

Filtres Numériques

Généralités

O.Venard - ESIEE/SIGTEL - 2005

1

Transformée en Z

Cas continu :

$$e(t) = s(t) + RC \frac{ds(t)}{dt} \qquad H(p) = \frac{S(p)}{E(p)} \qquad H(f) = H(p)\Big|_{p=j2\pi f}$$

discrètisation :

$$e[nT_e] = s[nT_e] + RC \frac{s[nT_e] - s[(n-1)T_e]}{T_e}$$

$$H(z) = \frac{S(z)}{E(z)} \qquad \qquad H("f") = H(z)|_{z=e^{j2\pi f}}$$

ĔŜĬĔĔ

Transformée de Laplace d'un signal échantillonné :

Transformée en Z

$$X_{e}(p) = \sum_{n=-\infty}^{+\infty} x_{e}[n]e^{-npT_{e}} = \sum_{n=-\infty}^{+\infty} x_{e}[n]z^{-n} \text{ avec } z = e^{pT_{e}}$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$$

Propriétés

linéarité

$$w\left[n\right] = a \; x\left[n\right] + b \; y\left[n\right] \xrightarrow{TZ} \; W(z) = a \; X(z) + b \; Y(z)$$

Décalage temporel (théorème du retard)

$$w[n] = x[n-m] \xrightarrow{TZ} W(z) = z^{-m}X(z)$$

Convolution (théorème de)

$$w[n] = x[n] * y[n] \xrightarrow{TZ} W(z) = X(z) Y(z)$$

Systèmes LIT

Fonction de transfert discrète :

$$H(z) = \sum_{n=-\infty}^{+\infty} h[n] z^{-n}$$

Causalité

Stabilité

$$\sum_{n=0}^{+\infty} |h[n]| < \infty$$

Filtres numériques

Équations aux différences

$$y[n] = -\sum_{i=1}^{p} a_i y[n-i] + \sum_{i=0}^{q} b_i x[n-i]$$

Fonctions de transfert rationnelle

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{i=0}^{q} b_i z^{-i}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$$

Pôles et zéros

$$H(z) = \frac{N(z)}{D(z)} = \frac{\sum_{i=0}^{q} b_i z^{-i}}{1 + \sum_{i=1}^{p} a_i z^{-i}} = \frac{\prod_{i=1}^{q} (1 - \beta_i z^{-1})}{\prod_{i=1}^{p} (1 - \alpha_i z^{-1})}$$

Zéros de transmission

$$z = \beta_i \implies N(z) = 0 \implies H(z) = 0$$

Pôles

$$z = \alpha_i \implies D(z) = 0 \implies H(z) \to \infty$$

[stable si $|\alpha_i| < 1$]

Fonction de transfert : amplitude, phase et temps de groupe

$$\frac{N(f)}{D(f)} = \frac{\left|N(f)\right|e^{j\theta(f)}}{\left|D(f)\right|e^{j\varphi(f)}} = \frac{\left|N(f)\right|}{\left|D(f)\right|}e^{j(\theta(f)-\varphi(f))}$$

$$T(f) = -\frac{1}{2\pi} \frac{d(\theta(f) - \varphi(f))}{df}$$

Spécifications en amplitude

O.Venard - ESIEE/SIGTEL - 2005

Spécifications en phase

Phase linéaire

$$X(f_h, f_v) = \left| X(f_h, f_v) \right| e^{j(2\pi\varphi_h(f_h) + 2\pi\varphi_v(f_v))}$$

$$X_{\varphi}(f_h, f_v) = e^{j(2\pi\varphi_h(f_h) + 2\pi\varphi_v(f_v))}$$

$$X_{\mathrm{mod}}\left(f_{h},f_{v}\right)=\left|X\left(f_{h},f_{v}\right)\right|$$

Filtres numériques

Filtres RIF (FIR)

O.Venard - ESIEE/SIGTEL - 2005

Phase linéaire

 $x(t) = A_1 \sin(2\pi f_1 t) + A_2 \sin(2\pi f_2 t)$

 $y(t) = k_1 A_1 \sin(2\pi f_1 t + \varphi_1) + k_2 A_2 \sin(2\pi f_2 t + \varphi_2)$

$$y(t) = kx(t - \tau)$$

$$y(t) = k_1 A_1 \sin 2\pi f_1 \left(t + \frac{\varphi_1}{2\pi f_1} \right) + k_2 A_2 \sin 2\pi f_2 \left(t + \frac{\varphi_2}{2\pi f_e} \right)$$

$$\frac{\varphi_1}{2\pi f_1} = \frac{\varphi_2}{2\pi f_2} \quad \text{donc} \quad \left[\varphi(f) = -2\pi f \tau + \varphi_0 \right]$$

Temps de groupe

$$T(f) = -\frac{1}{2\pi} \frac{d(-2\pi f \tau + \varphi_0)}{df} = \tau$$

Condition

h(*t*) doit être symétrique ou antisymétrique *Non réalisable avec les filtres analogiques*

Synthèse méthode de la fenêtre

- Spécification en fréquence sous la contrainte d'une réponse impulsionnelle symétrique ou anti-symétrique.
- Filtre idéal :

Aparté 1

(Fonctions rectangle et sinus cardinal)

Réponse impulsionnelle finie

Aparté 2 (théorème du fenêtrage)

Longueur de la fenêtre

21

O.Venard - ESIEE/SIGTEL - 2005

Fenêtres

Fenêtre	largeur du lobe	amplitude lobe	largeur bande de	atténuation (A)
	principal	secondaire	transition $(f_s - f_p)$	
rectangulaire	$\frac{2}{N}$	-13.3 dB	$\frac{0.92}{N}$	20.9 dB
Bartlett	$\frac{4}{N}$	-26.5 dB	$\frac{4}{N}$	26 dB
Hanning	$\frac{4}{N}$	-31.5 dB	$\frac{3.11}{N}$	43.9dB
Hamming	$\frac{4}{N}$	-42.7 dB	$\frac{3.37}{N}$	54.5dB
Blackman	$\frac{6}{N}$	-58.1 dB	$\frac{5.56}{N}$	75.3dB

Filtre obtenu

Phase (cas discret)

Soit $h[n] = h(nT_e)$ et $LT_e = t_f$, alors, Causalité :

Types de filtre (exemple)

Réponse impulsionnelle, fonction de transfert, stabilité et équation aux différences

Réponse impulsionnelle : h[n]

Fonction de transfert :

$$H(z) = \sum_{k=-\infty}^{+\infty} h[k] z^{-k} = \sum_{k=0}^{N-1} h[k] z^{-k} = \frac{N(z)}{D(z)} = \frac{N(z)}{1}$$

Equation aux différences :

$$H(z) = \frac{Y(z)}{X(z)} = \sum_{k=0}^{N-1} h[k] z^{-k}$$

$$Y(z) = \sum_{k=0}^{N-1} h[k] X(z) z^{-k} = \sum_{k=0}^{N-1} b_k X(z) z^{-k}$$

$$y[n] = \sum_{k=0}^{N-1} b_k x[n-k]$$

(e) Somme des produit terme à terme

(d) Données fournies par le traitement

 $y[n] = \sum_{k=0}^{N-1} b[k]x[n-k]$ (f) Données fournies par le traitement

Algorithme

- 1. Le nouvel échantillon x[] est rangé au début du tableau de donnée et l'accumulateur est mis à 0.
- 2. Boucle de traitement sur le nombre de coefficients (N), compteur de coefficients est mis à 0.
 - (a) Multiplication de la donnée et du coefficient courants et accumulation au résultat précédent dans l'accumulateur.
 - (b) Si encore des coefficients à traiter, incrémentation du compteur de coefficients et retour à l'étape 2a; sinon aller à l'étape 3.
- 3. Le contenu de l'accumulateur est transfére vers la case mémoire devant contenir le résultat du filtrage (y par exemple).
- 4. Le tableau de données est préparé pour le prochain échantillon x[]. C'est l'étape de vieillissement des données (figure IV.16) : on recopie le contenu de chaque case mémoire dans la case mémoire immédiatement supérieure en partant de l'adresse N 1, l'adresse 1 se trouve ainsi disponible pour recevoir le prochain échantillon en entrée du filtre.
- 5. on retourne à l'étape 1 en attente du prochain échantillon x[].

FIG. IV.16 - Gestion du tableau de données

Filtres numériques

Filtres RII (IIR)

O.Venard - ESIEE/SIGTEL - 2005

Étapes de conception

- Prototype analogique
 - Fonctions d'approximation
- Transposition numérique
 - Transposition $p \rightarrow z$
 - Structure de réalisation
- Methode numérique directe : Yule Walker – Méthode par optimisation

...(suite)

- Transformation bilinéaire :
 - Réalise une relation bijective entre les fréquences analogiques et les fréquences numériques.
 - Repose sur l'approximation de l'intégrale continue par la méthode des trapèzes.

Synthèse

- Définition du gabarit numérique en fonction de l'application.
- Prédistorsion des fréquences caractéristiques du gabarit (f_p, f_s) .
- Ce gabarit prédistorsion est utilisé pour calculer un filtre prototype analogique en utilisant les fonctions d'approximations :
 - Butterworth
 - Tchebycheff I
 - Tchebycheff II
 - Elliptic (Cauer)
 - ...
- Le filtre prototype analogique est transformé en filtre numérique avec la transformation bilinéaire qui supprime la prédistorsion introduite à l'étape précédente. Ce filtre respecte alors les contraintes du gabarit numérique.

Filtres numériques

Équations aux différences

$$y[n] = -\sum_{i=1}^{p} a_i y[n-i] + \sum_{i=0}^{q} b_i x[n-i]$$

Fonctions de transfert rationnelle

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{i=0}^{q} b_i z^{-i}}{1 + \sum_{i=1}^{p} a_i z^{-i}}$$

Caractéristiques des filtres RII

• Filtres de Butterworth

- Défini par son ordre N et sa fréquence de coupure f_c .
- Fonction de transfert en module monotone.

% Butterworth filter % sampling frequency : 16 kHz % Fp : 1800 Hz % Fa : 4000 Hz % Rp : 0.01 dB % Ra : 50 dB [N, Wn]= buttord(1800/8000,4000/8000,0.01,50); [B,A] = butter(N,Wn); H=freqz(B,A); plot(linspace(0,1,512),abs(H))

• Filtres de Tchebycheff I

• Défini par son ordre N et la fréquence délimitant la bande passante f_p et ε l'ondulation en bande passante.

• Ondulation en bande passante et monotone en bande atténuée.

• Filtres de Tchebycheff II

$$\left| H(f) \right|^2 = 1 - \frac{1}{1 + \varepsilon^2 T_N^2 \left(\frac{f_s}{f} \right)}$$

• Défini par son ordre N, la fréquence délimitant la bande atténuée f_s et l'atténuation ε .

• Monotone en bande passante et ondulation en bande atténuée.

O.Venard - ESIEE/SIGTEL - 2005

• Filtres elliptique

• Ondulation en bande passante et ondulation en bande atténuée.

O.Venard - ESIEE/SIGTEL - 2005

Pôles et zéros

$$H(z) = \frac{N(z)}{D(z)} = \frac{\sum_{i=0}^{q} b_i z^{-i}}{1 + \sum_{i=1}^{p} a_i z^{-i}} = \frac{\prod_{i=1}^{q} (1 - \beta_i z^{-1})}{\prod_{i=1}^{p} (1 - \alpha_i z^{-1})}$$

Zéros de transmission

$$z = \beta_i \implies N(z) = 0 \implies H(z) = 0$$

Pôles

$$z = \alpha_i \implies D(z) = 0 \implies H(z) \to \infty$$

Butterworth

Tchebycheff II

O.Venard - ESIEE/SIGTEL - 2005

Temps de groupe

 $T(f) = -\frac{1}{2\pi} \frac{d\phi(f)}{df}$

Fréquence d'échantillonnage : 16 kHz

Fp: 1800 Hz, Fs: 4000 Hz

Rp : 0.01 dB, Rs : 50 dB

Structure d'implantation

Forme directe I

 $H(z) = B(z) \frac{1}{A(z)}$

Forme directe II

 $H(z) = \frac{1}{A(z)}B(z)$

...(suite)

Forme directe transposée II

$$H(z) = \frac{1}{A(z)}B(z)$$

Quantification des coefficients

• La précision finie des processeurs et des cases mémoires implique la quantification des coefficients.

$$\overline{a}_k = a_k + \Delta a_k$$
 et $\overline{b}_k = b_k + \Delta b_k$

• La modification des coefficients modifie la fonction de transfert.

• Plus le filtre est d'ordre élevé, plus la pertubation introduite par la quantification est importante

...(suite)

• sensibilité des coefficients à la quantification \rightarrow cellules d'ordre 2

Décomposition en éléments simples

$$\frac{B(z)}{A(z)} = c_0 + \sum_{i=0}^{N-1} \frac{b_{i0} + b_{i1}z^{-1}}{1 + a_{i1}z^{-1} + a_{i2}z^{-2}}$$

$$\begin{array}{c} & \longrightarrow \end{array} \xrightarrow{b_0 + b_1 z^{-1} + b_2 z^{-2}} \\ \hline 1 + a_1 z^{-1} + a_2 z^{-2} \end{array} \xrightarrow{b_0 + b_1 z^{-1} + b_2 z^{-2}} \\ \hline 1 + a_1 z^{-1} + a_2 z^{-2} \end{array} \xrightarrow{\phi} y_n$$

Factorisation spectrale

$$\frac{B(z)}{A(z)} = b_0 \prod_{i=0}^{N-1} \frac{1 + b_{i1}z^{-1} + b_{i2}z^{-2}}{1 + a_{i1}z^{-1} + a_{i2}z^{-2}}$$

Quantification

Factorisation spectrale

Calcul

FIG. IV.15 - Multiplieur-accumulateur

ACC=x(n)ACC=ACC - $a_1 \times w(n-1)$ ACC=ACC - $a_2 \times w(n-2)$ w(n)=ACC ACC= $w(n) \times b_0$ ACC=ACC + $b_2 \times w(n-2)$ ACC=ACC + $b_1 \times w(n-1)$ ACC y(n)=ACC

w(n-2)=w(n-1)w(n-1)=w(n)