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Think globally, act locally 1.

À la mémoire de mes grands-parents Juliette & Marcel Talbot

1Attributed to town planner and social activist Patrick Geddes, 1915
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Prelude

The work presented in this thesis extends from 1987 to 2013, a unusually long period for
an “habilitation” thesis. Significantly, they took place in three different countries: Australia,
France and the USA. A lot of people contributed to this work. It is unfortunate that I will
most likely forget to thank all of those who would deserve a mention. Tens of pages would
not be sufficient. I hope I can be forgiven.

I will nonetheless attempt to go through a list, in chronological order, which will allow me
to also outline a personal and scientific path.

First of all there are moments in life that change if not whole lives, at least careers. One
of these moments happened when I was hailed one day in November 1987 by my friend Denis
Leconte, a.k.a “Nop”, then intern at the AAI company, operating at the Ecole Centrale de
Paris in the electronics lab, to see if I was interested in an internship too. It would involve a
project: implementing some image analysis operators from a weird theory called Mathematical
Morphology. I said yes, of course. Denis, one year my senior, had already been a mentor at
ECP in various technical matters, and I trusted him completely. Denis later emigrated to
the USA, worked at JPL, married, had kids there and recently got a technical Oscar for his
imaging work in Hollywood.

Another interesting employee of AAI, beginning her thesis was Isabelle Bloch. She gave me
the first explanation of what were erosions, dilations, distance transforms, skeletization and so
on; she gave me many articles to read and provided all the help I needed. This collaboration
with AAI lasted two years, and we never really lost touch with one another following this.

A little bit later, in 1989, three persons from Saint-Gobain: Jean-Pierre Poitevin, Cather-
ine Langlais and Daniel Hanton read my CV, found the line concerning image analysis and
mathematical morphology and on this basis offered me a “Volontariat du Service National
Actif” (VSNA) at MIT to work on the segmentation and measurement of man-made vitreous
fibres, as well as a CIFRE convention to start a PhD, in lieu of a more standard military
service.

Of course this sentence is a huge shortcut. A host laboratory was needed, for this none
other than the Centre de Morphology Mathématique, at the Ecole des Mines de Paris, then
headed by Jean Serra, agreed to take me on. At the time an engineering diploma was not
sufficient to start a Doctorat, so Jean-Claude Simon agreed to take me in his DEA, the
IARFAG of then Université Paris-VI, even as courses were about to start.

In Cambridge, MA, Linn W. Hobbs, professor in the materials science department at MIT,
agreed to accept me in his lab. I was the sole computer scientist among all these physicists,
but I was wholly welcome (probably because I could maintain the VAX computer, but still...).
I spent a very productive and enjoyable time at MIT between January 1991, the start of the
first gulf war, and October 1992. I used a NeXT workstation purchased by Saint-Gobain,
studying the samples imaged in the experimental electron microscopes of the department, all
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the while making many friends, including Lu-Chang and Shreeram among them.
Back from the USA, thanks to Dominique Jeulin, I finished my PhD dissertation under

the best conditions, since Jean Serra was in Barcelona on a sabbatical. At the end of 1993
I defended my thesis in the presence, among others, of all three of my directors. This pe-
riod had been extremely enjoyable with the start of long lasting friendships with Marc Van
Droogenbroeck, Pierre Soille, Corinne Vachier, Luc Vincent and almost daily interactions with
other mentors at the CMM including Serge Beucher, Michel Bilodeau, Jean-Claude Klein and
Fernand Meyer. This was also a period where I was very lucky to meet people who were
very influential for me, including Georges Matheron, Michel Schmitt, Petros Maragos, Gaile
Gordon who was doing her thesis with David Mumford and who married Luc Vincent. I also
remember fondly Fred Blundell, a mathematician who asked me once to explain to him math-
ematical morphology, and Carl Feynman, son of Richard, who was working at the short-lived
but influential Thinking Machine Inc.

After my doctorate, I worked for a year at Saint Gobain, implementing and optimizing the
results of my thesis. However I was now destined to forever be a willing victim to the siren
calls of scientific research. French Premier Balladur cut national research funding in 1994,
which together with high unemployment rates, prompted an exile to Australia.

I was again welcomed with open arms Down Under, again by exceptional people: Murray
Cameron, who later became the Chief of the Mathematical and Information Science division of
CSIRO, and Mark Berman, a man of impeccable scientific and human credentials, and absolute
integrity. There I had extremely productive interactions with my direct colleagues: Richard
Beare, Leanne Bischof, Michael Buckley, Ronald Jones, Changming Sun, later Paul Jackway
and Sébastien Ourselin. In these ten years in Australia, I had quite varied experiences, from
the early enthusiasm of the melanoma project with the Polartechnics company and Scott
Menzies of the Sydney Melanoma Unit at Royal Prince Alfred Hospital, to the technical and
financial success of the Axon automated microscope almost all the way to the end. In Australia
I was honored to work a little with visitors James Sethian, Christian Ronse and Alexandre
Tuzikov. A very special mention must be given to Henk Heijmans, whose cerebral vascular
accident will never leave my memory. I experienced the amazing dedication and bigger than
life persona of Mervyn Thomas, as well as the less enjoyable aspects of working under the
constant financial pressure of industrial research. I witnessed both the best and the worst
practices of management. The latter lead to my family’s eventual decision to come back to
France, family that had been extended with the arrival of a little Australian girl four years
earlier.

In 2004, taking advantage of a sabbatical year, I was welcomed in an excellent team, which
was and is still being lead by Gilles Bertrand, and that include now very close colleagues:
Mohamed Akil, Tarik Al Ani, Christine Auger, Alex Hamam, Lilian Buzer, Michel Couprie,
Christophe Dietrich, Thierry Grandpierre, Yukiko Kenmochi, Eric Llorens, Laurent Najman,
Laurent Perroton, François Rocariès and Jérôme Sueur. Over the years the team has expanded,
and now includes former student Jean Cousty, as well as Eva Dokladalova, Nabil Mustapha,
Frank Schmidt and indefatigable and more active than ever Jean Serra, not to mention our
latest colleague Benjamin Perret. Of course I must also mention Dror Aiger. In spite of his
short tenure with us we managed to write together five articles. Thanks to these stimulating
surroundings I have had the fantastic luck to be able to interact and collaborate with great
scientists and people like Dominique Bernard, Caroline Chaux, Emilie Chouzenoux, Théo
Géraud, Emmanuelle Gouillart, Amir Nakib, Nikos Paragios, Jean-Christophe Pesquet, Nelly
Pustelnik as well as visitors Yuri Boykov, Leo Grady and Olga Veksler, to name but a few.



I should have finished this thesis much much much earlier, since perhaps the material
was not lacking, but there was always seemingly better things to do: extend the family some
more, work on articles and books, help students, and just do research with the fantastic people
around me.

I would like to finish by thanking some very important people: the PhD student I have
helped supervise: Ben Appleton, Fiona Evans, Harold Phelippeau, Olena Tankyevych, Camille
Couprie, László Marak, Nicolas Combaret, Ania Jezierska, Ngo Phuc, Imen Melki, Eloïse
Grossiord, Odyssée Merveille and Ali Kanj. They probably didn’t know what to expect when
they started, I hope they will have received at least some measure of what they gave to me. I
would also like to thank the PhD students with whom I have worked with great pleasure even
though I was not their official co-supervisor: Jean Cousty, Yohann Thibaut, John Chaussard,
Emilie Charrier, Roland Levillain, David Menotti, Vincent Bismuth and Elodie Puybareau,
as well as those not directly inside our research team, but with whom I have had a lot of
interaction: Erwan Plougonven, Silvia Valero and François Cokelaer.

Let me thank one more time the readers of this thesis, and again each of the members of
the jury, especially the rapporteurs.

Last, but of course not least, I would like to thank my daughters Zoé and Sophie and finally
my most excellent wife Annick, amie, compagne et puis épouse, témoin et soutien indéfectible
de tous ces évènements. Sans toi je n’aurais rien pu faire.
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General introduction

The work presented in this habilitation thesis deals with several topics, related to aspects of
image analysis and image processing I have contributed to. There are essentially two parts
to this document: the first part deals with the filtering and segmentation of thin objects in
2D and 3D images ; the second part concerns optimal discrete and continuous method for
segmentation based on the notion of flow. There is a link between these two topics, which will
be provided in the course of the thesis.

Thin objects

Thin objects are prevalent in images. For example, one can think of the following:

� Fibrous objects in materials, e.g. composite with glass or carbon fibres;

� fracture lines and surfaces;

� thin anatomical structures: blood vessels, muscle fibres, neurites;

� some oriented textures in clothes or hair.

The list of potential examples is nearly infinite. There does not exist an unambiguous
definition of what constitutes a thin object, but for the purpose of explanations, we will say
that an object is thin if it semantically coherent and at least one of its dimensions is much
smaller than the others. Contrariwise, we will say that an object is “isotropic” if it is non-thin,
i.e. all of its dimensions are comparable.

In the general literature on image processing and analysis, thin objects are not usually
mentioned as deserving special treatment. However, because they possess this dimension that
is much smaller than the others, they are indeed often harder to acquire, process, segment
and analyse than more “isotropic” objects. For image filtering, for instance, one often uses
masks or windows of some fixed dimension like 3� 3 or 5� 5 pixels. Usually, one makes the
assumption that these masks entirely fits into most of the objects of interest. This may not
be true for a thin object. In segmentation, many popular methods assume that one can start
from some starting point in an object, and propagate information around this starting point
until the contours of the object are found. For thin objects, one may not be able to perform
this propagation, and moreover, one may not even be able to define their contours!

Thin objects are not isotropic, they are usually elongated in one or more direction and/or
dimension and so locally oriented. Discovering, measuring and using this information is im-
portant in a number of applications. This makes is possible for instance to characterize some
textures. Measuring anisotropy and orientation has several applications in materials science.
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A single object in image analysis are often assumed to be connected. On images, due
to noise and discretization issues, thin objects might be locally disconnected. Whereas a
human observer might still recognize semantically a hair, a fibre or a vessel, at the local pixel
level, the information is often lost in the noise. How then is it possible to connect high-level
information to low-level vision operators? This is a prevalent problem in computer vision and
image analysis, but is it particularly difficult to solve for thin objects.

In the first part of thesis, we will explore ways to deal with thin objects, particularly using
the tools of mathematical morphology, but also optimization-based approaches. A thin object
in 2D or 3D can be detected using minimal paths approaches. This leads us to the second
part of this thesis.

Flow methods in image analysis

Optimization-based approaches for finding thin objects have also been used in other contexts.
Indeed, the contour of an isotropic, non-thin object is also a thin object. For instance, mini-
mal path and minimal surfaces computations can be performed in the dual. One well-known
discrete method in this context is the graph maxflow-mincut theorem of Ford and Fulker-
son. This has led us to consider the problem of object segmentation from an optimization
perspective, and to develop new tools in this context.

Image segmentation, i.e. the act (or art) of delineating objects in images is an essential
step of many applications. As research progressed over the years, segmentation methods have
simultaneously moved from simple pixel-based techniques, to statistical characterization, to
regions-based methods. At the end of the 1980s, segmentation was finally seen as a variational
problem with associated energy minimization schemes. This viewpoint enabled the use of
iterative contour and surface evolution techniques of increased sophistication. Around the
year 2000, techniques for finding the global optimum of some of these formulations became
finally available.

In this part of the thesis, we will describe some of these techniques we have contributed
to. We will also describe image processing techniques for denoising or reconstruction that are
related to this effort.

Objective and outline of the thesis

The objective of this thesis is not to describe the solution to the problems described above, it
is more modestly to propose a context for these study, and to illustrate the following points:

� What is the problem we are trying to solve ;

� What are the main tools that exist or were developed ;

� What was our contribution to these tools.

This is done via a main text, followed by some selected publications. In the course of
writing this thesis, I have sought to present topics in a didactic manner in the main body of
the text. I have in places spent more space in the main text to the work of others instead of
my own, as an introduction to reading and understanding the articles that follow. It is my
hope that it will be useful.



Part I

Thin objects: problems, review,
filtering and segmentation





Introduction

In this part, we will introduce the general problem of thin object filtering and segmentation.
We will start from illustrative example in 2D, 2D+t and 3D. In a second chapter, we will pro-
pose a literature review of the topic. We will then propose filtering and segmentation method
for these object, together with qualitative and quantitative assessment of their performance.
In a last chapter for this part, we will introduce extensions, future work and a link to the next
part.
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Chapter 1

Thin objects in imaging

In this introductory chapter, we present the general framework of this study, in particular,
using illustrative examples, we present various problems associated with thin objects.

1.1 Examples of problems that include thin objects

Thin objects are in fact common in imaging problems, but do not appear so significantly when
studying image analysis, or in the bulk of publications related to that topic.

In this section, we show some examples of images that include thin objects, and the
problems associated with them. We start with some concepts and definitions.

1.1.1 Definitions and recognition

Segmentation is act (or the art) of delineating objects of interests in images. This definition
is more semantic than mathematical because at its heart so is segmentation itself. In fact
segmentation is essentially a cognitive concept because an object generally cannot be defined
precisely. Where is the contour of a cloud? of a tree? of a complex organ like the lung? In
the medical imaging context, even experts often do not agree on the placement of contours of
interest.

The classical approach to segmentation, sometimes called top-down (Beucher, 1990) implies
to segment an image first, in order to simplify its content. According to this view, segmentation
is therefore a kind of filtering operator. Object recognition comes only after, perhaps after
grouping or splitting already segmented regions. In contrast, the so-called morphological vision
of segmentation, sometimes called bottom-up and championed by Meyer and Beucher (1990)
supposes we know in advance the characteristics of the objects we would like to segment.
Although this may sound like a catch-22 situation, this is not really the case. In the case
of image analysis (say for the diagnosis of skin lesions or the counting of red blood cell in a
smear), we do largely know in advance what we are going to observe. In computer vision,
given sufficient exemplars, the characteristics of objects of interest (say people in a crowd) can
perhaps be learned.

In the bottom-up framework, filtering comes before segmentation, and can be quite ag-
gressive. Parts we do know are not of interest to us can be removed. Parts we know are
wholly inside or outside the object of interest can be kept separately and used as “markers” or
“seeds”. These will be used as starting point for the contour placement step of segmentation.
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(a) (b) (c)

Figure 1.1: A typical computer vision problem: outlining a kangaroo in the bush. In (b) an
individual segmentation. In (c) a superposition of several manual segmentations. Contours
that are drawn several times appear brighter. Many operators draw the contour of the kangaroo
but the level of detail varies widely.

The top-down philosophy is a better fit to computer vision than to image analysis, and
vice-versa for the bottom-up approach. For instance, it is difficult in computer vision to
segment a scene in the classical sense, i.e. an image with unspecified content, in semantically
distinct elements (a person, a background, foliage, etc). Indeed there is generally not enough
reference or specification to perform the task reliably. As an illustration, on figure 1.1, we
show as scene from the Berkeley Segmentation Database (Martin et al., 2001) containing a
kangaroo. This scene was manually segmented by several humans, and the contours they
drew were superimposed on top of each other. More “popular” contours appear brighter than
those that are drawn a small number of times. We notice that various operators have not
segmented the scene in the same way: some have drawn details like the eyes, others just the
rough outline of the kangaroo. These differences may come from psychological, cultural or
individual differences. This underscores the difficulty of specifying the segmentation problem
precisely. In a concise manner, we could say that the problem of segmentation is not specified
well enough to be solvable mathematically.

In contrast, many image analysis problems are better specified. The goal of an image
analysis problem is to get precise measurements, reliable object counts, or indicators of the
presence or absence of some feature, from visual data. While the means to attain that goal are
not specified, at least the goal itself is. For instance, as illustrated on Fig. 1.2, we have an MRI
slice of a human heart, from which we want to detour the left ventricle, which is most often
implied in infarcts. From this contours we are able to measure the area of he left ventricle,
and if we integrate this measure over several slices of the same heart and in times, we can
estimate the volume of blood the heart pumps out every cycle. This particular measurement
is useful in medical practice (Najman et al., 2008).

The difference between a computer vision and an image analysis problem is subtle. In
particular, both fields of application often use the same tools. It is only in the usage of these
tools that things differ. It is worth remembering that in all image analysis problem, the
finality is not the segmentation or the recognition, but the final measurements or assessments
one wants to make out of image data. The definition of the objects of interests themselves are
important, and a more precise definition will lead to better results in applications.
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Figure 1.2: A typical image analysis problem: a segmentation of the left ventricle of the heart.

Figure 1.3: An image including several thin objects: some man-made mineral fibre observed
in scanning electron microscopy.

1.1.2 Definition of thin objects

In the remainder of this first part, we will restrict ourselves to the problem of analysis of
thin objects. Defining a thin object should be simple, for instance we can take as operating
definition that a thin object is one that has at least one dimension smaller than the other. In
other words, a thin object can be well-approximated by a submanifold of Rn, where n is 2 or
3 typically, of lower dimension than n. For instance a thin fibre in 3D can be approximated
by a curve, of dimension 1. We show on a simple example that even though this definition is
intuitive and simple, it is not sufficient.

In Fig. 1.3, one can observe several thin white objects on a dark background. One can
distinguish four relatively large fibres, of which two have visible extremities, and two not. One
can also observe, with more difficulty, two extra very thin fibres, one which is quite short and
straight, while the other is longer and curved.

Although they look quite different, the two types of objects (i.e: “large” fibres (they are
about 10 �m in diameter, so this is a relative term) and “thin” fibres) do roughly correspond
to the definition given above. In reality, this definition is not sufficient to allow for a unified
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(a) (b)

Figure 1.4: Details of figure 1.3 : two fibres that are less visible..

Figure 1.5: A thresholding of figure 1.3

segmentation procedure for both kinds of fibres. “Large” fibres are relatively easy to filter and
segment: one can readily imagine that a simple thresholding will yield at least the overlap of
the large fibres. However, this is not the case for the thin fibres.

In the given example, one is straight and isolated (Fig. 1.4(a)), while the other is curved and
partially covered by a large fibre. These fibres are not straightforward to filter or segment. As
shown on Fig. 1.5, even careful thresholding does not allow both fibres to be included without
noise coming from the background. Additionally, some of this noise looks like thin objects, e.g.
horizontal thin lines that are artifacts from the acquisition instrument, and the thin curved
fibre is not present in the threshold in its entirety.

The temporary conclusion from this illustrating example is that the definition of a thin
object depends on the application. To be able to make progress, we will require a standard
allowing the identification of interesting objects with respect to noise. It is unlikely that a
universal definition or tool will be available. In addition, we begin to appreciate the concept
that thin objects are difficult to deal with when their smallest dimension approach the limit
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(a) (b) (c)

Figure 1.6: Scale and local orientation. (a) shows some text, where thin objects are made of
the strokes composing letters ; (b) shows the same text blurred by a Gaussian kernel of standard
deviation � = 5. Here thin objects are the words themselves. (c) shows again the same text,
blurred with � = 10. Thin objects have all but disappeared.

of resolution of the imaging modality.

1.1.3 Orientation and scale

Another common complicating factor related to resolution is that of scale . Commonly, defining
a single orientation at every point of an image is impossible. This is often due to three main
effects: (i) in 2D it is possible that several objects cross each other1, (ii) in any dimension,
a branching may occur (as in a vessel) and (iii) local orientation may depend on the scale
objects are considered. This latter effect is illustrated on Fig. 1.6.

Without involving any blur, it is clear that scale and orientation are linked. Consider for
instance a blood vessel imaged in MRI. For a larger artery like one of the carotids, at a large
scale it is possible to discern the outer layer of the vessel, which locally is a surface-like thin
object. However at a smaller scale, the vessel itself is a line-like thin object, as illustrated on
Fig. 1.7. Deciding the nature and orientation of thin objects is therefore a difficult problem
in itself.

1.2 Application fields

In spite of the lack of a usable generic definition, it is probably useful to illustrate the field
of application of the operators we will later describe through the use of examples. These
cannot hope to be exhaustive, but at least can be representative of a sufficiently large class of
problems.

1.2.1 Some 2D problems

In the example above, the problem was to segment all the fibres in order to measure their
length and diameter. We show some other related examples, in order to illustrate some of the
various difficulties encountered in dealing with thin objects.

1In 2D this is a common occlusion problem due to projection, in 3D it can only happen if the material
under study allow interpenetration, which is possible but not common.
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