Titre du projet

Réseaux de capteurs pour l'efficacité énergétique dans le bâtiment

Laboratoire:

ESYCOM

Encadrants

Elyes NEFZAOUI, Armande HERVE, Julien PAGAZANI

Équipe ou projet dans le laboratoire

Micro-Énergie

Présentation générale du sujet

La réduction des consommations énergétiques dans les bâtiments constitue un enjeu prioritaire de la transition énergétique et de la lutte contre le changement climatique. Elle est également obligatoire pour des bâtiments soumis à des réglementations telles que le décret tertiaire. Dans ce contexte, les réseaux de capteurs apparaissent comme des outils indispensables pour superviser en temps réel les usages, améliorer la performance énergétique et garantir la qualité de l'environnement intérieur. Leur intégration dans des systèmes de pilotage ou de prévision ouvre également de nouvelles perspectives pour la gestion intelligente des bâtiments [1,2]. Ce projet s'inscrit dans cette dynamique en explorant la conception et l'exploitation de réseaux de capteurs appliqués au domaine du bâtiment.

Objectifs du projet

L'objectif du projet est de concevoir, déployer et exploiter un réseau de capteurs pour la supervision énergétique et environnementale d'un ou plusieurs bâtiments. Le périmètre de l'étude pourra concerner aussi bien des bâtiments entiers que des sous-parties ciblées grâce au sous-comptage, en cohérence avec les standards de management de l'énergie [3].

Le projet débutera par une recherche bibliographique et par l'élaboration d'un plan de mesure adapté aux besoins d'analyse, intégrant des indicateurs de performance énergétique et de confort intérieur. Cette étape sera suivie du déploiement opérationnel des capteurs et de leur configuration selon le schéma établi [4].

Une fois le réseau en fonctionnement, le travail portera sur la collecte et l'analyse des données, avec un accent particulier mis sur la visualisation afin de rendre les résultats compréhensibles pour des utilisateurs non spécialistes [5]. L'analyse des données devra permettre de produire

des recommandations concrètes en matière de réduction des consommations, d'amélioration du confort des occupants et de suivi de la qualité de l'environnement intérieur [6,7].

Le projet comprendra également une réflexion sur l'évolution du réseau de capteurs, en lien avec de nouveaux usages potentiels (par exemple le suivi de nouveaux indicateurs environnementaux ou l'intégration à des systèmes de pilotage énergétique plus complexes). Enfin, un axe de travail important concernera l'amélioration des méthodes de maintenance et la détection automatique de problèmes dans le réseau afin de garantir la fiabilité et la pérennité du système déployé.

Bibliographie

- [1] M Bourdeau et al., (2019) Modeling and forecasting building energy consumption: A review of data-driven techniques, Sustainable Cities and Society 48, 101533
- [2] T. Bapaume, N. Alisoltani, E. Nefzaoui and L. Oukhellou, "Enhanced Building Electric Power Demand Forecasting Using IoT and Machine Learning," 2025 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Venezia, Italy, 2025, pp. 89-94, doi: 10.1109/MetroLivEnv64961.2025.11107141
- [3] ISO 50001:2018 Systèmes de management de l'énergie Exigences et recommandations de mise en œuvre.
- [4] M. Bourdeau, D. Werner, P. Basset, E. Nefzaoui. A Sensor Network for Existing Residential Buildings Indoor Environment Quality and Energy Consumption Assessment and Monitoring: Lessons Learnt from a Field Experiment. 9th International Conference on Sensor Networks, Feb 2020, Valletta, France. pp.105-112,
- [5] N. Aouani, A. Hervé and E. Nefzaoui, "IoT-based indoor air quality monitoring and analysis under different strategies of COVID-19 transmission mitigation: a field experiment," 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Milano, Italy, 2023, pp. 12-17
- [6] Bourdeau, M.; Waeytens, J.; Aouani, N.; Basset, P.; Nefzaoui, E. A Wireless Sensor Network for Residential Building Energy and Indoor Environmental Quality Monitoring: Design, Instrumentation, Data Analysis and Feedback. Sensors 2023, 23, 5580
- [7] N. Alisoltani, E. Nefzaoui and L. Oukhellou, "Effects of Lockdown on Electricity Demand Patterns of Institutional Buildings," 2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Chania, Greece, 2024, pp. 33-38, doi: 10.1109/MetroLivEnv60384.2024.10615277