weights allows us to also include the optimal

spanning forest algorithm for watershed in this same framework. We then propose a new family of segmentation algorithms that fixes p

to produce an optimal spanning forest but varies the power q beyond the usual watershed algorithm, which we term the power

watershed. In particular, when q ¼ 2, the power watershed leads to a multilabel, scale and contrast invariant, unique global optimum

obtained in practice in quasi-linear time. Placing the watershed algorithm in this energy minimization framework also opens new

possibilities for using unary terms in traditional watershed segmentation and using watershed to optimize more general models of use

in applications beyond image segmentation.

Index Terms—Combinatorial optimization, image segmentation, graph cuts, random walker, shortest paths, optimal spanning forests,

Markov random fields.

Ç

1 INTRODUCTION

GRAPH-BASED segmentation algorithms have become quite
popular and mature in recent years. The modern

variations on graph-based segmentation algorithms are
primarily built using a small set of core algorithms—graph
cuts (GC), random walker (RW), and shortest paths (SP),
which are reviewed shortly. Recently, these three algorithms
were all placed into a common framework that allows them
to be seen as instances of a more general seeded segmenta-
tion algorithm with different choices of a parameter q [80]. In
addition to these algorithms, the ubiquitous watershed
segmentation algorithm [12] shares a similar seeding inter-
face, but only recently was a connection made between the
watershed algorithm and graph cuts [28]. In this paper, we
show how this connection between watershed and graph
cuts can be used to further generalize the seeded segmenta-
tion framework of [80] such that watershed, graph cuts,
random walker, and shortest paths may all be seen as special
cases of a single general seeded segmentation algorithm. Our
more general formulation has several consequences which
form our contributions.

1. This more general formulation reveals a previously

unknown family of segmentation algorithms which

we term power watershed. In this paper, we give an

algorithm for solving the energy minimization

problem associated with the power watershed and

demonstrate that this new algorithm has the speed
of the standard watershed but performs almost as

well as or better than all of the other algorithms on

our benchmark segmentation tests.
2. Placing watershed in the same framework as graph

cuts, random walker, and shortest paths allows us to

easily incorporate data (unary) terms into conven-

tional watershed segmentation.
3. By placing the watershed algorithm in the same

generalized framework as graph cuts, random

walker, and shortest paths, it is possible to take

advantage of the vast literature on improving

watershed segmentation to also improve these other
segmentation approaches.

4. Defining an energy function for the watershed
optimization allows us to provide an MRF inter-

pretation for the watershed.
5. By incorporating unary terms, we can push

watershed beyond image segmentation into the

area of general energy minimization algorithms

which could be applied to any number of applica-

tions for which graph and MRF models have

become standard.

Before proceeding to the exposition of our technique,

we first review the graph-based segmentation literature in

more detail.
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2 A SHORT REVIEW OF GRAPH-BASED

SEGMENTATION

The algorithms that are reviewed in this section view the
image as a graph with each pixel corresponding to a node
and edges weighted to reflect changes in image intensity,
color, or other features.

2.1 Watershed

There exist many possible ways for defining a watershed
[88], [67], [71], [11], [28], [29]. Intuitively, the watershed of a
function (seen as a topographical surface) is composed of
the locations from which a drop of water could flow toward
different minima. The framework allowing the formaliza-
tion and proof of this statement is the optimal spanning forest
relative to the minima [27], [28]. For the purpose of seeded
image segmentation, the gradient of the image can be
considered as a relief map and, instead of minima, seeds
may be placed by the user or found automatically to specify
the segmentation of the image into desired regions. If the
gradient is inverted, the maxima are considered instead of
minima, and a thalweg is computed instead of watershed. A
thalweg is the deepest continuous line along a valley. In the
rest of the paper, we use by convention the term
“watershed” instead of “thalweg.”

A maximum spanning forest (MSF) algorithm computes
trees spanning all of the nodes of the graph, each tree being
connected to exactly one connected seed component and the
weight of the set of trees being maximum. If the seeds
correspond to the maxima, the segmentation obtained by
MSF is a watershed [28]. An optimal spanning forest can be
computed by Kruskal’s or Prim’s algorithm [52], [70] among
others in quasi-linear time. In Kruskal’s algorithm, the
edges are sorted by decreasing edge weight and chosen in
that order to be added to the forest if they do not create
cycles or join trees that are connected to different maxima.

Watersheds are widely used in image segmentation
because there exist numerous and efficient algorithms that
are easy to implement. However, segmentation results from
watershed may suffer from leaks and degeneracy of the
solution on the plateaus of the weight function.

2.2 Graph Cuts

The labeling produced by the GC algorithm is determined
by finding the minimum cut between the foreground and
background seeds via a maximum flow computation. The
original work on GC for interactive image segmentation
was produced by Boykov and Jolly [17], and this work has
been subsequently extended by several groups to employ
different features [14] or user interfaces [72], [57]. Although
GC is relatively new, the use of minimal surfaces in
segmentation has been a common theme in computer
vision for a long time [36], [15], [63] and other boundary-
based user interfaces have been previously employed [62],
[33], [22], [41]. Two concerns in the literature about the
original GC algorithm are metrication error (“blockiness”)
and the shrinking bias. Metrication error was addressed in
subsequent work on GC by including additional edges [19],
by using continuous max flows [7] or total variation [85].
These methods for addressing metrication error success-
fully overcome the problem, but may incur greater memory

and computation time costs than the application of
maximum flow on a 4-connected lattice. The shrinking bias
can cause overly small object segments because GC
minimizes boundary length. Although some techniques
have been proposed for addressing the shrinking bias [19],
[7], [86], these techniques all require additional parameters
for computation.

2.3 Random Walker

The RW algorithm [39] is also formulated on a weighted
graph and determines labels for the unseeded nodes by
assigning the pixel to the seed for which it is most likely to
send a random walker. This algorithm may also be
interpreted as assigning the unlabeled pixels to the seeds
for which there is a minimum diffusion distance [23], as a
semi-supervised transduction learning algorithm [31] or as
an interactive version of normalized cuts [77], [43].
Additionally, popular image matting algorithms based on
quadratic minimization with the Laplacian matrix may be
interpreted as employing the same approach for grouping
pixels, albeit with different strategies to determine the edge
weighting function [54]. Diffusion distances avoid segmen-
tation leaking and the shrinking bias, but the segmentation
boundary may be more strongly affected by seed location
than with graph cuts [80].

2.4 Shortest Paths (Geodesics)

The shortest path algorithm assigns each pixel to the
foreground label if there is a shorter path from that pixel to
a foreground seed than to any background seed, where
paths are weighted by image content in the same manner as
with the GC and RW approaches. This approach was
recently popularized by Bai and Sapiro [10], but variants of
this idea have appeared in other sources [30], [4], [32]. The
primary advantage of this algorithm is speed and preven-
tion of a shrinking bias. However, it exhibits stronger
dependence on the seed locations than the RW approach
[80], is more likely to leak through weak boundaries (since a
single good path is sufficient for connectivity), and exhibits
metrication artifacts on a 4-connected lattice.

All of the above models may be considered as addressing
energies comprising only unary and pairwise (binary)
energy terms. However, recent literature has found that
the addition of energy terms defined on higher order
cliques can help improve performance on a variety of tasks
[49], [50]. Although we do not address higher order cliques
specifically in this work, we note that all recent progress in
this area has been through an equivalent construction of
pairwise terms. Therefore, our results could also be useful
in that context. Despite the recent popularity of energies
defined on higher order cliques, pairwise terms (and
watershed) are still used ubiquitously in the computer
vision literature and any improvement to these models can
have a broad impact.

An earlier conference version of this work appeared
in [24].

3 A UNIFYING ENERGY MINIMIZATION FRAMEWORK

We begin our exposition by reviewing the unity framework
of [80] before showing how to further broaden this
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framework to provide a general seeded segmentation

scheme that includes the maximum spanning forest

algorithm for watershed as a special case. Examination of

the special cases of this general algorithm reveals a new

class of watershed segmentation models. We prove several

theoretical properties of this new class of watershed and

then give an algorithm for minimizing the energy asso-

ciated with this generalized watershed model.

3.1 A Review of the Existing Generalized
Segmentation Framework

In this section, we review the segmentation framework

introduced by Sinop and Grady in [80]. A graph consists

of a pair G ¼ ðV ;EÞ with vertices v 2 V and edges e 2
E � V � V with cardinalities n ¼ jV j and m ¼ jEj. An

edge, e, spanning two vertices, vi and vj, is denoted by eij.

In image processing applications, each pixel is typically

associated with a node and the nodes are connected locally

via a 4 or 8-connected lattice. A weighted graph assigns a

real value to each edge called a weight. In this work, the

weights are assumed to be nonnegative. The weight of an

edge eij is denoted by wðeijÞ or wij. We also denote wFi
and wBi as the unary weights penalizing foreground and

background affinity at node vi. In the context of

segmentation and clustering applications, the weights

encode nodal affinity such that nodes connected by an

edge with high weight are considered to be strongly

connected and edges with a low weight represent nearly

disconnected nodes. One common choice for generating

weights from image intensities is to set

wij ¼ expð��ðrIÞ2Þ; ð1Þ

where rI is the normalized gradient of the image I. The

gradient for a gray level image is Ii � Ij. Details on the

parameters used are given in the experimental section.

We use w to denote the vector of IRm that contains the

weights wij of every edge eij in G.
The generalized energy proposed in [80] is given by

min
x

X
eij2E
ðwijjxi � xjjÞq þ

X
vi2V
ðwijxi � yijÞq; ð2Þ

where y represents a measured configuration and x

represents the target configuration. In this equation, wij
can be interpreted as a weight on the gradient of the target

configuration such that the first term penalizes any

unwanted high-frequency content in x and essentially

forces x to vary smoothly within an object while allowing

large changes across the object boundaries. The second term

enforces fidelity of x to a specified configuration y, wi being

weights enforcing that fidelity.
For an image segmentation in two classes, given fore-

ground F and background B seeds, (2) may be included in

the following algorithm:

Step 1 : x ¼ arg min
x

X
eij2E
ðwijjxi � xjjÞq

þ
X
vi

ðwFijxijÞq þ
X
vi

ðwBijxi � 1jÞq;

s:t: xðF Þ ¼ 1; xðBÞ ¼ 0;

Step 2 : si ¼ 1 if xi �
1

2
; 0 if xi <

1

2
:

ð3Þ

In other words, we are looking for an optimum x? of (3)
that may be interpreted as a probability for a given pixel to
belong to either the foreground or the background, the final
decision (hard segmentation) s giving the segmentation
being taken by a threshold.

It was shown in [80] that graph cuts gives a solution to
this model when q ¼ 1, random walker gives the solution to
this model when q ¼ 2, and shortest paths (geodesics) gives
a solution to this model as q!1. The case of this model
with a fractional q was optimized in [79] via reweighted
least squares and it was shown that intermediate values of q
allowed for an algorithm which “interpolated” between the
graph cuts, random walker, or shortest paths algorithms.

In related work, Strang showed in [81] that minimization
of the ‘p norm of the gradients of a potential field with
boundary conditions (in continuous space with real-valued
potentials) also leads to (continuous) max flow (for an ‘1

norm of the gradients), the Dirichlet problem (for an ‘2

norm), and shortest paths (for an ‘1 norm). Therefore, the
framework of [80], which we now extend, may be seen as
presenting similar ideas defined on an arbitrary graph,
using the bridge between continuous PDEs and graph
theory provided by discrete calculus [42].

3.2 Broadening the Framework to Watershed

We now broaden the segmentation algorithm in (3) to
include watershed simply by separating the exponent on
the weights and the variables. Specifically, we introduce
parameter p to define a new segmentation model as

Step 1 : x ¼ arg min
x

X
eij2E

wpijjxi � xjj
q

þ
X
vi

wpFijxij
q þ

X
vi

wpBijxi � 1jq;

s:t: xðF Þ ¼ 1; xðBÞ ¼ 0;

Step 2 : si ¼ 1 if xi �
1

2
; 0 if xi <

1

2
:

ð4Þ

As before, the final segmentation s is being chosen via a
threshold.

We observe that (4) can be formulated in a general
manner by rewriting it as the minimization of a general
energy function Ep;qðxÞ by introducing auxiliary nodes (see
[44] for more details):

min
x
�
X
eij2E

wpijjxi � xjj
q|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

smoothness terms

þ
X
vi2V

wpi jxi � yij
q|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

data fidelity terms

: ð5Þ

For example, the unary term wpBi
jxi � 1jq can also be

rewritten as wpi jxi � yij
q, where yi is an auxiliary node and

the signal at this auxiliary node is fixed at yi ¼ 1.
As with (3), when p is a small finite value, then the

various values of q may be interpreted, respectively, as the
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graph cuts (q ¼ 1) and random walker (q ¼ 2) algorithms.

When q and p converge toward infinity with the same

speed, then a solution to (4) can be computed by the

shortest path (geodesics) algorithm. Those three algorithms

form the underpinning for many of the advanced image

segmentation methods in the literature.
It was shown in [2], [3] that when q ¼ 1 (graph cuts) and

p!1, then the solution of (4) is given by a maximum

spanning forest algorithm. Said differently, as the power of

the weights increases to infinity, then the graph cuts

algorithm produces a segmentation corresponding to a

segmentation by maximum spanning forest. Interpreted

from the standpoint of the Gaussian weighting function in

(1), it is clear that we may associate � ¼ p to understand

that the watershed equivalence comes from operating the

weighting function in a particular parameter range. An

important insight from this connection is that above some

value of �, we can replace the expensive max-flow computation

with an efficient maximum spanning forest computation. By

raising p!1 and varying the power q, we obtain a

previously unexplored family of segmentation models

which we refer to as power watershed. An important

advantage of power watershed with varying q is that the

main computational burden of these algorithms depends

on an MSF computation, which is extremely efficient [21].

In the next sections, we explore two cases that are, to the

best of our knowledge, unexplored. First, we show that

case p finite, q!1 corresponds to a Voronoi diagram

computation from the seeds. Second, we prove that when q

is finite, as p!1, there exists a value of p after which

any of the algorithms (regardless of q) may be computed

via an MSF. We then give an algorithm to minimize (4) for

any value of q when p!1. Table 1 gives a reference for

the different algorithms generated by various value of p

and q.

3.3 The Case p Finite, q!1: Voronoi Diagram

Intuitively, we see that when the power over the neighbor-

ing differences tends toward infinity, the weights become

negligible so that the problem obtained from (4) is a

Voronoi diagram of the seeds.
A proof showing that solving the minimization

problem (4) when p ¼ q and q!1 can be achieved by

shortest path computations is given in [80]. Here, we use

the same idea to prove that the problem (4) in the case p

finite, q!1, is equivalent to a Voronoi diagram problem.
As

ffiffi
:q
p

is monotonic, minimizing Ep;q is equivalent to

minimizing
ffiffiffiffiffiffiffiffi
Ep;q

q
p

.

First, we may factorize the objective function of our

problem (4):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
eij2E

wpijjxi � xjj
q

q

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
eij2E

�
wij

p
qjxi � xjj

�q
q

s
: ð6Þ

Taking the limit limq!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i X
q
i

q
p

of a q-norm yields the

maximum norm maxiXi.
Therefore, our objective function may be written as

lim
q!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
eij2E

wpijjxi � xjj
q

q

s
¼ lim

q!1
max
eij2E

wij
p
qjxi � xjj: ð7Þ

The minimization problem can be written as

min
x

max
eij2E

lim
q!1

w
p
q

ijjxi � xjj;

s:t: xðF Þ ¼ 1; xðBÞ ¼ 0:

ð8Þ

When q!1 and p is finite, pq converges toward 0, so wij
p
q

converges toward 1 for every edge of E. Also, for the case p
finite, q!1, can be brought back to the case p ¼ 0, q!1,
whose solution is a Voronoi diagram with an ‘1 norm (due
to the assumed 4-connectivity of the lattice).

3.4 The Case q Finite, p!1 Leading to Watershed

We now generalize the link between GC and MSF
established by Allène et al. [2], [3] by proving that GC,
RW, and generally all cuts resulting out of the minimization
of Ep;q converge to MSF cuts as p tends toward infinity
under the condition that all the maxima of the weight
function are seeded.

The following properties are presented in the special case
of segmentation into two classes, given two sets of labeled
nodes F and B. However, the following results generalize
easily to multilabel segmentation:

Definition 1 (qq-cut). In a graph G, let F and B be two disjoint

nonempty sets of nodes, p and q two real positive values, and

s the segmentation result defined in (4). The set of edges eij
such that si 6¼ sj is a q-cut.

Let Y be a subgraph of G. We say that Y is an extension of
F [B if each connected component of Y contains exactly one
vertex of F [B and each vertex of F [B is contained in a
connected component of Y . Consequently, it is possible to
define a label l on each vertex of Y , 0 to the vertices connected
to a vertex ofB, and 1 to the vertices connected to a vertex ofF .

Examples of extensions appear in Fig. 1, where F and B
are displayed in (a), and two possible extensions in bold in
(b) and (c), with their corresponding labels.

Let F be a subgraph of G. We say that F is a spanning
forest (relative to F [B) if:

1. F is an extension of F [B,
2. F contains no cycles, and
3. V ðFÞ ¼ V (F is spanning all vertices of G).

The weight wF of a forest F for w is the sum of the weight
of all edges belonging to F : wF ¼

P
eij2F wij.

Definition 2 (MSF, MSF cut). We say that a spanning forest F
is an MSF for w if the weight of F is maximum, i.e., greater or

equal to the weight of any other spanning forest.
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TABLE 1
Relationship of Algorithms to Parameter Choices in (4)

Our generalized scheme for image segmentation includes several
popular segmentation algorithms as special cases of the parameters p
and q. The power watershed is previously unknown in the literature, but
may be optimized efficiently with a maximum spanning forest calculation.



Let F be an MSF for w, and l its associated label. An MSF
cut for w is the set of edges eij such that li 6¼ lj.
We call a subgraph M a maximum of w if M is connected,

all the edges of M have the same weight wM , and the weight

of any edge adjacent to M is strictly lower than wM .
Finally, a plateau is a subgraph of G consisting of a

maximal set of nodes connected with edges having the same

weight.
Those definitions are compatible with the watershed cut

framework of [28]. We may now introduce a general link

between the MSF segmentation result and the solution of

the optimization of (4) when the power of the weights

converges toward infinity.

Theorem 1. Let M be the subgraph of G composed of the union of

all maxima of the weight function w. If every connected

component of M contains at least a vertex of B [ F and q � 1,

then any q-cut when p!1 is an MSF cut for w.

Proof. The proof is based on the construction of a set of edges

that belong to the q-cut when p!1. During the

construction, we consider the edges of E in decreasing

order, following Kruskal’s algorithm for maximum

spanning forest construction. At the end of the construc-

tion, the q-cut obtained is an MSF cut forw. The successive

steps of the proof are illustrated in an example in Fig. 1.
At each step, we consider the set Emax of edges of

maximum weight wmax. We normalize all the weights by
dividing them by wmax, to obtain all the weights between
0 and 1 with the normalized weight of Emax equal to 1.
The energy to minimize is also

X
eij2E

wij
wmax

� �p
jxi � xjjq; s:t:

xðF Þ ¼ 1;
xðBÞ ¼ 0:

�
ð9Þ

As all maxima of the weight function contain seeds,
each connected component of Emax has at least one
labeled vertex. For every connected component Cmax of
Emax, two cases are possible:

If Cmax contains no vertices of different labels, the
edges of weight wmax cannot be a part of the minimum
q-cut energy when p tends toward infinity because all
the other normalized weights converge toward 0 and so
does any finite sum of these weights. Choosing xi ¼ xj
for all edges eij 2 Cmax is the only possibility to
eliminate the terms of maximum weight of (9). The
edges of Cmax are not included in the q-cut, and also do

not belong to the MSF cut as they have to be merged to
labeled nodes to form an MSF (e.g., Fig. 1b).

If Cmax contains vertices of different labels, any
labeling can be done on the plateau, because adding
edges of Cmax to the q-cut or not will always give an MSF
cut on the plateau (e.g., Figs. 1c and 1d).

Repeating the steps recursively until all of the vertices
are labeled, we find that in building a q-cut, we are also
building an MSF cut for w in exactly the same manner as
with Kruskal’s algorithm. tu

In Theorem 1, the condition for seeds to be the maxima of

the weight function is necessary as shown in Fig. 2.
We can note that if the weights are all different, the MSF

cut is unique and Theorem 1 is also true without the

condition for seeds to be the maxima of the weight function.
The next property states that when the power on the

neighboring node differences is strictly greater than one, the

minimization of Ep;q admits a unique solution.

Property 1. If q is a real number such that 1 < q <1, then the

solution x to problem (4) is unique.

Proof. Let A be the incidence matrix of the graph G and x a

vector of IRn
þ. We note by j � j the elementwise absolute

value operator. The function g : x! Ax is convex. The

function h : x! jxjq is convex and nondecreasing. The

function f : x! wTx is also convex and nondecreasing.

Note that Ep;qðxÞ can be written in the following way:
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Fig. 1. Illustration of different steps in the proof of Theorem 1 for q ¼ 2. The values on the nodes correspond to x, their color to s. The bold edges
represent edges belonging to an MSF. (a) A weighted graph with two seeds, all maxima of the weight function are seeded, (b) first step, the edges of
maximum weight are added to the forest, (c) after several steps, the next largest edge set belongs to a plateau connected to two labeled trees,
(d) minimize (4) on the subset (considering the merged nodes as a unique node) with q ¼ 2 (i.e., solution of the combinatorial Dirichlet problem),
(e) another plateau connected to three labeled vertices is encountered, and (f) final solutions x and s obtained after a few more steps. The q-cut,
which is also an MSF cut, is represented in dashed lines.

Fig. 2. Let x ¼ arg minEpq. When the maxima of the weight function
are not seeded, the threshold of limp!1 x can be different from the
limit limp!1 of the threshold of x. (a) Labeling x ¼ arg minEpq and
corresponding q-cut (q ¼ 2) when the weights are at the power p ¼ 1
and below for an arbitrary big value of p. The q-cut in dashed line
remains in the center. (b) Labeling x ¼ arg min limp!1 Epq and cut
(dashed) corresponding to the threshold of x. In this example, the q-cut
is not an MSF cut, justifying the condition in Theorem 1. Note that the
threshold of limp!1 x is an MSF cut, as stated later in Property 2.
(a) q-cuts for different p. (b) Cut on limp!1 x.



Ep;qðxÞ ¼ f � h � gðxÞ ¼ wpT jAxjq: ð10Þ

As h is a nondecreasing convex function and g is convex,
h � g is convex. As f is a nondecreasing convex function,
Ep;q is convex.

If 1 < q <1, the function h � g is strictly convex, so
Ep;q is a strictly convex function, and hence the
minimization of Ep;q subject to the boundary constraints
is achieved by a unique x. tu
Before introducing in Section 4 an algorithm to compute

the solution x to the optimization of Ep;q when p!1, we
present an interpretation of the minimization of our general
energy as a maximum a posteriori approximation.

3.5 Interpretation as a Markov Random Field

An optimum x? of (5) may be interpreted as a probability for
each pixel to belong to the object (as opposed to back-
ground). More rigorously, as shown in [78], this segmenta-
tion model can be viewed as an estimation of a continuous-
valued MRF. By linking the watershed algorithm to this
framework, it becomes possible to view the watershed
algorithm as the MAP estimation of an MRF. However, note
that this analysis allows us to interpret the watershed as the
MAP estimate for a particular MRF, which is in contrast to
previous efforts to link a probabilistic framework with the
watershed (such as [6], which uses random placements
of seeds to define the most probable locations of the
watershed lines).

In this section, we follow the development of [78], with

modifications to incorporate the power watershed.
In the interpretation as an MRF, we define the binary

segmentation label si for node vi as a Bernoulli random

variable (i.e., si ¼ 1 if vi is foreground and si ¼ 0 if vi is

background), in which the variable xi denotes the success

probability for the distribution of si, i.e., pðsi ¼ 1jxiÞ. In this

case, the success probability may be written as

pðsi ¼ 1jxiÞ ¼ maxfminfxi; 1g; 0g ¼
1; if xi > 1;
xi; if 0 � xi � 1;
0; if xi < 0:

8<
:

ð11Þ

However, the generalized mean value theorem in [78]
guarantees that the optimal solution x? to (5), assuming that
the auxiliary nodes have values between 0 and 1, takes its
values between 0 and 1 when the weights are all positive-
valued. Consequently, in our context, we may simply set
pðsi ¼ 1jxiÞ ¼ xi without concern that xi will be outside the
interval ½0; 1	.

Our goal is now to infer the hidden variables xi from the
image content I. The hidden variables may be estimated in
a Bayesian framework by considering the posterior model

pðx; sjIÞ / pðxÞpðsjxÞpðIjsÞ ¼ pðxÞ
Y
vi2V

pðsijxiÞ
Y
vi2V

pðIijsiÞ;

ð12Þ

in which pðxÞ models how the parameters of the Bernoulli
variables vary spatially. The spatial smoothness prior is
parameterized by

pðxÞ / exp ��
X
eij2E

wpijjxi � xjj
q

0
@

1
A; ð13Þ

where � > 0 and the weights are strictly positive.
We can estimate the marginalized MAP criterion to

obtain the optimum x
 by setting

x
 ¼ arg max
x
pðxÞpðIjxÞ ¼ arg max pðxÞ

X
s

pðIjsÞpðsjxÞ:

ð14Þ

Unfortunately,
P

s pðIjsÞpðsjxÞ is not straightforward to
estimate. Therefore, we assume that we can parameterize
pðIijxiÞ as

pðIjxÞ / exp �
X
vi2V

wpi0jxi � 0jq �
X
vi2V

wpi1jxi � 1jq
 !

; ð15Þ

where wi0 � 0 and wi1 � 0, and these terms act to bias the
parameters xi toward 0 and 1. Similarly, these terms can be
used to encode the user interaction (seeding) by setting a
foreground seed vi to have weights ðwi0; wi1Þ ¼ ð0;1Þ and
a background seed to have weights ðwi0; wi1Þ ¼ ð1; 0Þ.
With this parameterization, then the MAP estimate
described in (14) is equal to our energy minimization
problem from (5).

While the use of binary variables (the s variable in our
formulation) is more common in recent work which applies
MRFs to image segmentation, our focus on estimating a
real-valued parameter or variable is far from unique in the
computer vision literature. For example, in Gaussian MRFs,
the variables each have a Gaussian distribution and the goal
is often to estimate the (real-valued) parameters of these
variables (i.e., mean and/or variance). These kinds of MRFs
have been applied in image segmentation and other pattern
recognition applications [48], [5], [83]. Beyond Gaussian
MRFs, anisotropic diffusion has been interpreted as a
continuous-valued MRF [61], [51] and MRFs requiring

COUPRIE ET AL.: POWER WATERSHED: A UNIFYING GRAPH-BASED OPTIMIZATION FRAMEWORK 1389

Fig. 3. Example of the behavior of the power watershed algorithm for q ¼ 2 with the formation of a plateau that was not present in the original graph.
(a) Initialization: A weighted graph with two seeds. (b), (c), (d) First steps: The nodes of edges of maximum weight are merged. (e) The next largest
edge set belongs to a plateau connected to two different labels. (f) Minimize (4) on the subset with q ¼ 2 (i.e., utilize the random walker algorithm on
the plateau). (g) Final segmentation obtained after one more step.



continuous-valued estimations have appeared in both early

work on computer vision [55], [37], [35], [16] and also

recently [56], [74], [75].
We now introduce an algorithm to optimize Ep;q when

p!1, and show that the threshold s of that solution

produces an MSF cut.

4 ALGORITHM FOR OPTIMIZING THE CASE q FINITE,
p!1

The algorithm proposed in this section may be seen as

Kruskal’s algorithm for maximum spanning tree with two

main differences—a forest is computed in place of a tree,

and the optimization

min
x

X
eij2plateau

jxi � xjjq ð16Þ

is performed on the plateaus (the maximal set of nodes

connected with edges of same weight). The power watershed

algorithm is detailed in Algorithm 1, and an illustration of

different steps on an example is given in Fig. 3.

In Algorithm 1, the merge operation of a set of nodes S

consists of removing the nodes in S from the graph and

replacing these nodes with a single node such that any

edge spanning a node in S to nodes in S now connects the

merged node to the same nodes in S. Additionally, in the

above algorithm, the unary terms in (4) are treated as binary

terms connected to phantom seeds vF and vB, i.e.,

X
vi

wpFijxi � 0jq þ
X
vi

wpBijxi � 1jq

¼
X
vi

wpFijxi � xBj
q þ

X
vi

wpBijxi � xF j
q:

ð17Þ

We prove in the next section that the labeling x obtained

by Algorithm 1 optimizes (4).
An illustration for this section is given in Fig. 4. The

segmentation was performed with progressively larger

values of p, keeping q ¼ 2 and shows that the segmentation

result converges to the result given by the above algorithm

for the power watershed with q ¼ 2. The value q ¼ 2 was

employed for this example since it is known that q ¼ 2

forces a unique minimum to (4) regardless of the value of p.
An implementation of Algorithm 1 when q ¼ 2 can be

downloaded from sourceforge [1].

4.1 Justification of the Power Watershed Algorithm

We now prove that the algorithm we propose optimizes the

energy presented in our framework when q > 1 and p!1.
Let us define the labeling x
 as the solution x
 ¼

arg minxEp;qðxÞ defined in (4) subject to the boundary

constraints. We note the labeling obtained by Algorithm 1

by �x.
The two following theorems, i.e., Theorems 2 and 3, state

that the energy of the solution computed by the power

watershed algorithm converges to the energy which

minimizes Ep;q when p!1.

Theorem 2. Let p; q be real positive numbers. Let wM be the

maximum weight of the graph G. For every � > 0, there exists

a real k such that if p > k, then

0 � Ep;qð�xÞ
wMp

� Ep;qðx

Þ

wMp
� �: ð18Þ

The proof of this theorem is given in the Appendix.

Theorem 3. If q > 1, the potential x
 obtained by minimizing the

energy of (4) subject to the boundary constraints converges

toward the potential �x obtained by Algorithm 1 as p!1.

Proof. We prove that by optimizing (4), we are performing

the same steps as Algorithm 1. As in Theorem 1, at each

step we consider a set of connected edges of maximum

weight Emax of E, and we normalize all of the weights,

also minimizing (9).
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Fig. 4. Illustration of progressive convergence of the random walker
result to the power watershed result as p!1, using q ¼ 2. Top row:
Segmentation results obtained by random walker with weights at the
power p ¼ 1, p ¼ 8, p ¼ 25 and, finally, by the power watershed
algorithm. Bottom row: Corresponding potentials for p ¼ 1, p ¼ 8, p ¼
25 and the input seeds.



If Emax contains no vertices of different labels, then
the weights wmax cannot be a part of the minimum
energy when p tends toward infinity because all of the
other normalized weights converge toward 0 and so
does any finite sum of these weights. Choosing xi ¼ xj
for every edge eij ¼ emax 2 Emax is the only possibility to
eliminate the only term(s) of maximum weight of (9).
This choice of �xi ¼ �xj is also performed by Algorithm 1
by the “merge” operation. From the standpoint of
energy minimization, having xi ¼ xj in the graph G
may be brought back to having one unique node instead
of vi, vj, and eij. We can also replace vi and vj by a
unique node.

If Emax contains vertices of a different label, as the
weights of Emax are arbitrarily greater than the weights of
the unprocessed edges, minimizing (9) boils down to
minimizing X

eij2Emax

jxi � xjjq; ð19Þ

with boundary conditions given by already labeled
nodes. It is exactly what is performed by Algorithm 1
in the “If” part.

Repeating the steps recursively until all the vertices
are labeled, we find that the Algorithm 1 procedure
agrees with the energy minimization of (5). tu

We can note that even if Algorithm 1 minimizes the
energy Ep;q in the case p!1, several solutions �x are
possible when q ¼ 1.

Property 2. For any q � 1, the cut C defined by the segmentation
s computed by Algorithm 1 is an MSF cut for w.

Proof. At each step of Algorithm 1, we consider a set of
connected edges of maximum weight Emax.

If Emax contains no vertices of different labels,
Algorithm 1 chooses xi ¼ xj for the edges eij 2 Emax.
The edges of Emax are not included in C, and also do not
belong to the MSF cut as they have to belong to an MSF
since their weight is maximum.

If Emax contains vertices of different labels, any
labeling can be done on the plateau because adding
edges of Emax to the q-cut or not will always give an MSF
cut on the plateau.

Repeating the steps of Algorithm 1 recursively until
all of the vertices are labeled, we find that we are
building an MSF cut for w. tu

4.2 Using Mathematical Morphology for an Efficient
Preprocessing Step

One difficulty in Algorithm 1 is dealing with the set of
merged nodes. More precisely, when solving (16), we need
to keep track of which nodes have merged (with some
nodes merged multiple times). If we look informally at the
“emergence” process underlying the algorithm, it will help
us to locate those maximal merged nodes. Using topogra-
phical references, we view the weights as the surface of a
terrain, with the weight of an edge corresponding to its
altitude. If the surface were completely covered by water
and the level of water slowly decreases, then islands
(regional maxima) would appear that grow and merge. At

a given level, when an island that does not contain a seeded

pixel meets an island containing one, we can give a value to

the (maximal) merged node. Indeed, we can see that any

merged node consists of a connected component of an

upper-level set of the weights. More precisely, let � 2 IRþ

and w be the weight function defined on E. We define

w½�	 ¼ fe 2 EjwðeÞ � �g: ð20Þ

The graph induced by w½�	 is called a section of w. A

connected component of a section w½�	 is called a component

of w (at level �).
The components of w can be used to find merged nodes.

Property 3. Any maximal merged node corresponds to a

component of w that:

. does not contain any seed and

. is not contained in a larger unseeded component of w.
Conversely, any component of w satisfying these two

properties corresponds to a maximal merged node in
Algorithm 1.

The components of w, ordered by the inclusion relation,

form a tree called the max-tree [73] or the component tree [46],

[47], [20]. Several efficient algorithms exist to compute the

component tree, some quasi-linear [66] (based on union-

find [84]) and some parallelized [89], [58]. From Property 3,

it is easy to see how to use this tree in Algorithm 1. Note

that such a tree, which keeps track of all components, can be

used when one wants to improve a given segmentation

result by adding extra seeds.
Another tool from mathematical morphology has been

used as a preprocessing step for watershed segmentation

with markers. It is called geodesic reconstruction from the

markers [59], [12], and is given as a function wR such that,

for every edge e, we set wRðeÞ to be equal to the level � of

the highest component of w containing e and at least one

seed node. Note that any component of wR contains at least

one seed.

Property 4. Any maximal merged node corresponds to a

connected set of edges eij that belong to a plateau of wR and

that satisfy wij > wRðeijÞ. The converse is also true.

Property 4 also suggests that geodesic reconstruction can

be used as preprocessing in Algorithm 1. Note that there

exist some very efficient and easy to implement algorithms

to compute a geodesic reconstruction [87], [68], [38]. Both

the component tree and the geodesic reconstruction have

the same theoretical complexity, so either approach could

be used profitably to reduce the bookkeeping necessary to

keep track of merged nodes.
Property 4 also suggests links between our framework

and the classical watershed-based segmentation frame-

work [12], [59], [60]. The framework of watershed cuts

[28], [29] allows us to make a precise statement about this

connection. The cut provided by a maximum spanning

forest with one different seed for every maxima is called

a watershed cut. Since geodesic reconstruction removes all

maxima, which are not connected to a seed, then we can

state the following:
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Property 5. Any q-cut is a watershed cut of the reconstructed
weights.

This statement ties the cuts produced by our power
watershed framework to the concept of watershed cuts in
the morphology literature.

4.3 Uniqueness of Solution

Most of the energy minimization problems in our frame-
work, i.e., the cases optimized by graph cuts, shortest path
forests, and maximum spanning forest algorithms (and
watershed in general [12], [26], [13], [71], [34]) have the
problem that the optimum solution may not be unique, for
example, on plateaus. That implies that the result of each
one of these algorithms depends on the implementation.

To remove such dependency, two approaches have been
proposed:

. A classical approach is to compute a geodesic
distance on the plateau [71] and to use that distance
as a way to distinguish between points of the plateau.
Generally, the cut is located on the “middle of the
plateau,” but other locations are possible according to
the application [26], [67].

. Another proposal is the tie-zone watershed [9]; it
takes into account all the possible solutions derived
from a shortest-path-based watershed to generate a
unique solution: When the multiple solutions dis-
agree with each other on the segmentation result of a
region (i.e., the label to be assigned), the region is
included in the tie-zone and a specific tie value is
assigned to each node, corresponding to the prob-
ability of assigning a label to the node according to
the number of all possible assignments. A major
drawback of that tie-zone approach is that nodes
with equal probability of belonging to different label
classes can appear.

In contrast to that approach, the power watershed computes
a probability map (consisting of x in (4)) by minimizing a
global energy function and, whenever q is finite and q > 1,
the solution is unique.

5 RESULTS

5.1 Generality of the Framework

5.1.1 Adding Unary Terms

We now present an application of the framework to unseeded
segmentation. Unary terms were first employed with graph
cuts in [44]. Since this initial work, many other applications
have used graph cuts with unary terms. Gathering watershed
and graph cuts into the same framework allows us to employ
unary terms for watershed computation.

The unary terms in (4) are treated as binary terms
connected to phantom seeds vF and vB as in (17).

For the example of image segmentation with two labels,
the weights wBi between vB and vi can be fixed to the
absolute difference of the pixel vi intensity with the mean
of the gray scales plus the variance, and wFi to the
absolute difference of the pixel vi intensity with the mean
of the gray scales minus the variance. An example of such
a weighted graph is given in Fig. 5. With this construction,
we can apply any of the algorithms in our framework to
the resulting graph. An example of the result is shown in
Fig. 6 for the purpose of segmenting blood cells. Note that
those examples show how to add two phantom seeds, but
this idea is extendable to more than two labels, as
explained in Section 4.1.2. To the best of our knowledge,
this is the first time that the watershed algorithm has been
used as an unseeded segmentation method (i.e., without
markers or seeds).

5.1.2 Multilabel Segmentation

Minimizing exactly the energy E1;1 is possible by using the
graph cuts algorithm in the case of two labels, but is NP-
hard if constraints impose more than two different labels.
However, the other algorithms presented in our framework
can perform seeded segmentation with as many labels as
desired efficiently.

We detail the method of multilabel segmentation in the
case of the power watershed algorithm. Let N represent the
number of different labels l ¼ 1; 2 . . . ; N . Instead of comput-
ing an x solution of the Foreground/Background as is done
for the two-labels segmentation, N solutions xl have to
be computed. In order to perform N-labels segmentation,
we may define seeds at a node i by setting xli ¼ 1 for a given
label l and x

�l ¼ 0 for any label other than l.
The segmentation result is obtained by affecting each

node vi to the label where xli is maximum:

si ¼ arg max
l
xli: ð21Þ

An example of the result is shown in Fig. 7.
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Fig. 5. Example of the unseeded segmentation of a 3� 3 image
computed with a maximum spanning forest (watershed).

Fig. 6. Unseeded segmentation using unary terms. (a) Original image of
blood cells. (b) Graph cuts. (c) MSF (watershed).



5.2 Seeded Segmentation

We now demonstrate the performance of power watershed

with respect to the other seeded image segmentation

algorithms. In the introduction, we discussed how many

of the leading graph-based segmentation algorithms (e.g.,

Grabcut, lazy snapping, and closed-form matting) have

graph cuts, random walker, and shortest paths or

watershed as an underlying component. Consequently, we

will not compare the Power Watershed to any of the

complete segmentation systems listed above, but rather

against the comparable (component) algorithms of graph

cuts, random walker, shortest paths, and watershed.

Additionally, to simplify the comparison, we will not

employ unary terms in our segmentations.

5.2.1 Quantitative Assessment

Our experiments consist of testing five algorithms embody-

ing different combinations of p and q, consisting of GC, RW,

and SP, watersheds/MSF, and power watershed using the

power q ¼ 2. As before, we chose to employ the power

watershed algorithm with q ¼ 2 due to the uniqueness of

the solution to (4) for this setting.
We used the Microsoft “Grabcut” database available

online [72], which is composed of 50 images provided with

seeds. However, the seeds provided by the Grabcut

database are generally equidistant from the ground truth

boundary. To remove any bias from this seed placement on

our comparative results, we produced an additional set of

seeds by significantly eroding the original foreground

seeds. The weights are set for all algorithms according to

(1) with the value of � hand-optimized to provide the best

results independently for each algorithm. As only the order
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Fig. 7. Example segmentations with more than two labels. (a) Seeds. (b), (c) Power watershed result (q ¼ 2).

Fig. 8. Example segmentations using the provided (top images) and skeletonized (bottom images) set of seeds on the Grabcut database images:
(a) Seeds, (b) graph cuts, (c) random walker, (d) shortest path, (e) maximum spanning forest (standard watershed), and (f) power watershed (q ¼ 2).

TABLE 2
Mean Errors on the GrabCut Database

Using Symmetically Eroded Seeds

The weight parameter � was set to 600 for Graph cuts, 700 for random
walker, and 900 for shortest paths in order to maximize the
performances of each algorithm.

TABLE 3
Mean Errors on the GrabCut Database

Using Asymmetically Eroded Seeds



of the weights is taken into account in the MSF and power
watershed algorithms, those two algorithms are indepen-
dent of �. We used the color gradient given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxððRi �RjÞ2; ðGi �GjÞ2; ðBi �BjÞ2Þ
q

for a color image of red, green, and blue components,
R;G;B. The normalization is achieved by dividing the
gradient by the maximum value of the gradient over every
edge in the graph G. Example seeds and segmentations for
the five algorithms with the first seeding strategy are shown

at the top of Fig. 8a and with the second seeding strategy at
the bottom of Fig. 8a.

Tables 2 and 3 display the performance results for these
algorithms. We quantify the error in the results using four
different standard segmentation measures used in [90],
namely Boundary Error (BE), Rand Index (RI), Global
Consistency Error (GCE), and Variation of Information
(VoI). Good segmentation results are associated with low
BE, high RI, low GCE, and low VoI.

When segmenting with the first seeding strategy (the
seeds contained in the Grabcut database), the shortest path
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Fig. 9. Computation time for 2D and 3D seeded image segmentation. For each dimension, the times were generated by segmenting the same image
scaled down.

Fig. 10. Example of 3D image segmentation. The foreground seed used for this image is a small rectangle in one slice of each lung and the
background seed is the frame of the image.



algorithm is the best performer, because this algorithm does
well when the seeds are placed roughly equidistant
from the desired boundary [80] as they are with the first
set of seeds.

The experiment on the second set of seeds shows that
shortest paths are not robust to the seeds’ number and
centering. In fact, with this set of seeds, shortest paths is the
worst performer. Graph cuts performs the best under this
second seeding strategy but was the worst performer on the
first one. Power watershed is in second position under the
second seeding strategy, showing a good robustness to both
seed quantity and location. It is interesting to note that with
the first set of seeds, power watershed and maximum
spanning forest results are quite similar, but with the
asymetrically eroded seeds, the power watershed results
outperform the standard maximum spanning forest (wa-
tershed) results. The second set of seeds contained many
areas where several contours could possibly be found,
given the seeds. The merging operation of the power
watershed gathers undetermined areas and, in performing
the random walker in these ambiguous regions, often
generates a better labeling than the arbitrary labeling
produced by the Prim’s or Kruskal algorithms when
computing the maximum spanning forest (watershed).

5.2.2 Computation Time

Computation times for segmenting 2D and 3D images using
the algorithms of the framework are shown in Fig. 9. For all
MSF algorithms, including the power watershed algorithm,
only the order of the weights is taken into consideration for
the segmentation. Also, there is no parameter choice to
make for � and no exponential to take in the weight
function, so it is possible to use a linear sort of the weights.

The worst-case complexity of the power watershed
algorithm (obtained if all of the edges weights are equal)
is given by the cost of optimizing (4) for the given q. In the

best-case scenario (all weights have unique values), the

power watershed algorithm has the same asymptotic

complexity as the algorithm used for MSF computation,

that is to say, quasi-linear. In practical applications where

the plateaus have size less than some fixed value K, then

the complexity of the power watershed algorithm matches

the quasi-linear complexity of the standard watershed

algorithm. In our experiments in Section 5 with practical

image segmentation tasks, the dependence of the computa-

tion time on the image size of the power watersheds is very

similar to the dependence in standard watersheds. For

generating the computation time for the graph cuts

algorithm, we used the software provided at http://

www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html and

described in [18]. Our implementation of the shortest path is

performed with a Fibonacci heap using double precision

weights. For the implementation of Prim’s algorithm,

weights with integer precision were used and red and

black tree as a sorting data structure. Finally, the random

walker algorithm was implemented following the multigrid

method described in [40] for 2D image segmentation, and

by a conjugate gradient descent method for 3D image

segmentation. An example of 3D segmentation of a CT

image of lungs is shown in Fig. 10.

5.2.3 Qualitative Assessment

Unlike most watershed algorithms, the power watershed
algorithm (with q ¼ 2) has the property of providing a
unique segmentation. Fig. 11 shows the behavior of the
algorithm of our framework in presence of a plateau.
Additionally, the power watershed (with q ¼ 2) is not
subject to the same shrinking bias exhibited by graph cuts
segmentation. Fig. 12 compares the results of graph cuts
and the power watershed on an example in which the
shrinking bias could substantially affect the result.

The power watershed is an MSF, and therefore it inherits
the standard properties of MSF, among others, contrast
invariance and scale invariance [3]. The contrast invariance
property means that if a strictly monotonic transformation is
applied to the weights of the graph, then the algorithm
produces exactly the same result. This property is due to the
fact that only the order or the weights is used to build a
maximum spanning forest. The scale invariance property
means that if we extend the image or graph in a way that does
not change the relative ordering of weights, for example, by
linear interpolation, the result is invariant.

We summarize the performance of the algorithms of the

framework:
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Fig. 11. (a) Image with foreground (red) and background (blue) seeds,
(b) a segmentation obtained with graph cuts, (c) segmentation obtained
with Prim’s algorithm for maximum spanning forest, and with a shortest
path algorithm, (d) segmentation obtained with random walker, as well
as power watershed with q ¼ 2.

Fig. 12. Example comparison of Graph cuts and Power watershed faced
to a weak foreground seeds quantity. (a) Seeds (the foreground seed is
in red, indicated by an arrow), (b) graph cuts segmentation result,
(c) power watershed (q ¼ 2) result.



. GC is a good fit for 2D image segmentation into two
labels when the seeds are far away from the
boundary (asymmetric seeding), but is too slow to
be used for 3D segmentation.

. SPF (geodesics) may be used if the object to segment
is well-centered around foreground and background
seeds.

. The RW is efficient and performs well for both
seeding strategies (equidistant seeds and strongly
asymmetric seeds).

. Maximum Spanning Forest (watershed) algorithms
provide better segmentations than SPF when seeds
are not centered, and their fast computation time
makes the algorithm suitable for 3D segmentation.

. The power watershed algorithm when q ¼ 2 has the
additional property of a well-defined behavior in
the presence of plateaus improving also the quality of
the segmentation compared to standard MSF. As an
MSF, it is still sensitive to leaking, but less so than
traditional algorithms due to the random walk
behavior. The computational speed of the power
watershed is faster than all of the algorithms except
the pure MSF.

6 CONCLUSION

In this paper, we clarified, simplified, and extended the
recent work connecting graph cuts and watershed [2], [3].
Extending the framework of [80], we have proposed a
general framework encompassing graph cuts, random
walker, shortest path segmentation, and watersheds. This
connection allowed us to define a new family of optimal
spanning forests for watershed segmentation algorithms
using different exponents, which we termed the “power
watershed.” We produced an algorithm for computing the
power watershed and our experiments showed that the
power watershed with q ¼ 2 retains the speed of the MSF
algorithm while producing improved segmentations. In
addition to providing a new image segmentation algorithm,
this work also showed how unary terms could be employed
with a standard watershed algorithm to improve segmenta-
tion performance.

Viewed as energy minimization algorithms, graph cuts,
random walker, and shortest paths have found many
different applications in the computer vision field that go
beyond image segmentation, such as stereo correspon-
dence, optical flow, and image restoration (e.g., [82], [76],
[53]). By placing the optimal spanning forest algorithm for
watersheds in the same energy minimization framework as
these other algorithms, watershed algorithms may find new
uses and applications within the computer vision field
beyond its traditional domain of image segmentation. Due
to the relative speed of the optimal spanning forest
algorithms, we believe that it may be an attractive
alternative to current systems in these other applications
of energy minimization.

Future work will develop along several directions. One
direction is the further improvement of image segmentation
algorithms using power watersheds as a component to
larger systems in a similar manner as graph cuts, random
walker, and shortest paths have been used. Additionally,
we hope to use the common framework for these algorithms

to leverage existing ideas from the watershed literature into

these other algorithms. In particular, hierarchical schemes

[68], [64], [65], [8], [45] look like an interesting topic that can

take advantage of the power watershed uniqueness. A

second direction for future work will be to characterize the

limits of the watershed algorithm as an energy minimiza-

tion procedure [25]. Ultimately, we hope to employ power

watersheds as a fast, effective alternative to the energy

minimization algorithms that currently pervade the wide

variety of applications in computer vision.

APPENDIX

Proof of Theorem 2.

Ep;q xð Þ
wMp

¼
X
eM

jxi � xjjq þ
X
eij 6¼eM

wij
wM

� �p
jxi � xjjq:

Ep;qð�xÞ
wMp

� Ep;qðx

Þ

wMp
¼
X
eM

j �xi � �xjjq �
X
eM

jx
i � x
j j
q

þ
X
eij 6¼eM

wij
wM

� �p
j �xi � �xjjq �

X
eij 6¼eM

wij
wM

� �p
jx
i � x
j j

q:

ð22Þ

The first part of (22) is bounded by 0, i.e.,X
eM

j �xi � �xjjq �
X
eM

jx
i � x
j j
q � 0; ð23Þ

because the energy obtained with �x cannot be greater

than the one obtained by the optimal solution x
. More

precisely, if there are no plateaus with different labels,

the x
i , x


j computed on the edges eM with Algorithm 1

are equal, leading to a sum equal to 0. Else (if there are

plateaus with different labels),
P

eM
jxi � xjjq subject to

the boundary constraints is minimized on the plateaus,

so the solution is optimal.
The last part of (22) is also negative, i.e.,

�
X
eij 6¼eM

wij
wM

� �p
jx
i � x
j j

q � 0: ð24Þ

It only remains to bound the middle part of (22),

X
eij 6¼eM

wij
wM

� �p
j �xi � �xjjq �

X
eij 6¼eM

wij
wM

� �p
�M2

wM2

wM

� �p
;

ð25Þ

with M2, the number of edges of weight inferior to wM ,

and wM2
, the second maximum weight.

Thus, we have

Ep;qð�xÞ
wMp

�Ep;qðx
Þ
wMp

�M2
wM2

wM

� �p
; ð26Þ

p � k ¼
log �

M2

log
wM2

wM

: ð27Þ

tu
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